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Main idea

e Gradient descent on images is a promising approach to generating class-conditional
Images.

e T his method produces high-resolution class-conditional images with crisp details and
coherent overall structure.

e Even better, we sample from p(image|class) using gradient-based MCMC methods.

e Our approach produces realistic and content-diverse class-conditional images.

e Our method removes the need for ad-hoc tweaks to the objective when longer itera-
tions are introduced.

Previous Work

A previous approach by Nguyen et. al. [1] uses gradient-based optimization of images
to do approximate MAP estimation, synthesizing large (227 x 227) class-conditional
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image = gg(2) plclass|image)

e An initial image is specified by a random vector z ~ N(0, I).

e This vector is passed through a pre-trained image generation network gy(2).

e The generated image is fed into a pre-trained classification network.

e [ he latent vector is then optimized using backpropagation.

Our contribution

We use gradient-based MCMC methods to approximately sample from the class-
conditional posterior:

AN

z ~ p(z|class) o< p(class|gs(2))p(z)  where  p(z) =N(0,1)

and p(class|gg(z)) is the classification network.

We adopt:
¢ Hamiltonian Monte Carlo (HMC)

e Metropolis-adjusted-Langevin-algorithm (MALA)
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Experiments and Results
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Automatically Evaluating Image Quality

We use a discriminator [2], trained on ImageNet, to output the probability of an image
being natural versus synthesized.

MAP with © MALAWID — \ALA HMC
class-specific regularization class-specific regularization
Average log-probability -6.00 -5.53 -9.79 -7.96

Generating Class-conditional Images
with Gradient-based Inference

Diversity of Image Contents
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Advantages and Limitations

+ Produces high-resolution images with crisp details and coherent overall structure.
+ Generates more content-diverse images.

+ Removes the need for class-specific regularization when longer iterations are intro-

duced.

— Small step sizes and longer iterations are required.

Future Work

e Use the Hamiltonian Variational Inference (HVI) model [3].

e Generate images from text.

e Generate other media such as sound and video.
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