
CSC373 Fall’20

Final Assessment Solutions

Date: December 18, 2020

Q1 [10 Points] Find the Single Attendee

There are 2n+ 1 attendees at a party, which includes n couples and a single person. At the end of
the party, all the attendees form a line in which each person stands next to their partner, except for
the single person, who stands somewhere in the line. As an example, for n = 3, the seven attendees
could be standing in the order (A1, A2, B1, B2, C,D1, D2), where (A1, A2), (B1, B2), and (D1, D2)
are couples and C is single.

Your job is to find the position of the single person (this would be 5 in the above example). But
you don’t know which ones are partners. All you can do is ask questions of the form “Are the
i-th and j-th people in the line partners?” Design a divide-and-conquer algorithm for this problem
which finds the position of the single person by asking O(log n) questions. Justify your answer.

Solution to Q1

Suppose A is the array of attendees. The key idea is to compare two attendees about half-way in the
array. Suppose we compare A[n] and A[n+ 1] and they are a couple. If n is odd, then A[1 . . . n+ 1]
is of even length, which means it must contain (n + 1)/2 couples and not the singleton. So we
can search A[n+ 2 . . . 2n+ 1] for the singleton. Similarly, if n is even, then A[1 . . . n+ 1] is of odd
length, which means it must contain n/2 couples and the singleton. So we can search A[1 . . . n− 1]
for the singleton (since we already know that A[n] and A[n + 1] are not the singleton). Similar
conclusions hold if A[n] and A[n+ 1] are not a couple. Also, note that we are careful to always call
our algorithm on an array of odd length that contains the singleton.

Algorithm 1: Find-the-Singleton

Input: Array A of length 2n+ 1
1 if n = 0 then
2 return 1
3 end
4 if If A[n] and A[n+ 1] are a couple then

// Search the second half if n is odd and the first half if n is even.

5 return (n+ 1)+Find-the-Singleton(A[n+ 2 . . . 2n+ 1]) if n is odd and
Find-the-Singleton(A[1 . . . n− 1]) if n is even

6 else
// Search the second half if n is even and the first half if n is odd.

7 return n+Find-the-Singleton(A[n+ 1 . . . 2n+ 1]) if n is even and
Find-the-Singleton(A[1 . . . n]) if n is odd

8 end

For the worst-case number of questions, note that solving a list of length 2n+ 1 requires solving a
list of length at most n+1 and a single additional question. Hence, we have the recurrence relation

1

T (2n+ 1) ≤ T (n+ 1) + 1, which, by the master theorem, gives us T (n) = O(log n).

Q2 [15 Points] Event Planner

There are n events, each takes one unit of time. Each event i will provide a profit of gi dollars if it
is started at or before time ti, but will provide zero profit if it is not started by time ti (so there is
no point in scheduling event i unless it can be scheduled to start by time ti). Here, gi, ti ≥ 0 and ti
may NOT be an integer. An event can start as early as time 0 and no two events can be running
simultaneously. The goal is to feasibly schedule a subset of the events to maximize the total profit.

(a) [2.5 Points] Prove that there exists an optimal schedule OPT in which every event that is
scheduled is scheduled to start at an integral time. Note that in such a solution, each event i is
either scheduled to start by time btic or not scheduled at all.

(b) [5 Points] Design an efficient greedy algorithm which only schedules events at integral start
times. [Hint: Let T = maxibtic. Think about which event you would schedule to start at time T .]

(c) [5 Points] Prove that your algorithm always returns an optimal solution.

(d) [2.5 Points] Analyze the worst-case running time of your algorithm. Explicitly state the data
structures that your algorithm uses.

Solution to Q2

(a) Consider any optimal schedule OPT ′ which schedules a subset of the events S and each i ∈ S
is scheduled to start at s′i. Next, consider the schedule OPT which also schedules the same set of
events S but schedules each i ∈ S to start at si = bs′ic.

Since si ≤ s′i for each i ∈ S, we know that each event in S is still scheduled profitably. Thus, OPT
has the same profit as OPT ′ and it only schedules events to start at integral times. It remains to
show that no two events are overlapping in OPT . But since events start at integral times and run
for one unit of time, this is equivalent to proving that no two events have the same starting time
under OPT .

To see this, consider any two events i, j ∈ S. Since OPT ′ is feasible, [s′i, s
′
i + 1) and [s′j , s

′
j + 1)

must not overlap. This directly implies that bs′ic 6= bs′jc, i.e., si 6= sj , as required.

(b) We sort the events by their start deadlines and then, in a single pass, divide them into blocks
E0, . . . , ET such that for each k ∈ {0, 1, . . . , T}, Ek = {i : k ≤ ti < k + 1}. Note that events in Ek

are profitable if started at time k or earlier but not if started at time k+ 1 or later. And note that
T is the latest time at which we can start an event profitably.

Only events in ET can be scheduled at time T . Among them, we schedule the most profitable one
at time T . Then, we consider the unscheduled events in ET along with the events in ET−1, and
schedule the most profitable among them at time T − 1. We continue doing this until we reach
time 0. This is explained in the algorithm below.

At time k, to find the most profitable event among the unscheduled events in Ek+1, . . . , ET along
with the events in Ek, we maintain a priority queue of events from which we can find the most

2

profitable one and delete the scheduled one quickly.

Algorithm 2: Greedy-Event-Scheduling

1 Sort the events so that t1 ≤ . . . ≤ tn
2 T ← maxibtic = btnc
3 Divide the events into buckets E0, . . . , ET such that Ek = {i : k ≤ ti < k + 1} for each

k ∈ {0, 1, . . . , T}
4 Q← empty priority queue
5 for t = T, T − 1, . . . , 0 do
6 Add all events in Et to Q with their profit as the key
7 if Q is empty then
8 continue
9 end

10 i← most profitable event in Q
11 Schedule event i to start at time si = t
12 Delete event i from Q

13 end

(c) We say that a schedule is integral if it only schedules events at integral start times. Part (a)
shows that there exists an optimal schedule that is integral. We say that two integral schedules
match at time t if either both schedule the same event at t or both do not schedule any event at t.
The match level of two integral schedules is the smallest t for which they match at time t.

Let G denote our greedy schedule. Among all optimal integral schedules, let OPT be the one with
the smallest match level with G. If this match level is 0, then the greedy schedule is optimal,
so we are done. Otherwise, suppose this match level is t + 1. Consider time t. There are three
possibilities:

1. OPT schedules nothing at time t while G schedules some event i. Then, i must be scheduled
at some other time in OPT , otherwise scheduling i at time t would not cause any conflicts
and increase the profit, which is impossible. Now, changing the start time of i to t produces
an integral optimal schedule OPT ′ which has the same profit (event i remains profitable
when started at time t because G schedules it at time t) and has match level t with G, a
contradiction.

2. OPT schedules some event i at time t while G schedules nothing. Since G and OPT match at
times t+1, . . . , T , i must be unscheduled when the greedy algorithm reaches iteration for time
t. Since i is profitable if scheduled at t, G cannot schedule nothing at time t, a contradiction.

3. OPT schedules some event i at time t while G schedules a different event j. Since G and
OPT match at times t + 1, . . . , T , neither have i or j scheduled after time t. Further, since
i must be unscheduled at the iteration for time t in G, but it schedules event j, the profit
of j must be at least as much as the profit of i. So if OPT doesn’t schedule j, then we can
replace i by j at time t in OPT , and if OPT does schedule j at an earlier time, then we can
swap the starting times of i and j. Note that j still remains profitable since it has the same
starting time as in OPT , and i only moves early so remains profitable as well. In either case,
we have a new integral optimal schedule with match level t with G, a contradiction.

(d) Sorting and grouping the events by the floor of their start time (Lines 1-3) takes O(n log n)

3

time. Creating the buckets then takes O(n + T) time. The loop runs for O(T) iterations, and in
each iteration, finding the most profitable event and deleting the scheduled event from the priority
queue takes O(log n) time. Hence, the total running time is O((n+ T) log n), which is not polyno-
mial in the input length because T can be quite large.

However, we can slightly modify the algorithm such that we only create and store non-empty
buckets, and every time we have an empty Q in Line 7, we reduce t directly to the time of the next
non-empty bucket. Thus, we can reduce the number of iterations to the order of the number of
events scheduled, which is O(n). This reduces the running time to O(n log n), which is polynomial.
While the loop runs forO(T) steps as stated, we can slightly modify it to skip over all the consecutive
trivial steps (i.e. steps in which Q is empty in Line 7), thus

Q3 [15 Points] Protect the Paintings Again

Recall the question about protecting paintings from midterm 1. A corridor of a museum is rep-
resented by the interval [a, b] (with a < b) and contains valuable paintings. There are n guards
stationed along the corridor. Guard i can protect the interval [si, fi], where a ≤ si ≤ fi ≤ b. We
say that a subset of guards P ⊆ {1, . . . , n} is acceptable if the guards in P already collectively
protect the entire corridor, i.e., ∪i∈P [si, fi] = [a, b]. Assume that the set of all guards {1, . . . , n} is
acceptable, so there is at least one acceptable set.

In the midterm, we designed a greedy algorithm for finding an acceptable subset P of minimum
cardinality |P |. Instead, suppose that each guard i has an associated non-negative cost ci. Design
a dynamic programming solution for finding an acceptable subset P with the smallest total cost∑

i∈P ci. For full credit, your solution must run in O(n2) time and space.

[Hint: Consider the set of all the “breakpoints”: {a, b, s1, f1, s2, f2, . . . , sn, fn}. Suppose the distinct
breakpoints in the ascending order are a = p1 < p2 < . . . < pm = b for some m. It may be useful
to think of a subproblem where you want to cover the sub-interval [p1, pj] using only some of the
guards. Do not forget to bound the maximum number of distinct breakpoints m in terms of n.]

(a) [5 Points] Define an array storing the necessary information from subproblems. Clearly define
what each entry means and how you would compute the desired solution given this array.

(b) [5 Points] Write a Bellman equation and briefly justify its correctness.

(c) [2.5 Points] In what order would you compute the entries in a bottom-up implementation?

(d) [2.5 Points] Analyze the worst-case running time and space complexity of your algorithm.

Solution to Q3

(a) Sort the guards such that f1 ≤ . . . ≤ fn. Further, as the hint suggests, sort the distinct break-
points such that a = p1 < . . . < pm = b. Now, for 0 ≤ i ≤ n and 1 ≤ j ≤ m, define OPT [i, j] to be
the smallest cost needed to cover [a, pj] (with j = 1, i.e., [a, a] considered trivially covered) using
only the first i guards in the sorted order.

To reconstruct the optimal solution, we look at the Bellman equation below and define S[i, j] to
be Y if guard i is used, N if guard i is not used, and ⊥ in the first two edge cases.

4

Then, to construct the final solution, we start P = ∅, i = n, j = m. Then, until S[i, j] = ⊥, we do
the following:

� If S[i, j] = Y , then P ← P ∪ {i}, i← i− 1, j ← k (where pk = si).

� If S[i, j] = N , then i← i− 1.

At the end, we return P .

(b) The Bellman equation is as follows.

(OPT [i, j], S[i, j]) =

(0,⊥) if j = 1,

(∞,⊥) if j ≥ 2, i = 0,

(OPT [i− 1, j], N) if j ≥ 2, i ≥ 1, pj /∈ [si, fi],

(OPT [i− 1, j], N) if j ≥ 2, i ≥ 1, pj ∈ [si, fi], OPT [i− 1, j] < ci +OPT [i− 1, k], where pk = si,

(ci +OPT [i− 1, k], Y) if j ≥ 2, i ≥ 1, pj ∈ [si, fi], OPT [i− 1, j] ≥ ci +OPT [i− 1, k], where pk = si.

Note that choosing guard i can only be helpful if pj ∈ [si, fi]: if pj < si, then the guard doesn’t
cover any useful portion, and if pj > fi, then due to the sorted order, none of guards 1, . . . , i can
cover point pj (so our recursive solution will keep calling OPT with one smaller i until it reaches
i = 0 and returns ∞). If choosing guard i can be helpful, then we want to consider both choosing
guard i (in which case we only have interval [a, si] left to be covered) and not choosing guard i (in
which case we still need to cover [a, pj] with only guards 1, . . . , i− 1).

(c) Since (OPT [i, j], S[i, j]) only depends on OPT [i−1, ·], we compute them in the following order:
loop over i = 0, . . . , n, and for each i, loop over j = 1, . . . ,m.

(d) Since there are at most 2n breakpoints, we have m = O(n). Hence, both arrays require O(n2)
space. Further, computing each array entry requires O(1) times given previous entries. Hence, the
worst-case running time is O(n2) as well.

Q4 [15 Points] Divide the Workload

You are the CEO of a company which employs n workers to perform m tasks. Each worker i is
supposed to work a total of wi hours and each task j requires a total of tj hours of work. Assume
that

∑n
i=1wi =

∑m
j=1 tj . The floor supervisor has come up with an ideal work schedule represented

as matrix A, where row i represents worker i, column j represents task j, and Ai,j is the number
of hours worker i will spend on task j. Matrix A has the property that the sum along each row i
is exactly wi and the sum along each column j is exactly tj .

There is just one problem. The floor supervisor has taken the liberty of using fractional values for
Ai,j-s, forgetting the recent company policy that a worker must spend an integral number of hours
on a task. Luckily, all the wi-s and tj-s are integral. Your goal is to prove that it is always possible
to “round” matrix A into some matrix B while preserving the row and column sums (i.e. set each
Bi,j to be either bAi,jc or dAi,je such that each row i of B still sums to wi and each column j of B
still sums to tj). The example below shows such a rounding of a 3× 3 matrix.

5

2.6 0 0.4 3

0.8 2.9 1.3 5

1.6 0.1 5.3 7

5 3 7


A = −→ B =

2 0 1 3

1 3 1 5

2 0 5 7

5 3 7




(a) [2.5 Points] Consider the matrix A′ obtained by replacing each entry of A with its fractional
part (e.g. replacing 1.3 with 0.3, 2.6 with 0.6, 0.1 with 0.1, etc). First, argue that A′ must also
have integral row and column sums. Next, argue that if A′ can be rounded while preserving the
row and column sums, then A can be as well.

(b) [10 Points] Note that each A′i,j ∈ [0, 1]; hence, rounding it means setting it to either 0 or 1 (ex-
cept, if A′i,j ∈ {0, 1} then the rounding must not change its value). Using network flow techniques,
show that A′ can be rounded while preserving row and column sums. Justify your answer.

[Hint: Construct a network with integral edge capacities, use A′ to construct a max flow with
fractional flow values on edges, and then use the integrality property of the Ford-Fulkerson algorithm
(i.e. that it finds a max flow in which each edge carries an integral amount of flow).]

(c) [2.5 Points] What is the worst-case running time of the näıve Ford-Fulkerson on your network?

Solution to Q4

(a) Let F be the matrix where Fi,j = bAi,jc. Then, A′ = A− F . Since row/column sums of both
A and F are integral, the row/column sums of A′ are also integral.
If A′ can be rounded into B′ while preserving the row/column sums, then note that B = F + B′

gives a rounding of A: it has the same row/column sums as that of F + A′ = A and each of its
entries is either bAi,jc+0 or bAi,jc+1 (except it must be equal to bAi,jc = Ai,j if Ai,j is an integer,
i.e., if A′i,j = 0).

(b) Construct a network as follows.

� Add a source node s and a target node t.

� Add a vertex ri for each row i and a vertex cj for each column j.

� Add an edge s→ ri for each i with capacity equal to the sum of row i in A′.

� Add an edge cj → t for each j with capacity equal to the sum of column j in A′.

� Add a unit-capacity edge ri → cj for each (i, j) with A′i,j > 0 (i.e. those entries which can be
rounded to 1).

Consider the following flow f . Every s → ri and cj → t edge is saturated, and fri→cj = A′i,j for
each (i, j). Note that because the capacities of s→ ri and cj → t edges are the sums of entries of
row i and column j in A′, flow conservation constraints are satisfied. Edge capacity constraints are
also trivially satisfied. Hence, f is a valid flow. Further, since all edges leaving s are saturated, it
must be a max flow. Hence, max flow value is

∑
i,j A

′
i,j .

However, since the network has edges of integral capacity, the Ford-Fulkerson algorithm must return
a flow f∗ with integral flow values on edges. Define B′ such that B′i,j = 1 if f∗ri→cj = 1 and B′i,j = 0
otherwise. Then, due to the construction of the network, B′ must be a rounding of A′.

6

(c) The network in part (b) has at most n+m+n·m = O(n·m) edges, n+m+2 = O(n+m) nodes,
and max flow value of

∑
i,j A

′
i,j ≤ n ·m. Hence, the worst-case running time of the Ford-Fulkerson

algorithm is O(n2m2).

Q5 [15 Points] Linear Programming

(a) [5 Points] Convert the following linear program to the standard form. You only need to write
the final answer; no justification is needed.

max 3x+ 5y + 2z
s.t. 5y + 10z ≤ 3− 2x

2x ≤ 2− 3y − z
x, y ≥ 0, z ∈ R

(b) [5 Points] Write the dual of the linear program from part (a). You do not need to write this in
the standard form and no justification is needed.

(c) [5 Points] Consider the optimization problem from part (a), but change the objective function
to maximizing f(x, y, z), where

f(x, y, z) =

{
3x+ 5y, if z ≥ 0,

3x+ 5y + 2z, if z < 0.

Note that f(x, y, z) is not linear, and hence, the new optimization problem is not linear as well.
Nonetheless, show that it can be converted into an equivalent linear program. Provide this equiv-
alent linear program in its standard form and justify the equivalence.

Solution to Q5

(a)

max 3x+ 5y + 2z′ − 2z′′

s.t. 2x+ 5y + 10z′ − 10z′′ ≤ 3
2x+ 3y + z′ − z′′ ≤ 2
x, y, z′, z′′ ≥ 0

(b) Both the dual of the original LP and the dual of the LP in the standard form would be accept-
able in this part.

Dual of the original LP:
min 3a+ 2b
s.t. 2a+ 2b ≥ 3

5a+ 3b ≥ 5
10a+ b = 2
a, b ≥ 0

7

In the dual of the standard form LP, the 10a+b = 2 constraint would be replaced by two constraints:
10a+ b ≥ 2 and −10a− b ≥ −2.

(c) We can use the trick from part (a) where we replace the unrestricted z by z′ − z′′ with non-
negative variables z′ and z′′, and then optimize the linear objective function 3x+ 5y − 2z′′.

max 3x+ 5y − 2z′′

s.t. 2x+ 5y + 10z′ − 10z′′ ≤ 3
2x+ 3y + z′ − z′′ ≤ 2
x, y, z′, z′′ ≥ 0

The idea is that if the optimal solution of the original program has z ≥ 0, then the corresponding
optimal solution in the new LP will set z′′ = 0, making the objective 3x+ 5y. And if the optimal
solution of the original program has z < 0, then the corresponding optimal solution in the new LP
will set z′′ = −z, making the objective 3x+ 5y − 2z′′ = 3x+ 5y + 2z.

Formally, we can show that the optimal values of the two programs are equal by showing that
each is at least the other. If (x, y, z) is an optimal solution of the original program, then note that
(x, y, z′, z′′) is a feasible solution of the new LP with the same objective value, where, if z ≥ 0 then
z′ = z and z′′ = 0, and if z < 0, then z′ = 0 and z′′ = −z. Similarly, if (x, y, z′, z′′) is an optimal
solution of the new LP, then (x, y, z = z′ − z′′) is a feasible solution of the original program. To
claim that it has the same objective value, we need to show that z′′ > 0 implies z′ = 0. This is
true because if both are positive, then reducing both by a small amount δ yields a feasible solution
with a better objective value, a contradiction.

Q6 [20 Points] SAT

Recall that a CNF formula ϕ = C1 ∧ . . . ∧ Cm is a conjunction of clauses, where each clause is a
disjunction of (any number of) literals. Recall the NP-complete problem SAT.

SAT:

Input: A CNF formula ϕ.

Question: Does ϕ have a satisfying assignment?

Now, consider the following two variants of it.

TripleSAT:

Input: A CNF formula ϕ.

Question: Does ϕ have at least three different satisfying assignments?

TwoThirdsSAT:

Input: A CNF formula ϕ.

Question: Is there an assignment satisfying at least two-thirds (2/3) of the clauses of ϕ?

(a) [3 Points] Prove that TripleSAT is in NP.

(b) [7 Points] Prove that TripleSAT is NP-hard through a reduction from SAT.

(c) [3 Points] Prove that TwoThirdsSAT is in NP.

8

(d) [7 Points] Prove that TwoThirdsSAT is NP-hard through a reduction from SAT.

Solution to Q6

(a) We can provide, as advice, three different satisfying assignments of ϕ.

(b) Given an instance ϕ of SAT, construct an instance ϕ′ of TripleSAT by adding two fresh variables
x1, x2 and adding a clause (x1 ∨ x2). Note that satisfying assignments of ϕ′ are formed by taking
satisfying assignments of ϕ and appending (x1, x2) = (T, T), (T, F), or (F, T). Hence, the number
of satisfying assignments of ϕ′ is exactly three times the number of satisfying assignments of ϕ,
which implies that ϕ′ has at least three satisfying assignments if and only if ϕ has a satisfying
assignment, implying that both instances have the same answer.

(c) We can provide, as advice, an assignment that satisfies at least two-thirds of the clauses of ϕ.

(d) Given an instance ϕ of SAT with n variables and m clauses, construct an instance ϕ′ of
TwoThirdsSAT by adding m fresh variables x1, . . . , xm and 2m clauses x1, x̄1, . . . , xm, x̄m. Note
that ϕ′ has 3m clauses and every assignment satisfies exactly m of the 2m newly added clauses.
Hence, an assignment of ϕ′ satisfies at least 2m of its clauses if and only if the corresponding
assignment of ϕ satisfies all its m clauses. Hence, both instances have the same answer.

Q7 [15 Points] Sabotage!

There is an undirected graph G = (V,E), where nodes in V are servers and edges in E are cables
running between pairs of servers. A set of k > 2 servers S = {v1, . . . , vk} ⊆ V is trying to collabo-
ratively solve a problem and you want to sabotage this!

Specifically, you want to remove a subset of edges T ⊆ E such that all nodes in S become discon-
nected from one another (i.e. there is no path left between any two of them). You want |T | to be
as small as possible. Consider the following greedy algorithm.

Algorithm 3: Greedy-Sabotage

1 for i = 1, . . . , k do
2 Let Ei be the smallest subset of edges we need to remove to disconnect vi from every

other node in S. (It turns out that Ei can be computed efficiently, but do not worry
about this.)

3 end
4 Remove the union of k − 1 smallest Ei-s (i.e. the union of all but the largest Ei).

(a) [5 Points] Prove that Greedy-Sabotage returns a feasible solution T (i.e. removing the set of
edges T it returns will indeed disconnect every pair of nodes in S).

(b) [10 Points] Prove that Greedy-Sabotage achieves a 2 − 1/k approximation ratio. For partial
credit, prove a slightly weaker approximation ratio of 2.

[Hint: Let T ∗ denote the optimal solution. For each i ∈ {1, . . . , k}, let Vi ⊆ V denote the set
of nodes in the connected component containing vi (but no other node in S) that remains after
removing T ∗. Can you relate the number of edges in T ∗ with one endpoint in Vi with |Ei|?]

9

Solution to Q7

(a) Let T be the set of edges removed by Greedy-Sabotage. Consider any two nodes a, b ∈ S. Since
T is the union of k−1 of the Ei-s, we have that either Ea ⊆ T or Eb ⊆ T . Hence, either a or b must
be disconnected from all other nodes in S after removal of T , which implies that a and b are not
connected to each other after removal of T . Hence, Greedy-Sabotage returns a feasible solution.

(b) Let E∗i be the number of edges in T ∗ with one endpoint in Vi. Since removing E∗i disconnects
Vi from the rest of the graph, it also disconnects vi from the other nodes in S. Since Ei is the
smallest set that does this, we have |E∗i | ≥ |Ei|.

Note that 2T ∗ ≥
∑

i |E∗i | ≥
∑

i |Ei|, where the first transition holds because each edge in T ∗ is
counted at most twice (once for each endpoint) in the sum on the RHS. Since T omits the Ei

with the largest cardinality (which must have cardinality at least (1/k)
∑

i |Ei|), we have that
T ≤ (1− 1/k) ·

∑
i |Ei|. Hence, 2(1− 1/k) · T ∗ ≥ T , which means our greedy algorithm achieves an

approximation factor of 2− 2/k (which is actually better than 2− 1/k).

10

