
David Liu

Principles of Programming
Languages
Lecture Notes for CSC324 (Version 2.1)

Department of Computer Science

University of Toronto

principles of programming languages 3

Many thanks to Alexander Biggs, Peter Chen, Rohan Das,
Ozan Erdem, Itai David Hass, Hengwei Guo, Kasra Kyanzadeh,
Jasmin Lantos, Jason Mai, Sina Rezaeizadeh, Ian Stewart-Binks,
Ivan Topolcic, Anthony Vandikas, Lisa Zhang, and many anonymous
students for their helpful comments and error-spotting in earlier
versions of these notes.

Dan Zingaro made substantial contributions to this version of
the notes.

Contents

Prelude: The Study of Programming Languages 7

Programs and programming languages 7

Models of computation 11

A paradigm shift in you 14

Course overview 15

1 Functional Programming: Theory and Practice 17

The baseline: “universal” built-ins 18

Function expressions 18

Function application 19

Function purity 21

Name bindings 22

Lists and structural recursion 26

Pattern-matching 28

Higher-order functions 35

Programming with abstract syntax trees 42

Undefined programs and evaluation order 44

Lexical closures 50

Summary 56

6 david liu

2 Macros, Objects, and Backtracking 57

Object-oriented programming: a re-introduction 58

Pattern-based macros 61

Objects revisited 74

The problem of self 78

Manipulating control flow I: streams 83

Manipulating control flow II: the ambiguous operator -< 87

Continuations 90

Using continuations in -< 93

Using choices as subexpressions 94

Branching choices 98

Towards declarative programming 101

3 Type systems 109

Describing type systems 110

The basics of Haskell’s type system 112

Defining types in Haskell 115

Polymorphism I: type variables and generic polymorphism 121

Polymorphism II: Type classes and ad hoc polymorphism 125

Representing failing computations 130

Modeling mutation in pure functional programming 136

Impure I/O in a pure functional world 143

Types as constraints 145

One last abstraction: monads 146

4 In Which We Say Goodbye 151

Prelude: The Study of Programming Languages

It seems to me that there have been
two really clean, consistent models
of programming so far: the C
model and the Lisp model. These
two seem points of high ground,
with swampy lowlands between
them.

Paul Graham

As this is a “programming languages” course, you might be wondering: are we
going to study new programming languages, much in the way that we studied
Python in CSC108 or even Java in CSC207? Yes and no.

You will be introduced to new programming languages in this course; most
notably, Racket and Haskell. However, unlike more introductory courses like
CSC108 and CSC207, in this course we leave learning the basics of these new
languages up to you. How do variable assignments work? What is the function
that finds the leftmost occurrence of an element in a list? Why is this a syntax error?
These are the types of questions that we expect you to be able to research and
solve on your own.1 Instead, we focus on the ways in which these languages

1 Of course, we’ll provide useful tu-
torials and links to standard library
references to help you along, but it will
be up to you to use them.

allow us to express ourselves; that is, we’ll focus on particular affordances of these
languages, considering the design and implementation choices the creators of
these languages made, and compare these decisions to more familiar languages
you have used to this point.

Programs and programming languages

We start with a simple question: what is a program? We are used to thinking
about programs in one of two ways: as an active entity on our computer that
does something when run; or as the source code itself, which tells the computer
what to do. As we develop more and more sophisticated programs for more
targeted domains, we often lose sight of one crucial fact: that code is not itself
the goal, but instead a means of communication to the computer describing what
we want to achieve.

A programming language, then, isn’t just the means of writing code, but a true
language in the common sense of the word. Unlike what linguists call natu-

8 david liu

ral languages, which often carry ambiguity, nuance, and errors, programming
languages target machines, and so must be precise, unambiguous, and perfectly
understandable by mechanical algorithms alone. This makes the rules governing
programming languages quite inflexible, which is often a source of trouble from
beginners. Yet once mastered, the clarity afforded by these languages enables
humans to harness the awesome computational power of modern technology.

But even this lens of programming languages as communication is incomplete.
Unlike natural languages, which have evolved over millennia, often organically
without much deliberate thought,2 programming languages are not even a cen-

2 This is not to minimize the work of
language deliberative bodies like the
Oxford English Dictionary, but to point
out that language evolves far beyond
what may be prescribed.

tury old, and were explicitly designed by humans. As programmers, we tend
to lose sight of this, taking our programming language for granted—quirks and
oddities and all. But programming languages exhibit the same fascinating de-
sign questions, trade-offs, and limitations that are inherent in all software design.
Indeed, the various software used to implement programming languages—that
is, to take human-readable source code and enable a computer to understand
it—are some of the most complex and sophisticated programs in existence to-
day.

The goal of this course, then, is to stop taking programming languages for
granted; to go deeper, from users of programming languages to understanding
the design and implementation of these languages.

Syntax and grammars

The syntax of a programming language is the set of rules governing what the
allowed expressions of a programming language can look like; these are the rules
governing allowed program structure. The most common way of specifying the
syntax of a language is through a grammar, which is a formal description of how
to generate expressions by substitution. For example, the following is a simple
grammar to generate arithmetic expressions:

1 <expr> = NUMBER

2 | '(' <expr> <op> <expr> ')'

3

4 <op> = '+' | '-' | '*' | '/'

We say that the left-hand side names <expr> and <op> are non-terminal symbols,
meaning that we generate valid expressions by substituting for them using these
grammar rules. By convention, we’ll put angle brackets around all non-terminal
symbols.

The all-caps NUMBER is a terminal symbol, representing any numeric literal (e.g., 3
or -1.5).3 The vertical bar | indicates alternatives (read it as “or”): for example,

3 We’ll typically use INTEGER when we
need to instead specify any integral
literal.

<op> can be replaced by any one of the strings '+', '-', '*', or '/'.

It is important to note that this grammar is recursive, as an <expr> can be re-
placed by more occurrences of <expr>. This should match your intuition about

principles of programming languages 9

both arithmetic expressions and programs themselves, which can both contain
subparts of arbitrary length and nesting!

With these grammars in hand, it is easy to specify the syntax of a programming
language: an expression is syntactically valid if and only if it can be generated
by the language’s grammar. For the arithmetic expression language above, the
expressions (3 + 5) and ((4 - 2) * (5 / 10)) are syntactically valid, but (3
+) and (3 - + * 5) and even 3 + 5 are not.

Abstract syntax trees

Source code is merely representation of a program; as text, it is useful for com-
municating ideas among humans, but not at all useful for a machine. To “run” a
program requires the computer to operate on the program’s source code—but as
you have surely experienced before, working purely with strings is often tricky
and cumbersome, as that datatype is far less structured than what its contents
suggest.

Therefore, one of the key steps for any operation on a program is to parse it,
which here means to convert the source code—a string—into a more structured
representation of the underlying program. Because the source code can only
represent a valid program if it is syntactically valid, parsing is always informed
by the programming language’s grammar, and is the stage at which syntax errors
are detected. The problem of parsing text is a rich and deep problem in its
own right, but due to time constraints we won’t spend time discussing parsing
techniques in these notes, instead relying on either the simplicity of the language
syntax (Racket) or built-in code parsing tools (Python) to resolve this task for us.

What we will focus on is the output of parsing: this “more structured represen-
tation of the underlying program.” The most common representation, used by
interpreters and compilers for virtually every programming language, is the ab-
stract syntax tree (AST), as trees are a natural way to represent the inherently hi-
erarchical and recursive organization of programs into smaller and smaller com-
ponents. While different programming languages and even different compilers
or interpreters for the same language will differ in their exact AST representa-
tion, generally speaking all abstract syntax trees share the following properties:

1. A leaf of the tree represents an expression that has no subexpressions, e.g. a
literal value (5, "hello") or identifier (person). We call such expressions
atomic.

2. Each internal node of the tree represents a compound expression, i.e., one that
is built out of smaller subexpressions. These encompass most of the program-
ming forms you are familiar with, including control flow structures, defini-
tions of functions/types/classes, arithmetic operations and function calls, etc.

3. Nodes can be categorized by the kind of expression they represent, e.g. through
an explicit “tag” string, using an object-oriented approach (a Node class hier-
archy), or using algebraic data types.4 So, for example, we can speak of “the

4 This last one is likely new to you.
We’ll study algebraic data types later on
in this course!

literal value nodes” or “the function definition nodes” within an AST.

10 david liu

4. AST node types are often in rough correspondence to the grammar rules of
a language.5 So for example, the language’s syntax could contain a grammar

5 Note that this is not necessarily exact;
we are skipping over details of parsing
and basic syntax analysis that many
compilers often do before producing an
AST.

rule for what a function definition looks like:

1 <function-def> = 'def' <id> '(' [<id> ','] ... ')' ':' '\n' <body>

And when parsed, a program’s AST might include a “function definition”
node with children for the name, parameters, and body of the function.

As we’ll start to see in the next chapter, abstract syntax trees enable us to avoid
the idiosyncracies of program syntax and instead get to interesting operations
on programs themselves.

Semantics and evaluation

You may have noticed in the previous section that we used the term expression to
describe the inputs of our parsing. This may strike you as a little strange, since
the term program usually connotes much more than this. Most modern program-
ming languages, including Python, Java, and C, are fundamentally imperative in
nature: inspired by the Turing machine model of computation, programs in
these languages are organized around statements corresponding to instructions
that the computer should execute.6 In this model, we think of “running” a pro-

6 “Statement” here includes larger
syntactic “block” structures like loops.gram as telling the computer to execute the instructions found in our program;

the result of running the program is whatever happens when these instructions
are executed.

While it is certainly a familiar model of computation, and tracks closely to what
computer hardware actually requires, one of the downsides of this model is its
inherent complexity. In order to understand what a program means, we need
to understand what each kind of statement does, and how it impacts control
flow and underlying memory. The semantics of a programming language are
the rules governing the meaning of programs written in that language; for im-
perative style programs, we need to describe the meaning not just of individual
expressions like 3 + 5, but also the meaning of return (interrupts control flow),
for (iterates through a specified range), and other keywords.

To simplify matters, we’ll stick with the easier task of understanding expression-
based programs, in which a program is just an expression. In this model, run-
ning a program means telling the computer to evaluate the expression; the result
of running the program is simply the value of the expression after it has been
evaluated.7

7 Of course, all imperative languages
have a notion of “evaluating expres-
sions”; it’s just that those languages
include a bunch of other stuff as well.

So the semantics of an expression-based language govern what the value of such
programs are. This might seem simple, but it’s worth spelling out explicitly,
because there are actually multiple ways of studying such semantics.

The denotational semantics of a programming language specify the abstract
value of a program, drawing on formal definitions (e.g., from mathematics). We

principles of programming languages 11

won’t go into the details here, but instead rely on your intuitions from math-
ematics and basic programming. In the space below, we’ve listed several pro-
grams (each consisting of just a single Python expression) that have the same
denotational value 10:

1 10

2

3 3 + 7

4

5 1 + 3 ** 2

6

7 ord('\n')

8

9 (lambda x: x + 3)(7)

10

11 list(range(50000000))[11]

That is, each of the above expressions, while written and parsed differently,
produces the same result when evaluated; we would say that they have the
same mathematical meaning, or the same value.

However, your gut probably tells you that this isn’t the full story. After all, even
though these expressions might evaluate to the same value, how they each get
to that value is quite different. The operational semantics of a programming
language specify the evaluation steps used to determine the value of a program.
In imperative-style languages, it is the operational semantics that are hardest
to specify, as they deal with complexities of control flow, mutation, and func-
tion calls. As we’ll see in the next chapter, specifying the operational semantics
of expression evaluation alone—especially in a functional context—is generally
straightforward.

While we will focus on denotational and operational semantics in this course, it
is worth mentioning one other kind of semantics that comes up in programming
languages. This is axiomatic semantics, where rather than focus on evaluation,
we focus on what is true about each piece of a code segment. For example,
we might argue that “this loop maintains the invariant that sum is the sum of
the first i integers in list L”. Sound familiar? You used some of the axiomatic
tools—invariants, variants, pre/postconditions—already in CSC236!

Models of computation

It was in the 1930s, years before the invention of the first electronic computing
devices, that a young mathematician named Alan Turing created modern com-
puter science as we know it. Incredibly, this came about almost by accident;
he had been trying to solve a problem from mathematical logic: the Entschei-
dungsproblem (“decision problem”), which asks whether an algorithm could de-
cide if a logical statement is provable from a given set of axioms. Turing showed

12 david liu

that no such algorithm exists. To answer this question, Turing developed an ab-
stract model of mechanical, procedural computation: a machine that could read
in a string of 0’s and 1’s, a finite state control8 that could make decisions and

8 Finite state controls are analogous to
the deterministic finite automata that you
learned about in CSC236.

write 0’s and 1’s to its internal memory, and an output space where the compu-
tation’s result would be displayed. Though its original incarnation was an ab-
stract mathematical object, the fundamental mechanism of the Turing machine—
reading data, executing a sequence of instructions to modify internal memory,
and producing output—would soon become the von Neumann architecture ly-
ing at the heart of modern computers, and seed the paradigm of imperative
programming.

The story of Alan Turing and his machine is one of great genius, great triumph,
and great sadness. It is no exaggeration to say that the fundamentals of com-
puter science owe their genesis to this man. Their legacy is felt by every com-
puter scientist, software engineer, and computer engineer alive today.

But there is another story, too.

Alonzo Church

Shortly before Turing published his paper introducing the Turing machine, the
logician Alonzo Church had published a paper resolving the same fundamental
problem using entirely different means. At the same time that Turing was devel-
oping his model of the Turing machine, Church was drawing inspiration from
the mathematical notion of functions to model computation. Church would later
act as Turing’s PhD advisor at Princeton, where they showed that their two radi-
cally different notions of computation were in fact equivalent: any problem that
could be solved in one could be solved in the other. They went a step further
and articulated the Church-Turing Thesis, which says that any reasonable com-
putational model would be just as powerful as their two models. And incredibly,
this bold claim still holds true today. With all of our modern technology, we are
still limited by the mathematical barriers erected eighty years ago.9

9 To make this amazing idea a little
more concrete: no existing program-
ming language and accompanying
hardware will ever solve the Decision
Problem. None.

And yet to most computer scientists, Turing is much more familiar than Church;
the von Neumann architecture is what drives modern hardware design; the most
commonly used programming languages today revolve around state and time,
instructions and memory, the cornerstones of the Turing machine. What were
Church’s ideas, and why don’t we know more about them?

The lambda calculus

The imperative programming paradigm derived from Turing’s model of compu-
tation has as its fundamental unit the statement, a portion of code representing
some instruction or command to the computer.10 Though such statements are

10 For non-grammar buffs, the imperative
verb tense is what we use when issuing
orders: “Give me that” or “Stop talking,
David!”

composed of subexpressions, these expressions typically do not appear on their
own; consider the following odd-looking, but valid, Python program:

principles of programming languages 13

1 def f(a):

2 12 * a - 1

3 a

4 'hello' + 'goodbye'

Even though all three expressions in the body of f are evaluated each time the
function is called, they are unable to influence the output of this function. We
require sequences of statements (including keywords like return) to do anything
useful at all! Even function calls, which might look like standalone expressions,
are only useful if the bodies of those functions contain statements for the com-
puter to execute.

In contrast to this instruction-based approach, Alonzo Church created a model
called the lambda calculus in which expressions themselves are the fundamen-
tal, and in fact only, unit of computation. Rather than a program being a se-
quence of statements, in the lambda calculus a program is a single expression
(possibly containing many subexpressions). And when we say that a computer
runs a program, we do not mean that it performs operations corresponding to
statements, but rather that it evaluates that single expression.

Two questions arise from this notion of computation: what do we really mean by
the words “expression” and “evaluate”? Or in other words, what are the syntax
and semantics of the lambda calculus? This is where Church borrowed func-
tions from mathematics, and why the programming paradigm that this model
spawned is called functional programming. In the lambda calculus, an expres-
sion is one of three things:

1. An identifier (or variable): a, x, yolo, etc.
2. A function expression: λx.x, for example. This expression represents a func-

tion that takes one parameter x, and returns it—in other words, this is the
identity function.

3. A function application (or function call): f expr. This expression applies the
function f to the expression expr.

Now that we have defined our allowable expressions, what do we mean by
evaluating them? To evaluate an expression means performing simplifications
to it until it cannot be further simplified; we’ll call the resulting fully-simplified
expression the value of the expression.

This definition meshes well with our intuitive notion of evaluation, but we’ve
really just shifted the question: what do we mean by “simplifications?” In fact, in
the lambda calculus, identifiers and function expressions have no simplification
rules: in other words, they are themselves values, and are fully simplified. On
the other hand, function application expression can be simplified, using the idea
of substitution from mathematics. For example, suppose we apply the identity
function to the variable hi:

(λx.x) hi

14 david liu

We evaluate this by substituting hi for x in the body of the function, obtaining hi
as a result.

Pretty simple, eh? As surprising as this may be, function-application-as-substitution
is the only simplification rule for the lambda calculus! So if you can answer
questions like “If f (x) = x2, then what is f (5)?” then you’ll have no trouble
understanding the lambda calculus.

The main takeaway from this model is that function application (via substitu-
tion) is the only mechanism we have to induce computation; functions can be
created using λ and applied to values and even other functions, and through
combining functions we create complex computations. A point we’ll return to
again and again in this course is that functions in the lambda calculus are far
more restrictive than the functions we’re used to from previous programming
experience. The only thing we can do in the lambda calculus when evaluating a
function application is substitute the arguments into the function body, and then
evaluate that body, producing a single value. These functions have no concept
of time to require a certain sequence of instructions, nor is there any external or
global state that can influence their behaviour.

At this point the lambda calculus may seem at best like a mathematical curiosity.
What does it mean for everything to be a function? Certainly there are things
we care about that aren’t functions, like numbers, strings, classes and every data
structure you’ve studied up to this point—right? But because the Turing ma-
chine and the lambda calculus are equivalent models of computation, anything
you can do in one, you can also do in the other! So yes, we can use functions to
represent numbers, strings, and data structures; we’ll see this only a little in this
course, but rest assured that it can be done.11 And though the Turing machine

11 If you’d like to do some reading on
this topic, look up Church encodings.is more widespread, the beating heart of the lambda calculus is still alive and

well, and learning about it will make you a better computer scientist.

A paradigm shift in you

The influence of Church’s lambda calculus is most obvious today in the func-
tional programming paradigm, a function-centric approach to programming that
has heavily influenced languages such as Lisp (and its dialects), ML, Haskell,
and F#. You may look at this list and think “I’m never going to use these in
the real world,” but support for functional programming styles is being adopted
in more “mainstream” languages, such as LINQ in C# and lambdas in Java 8.
Other languages like Python and JavaScript have supported the functional pro-
gramming paradigm since their inception.

The goal of this course is not to convert you into the Cult of FP, but to open your
mind to different ways of solving problems. After all, the more tools you have
at your disposal in “the real world,” the better you’ll be at picking the best one
for the job.

Along the way, you will gain a greater understanding of different programming
language properties, which will be useful to you whether you are exploring new

principles of programming languages 15

languages or studying how programming languages interact with compilers and
interpreters, an incredibly interesting field in its own right.12

12 Those of you who are particularly
interested in compilers should take
CSC488.

Course overview

Chapter 1. We will begin our study of functional programming with two new
languages: Racket, a dialect of Lisp commonly used for both teaching and lan-
guage research, and Haskell, a pure functional programming language with an
elaborate and powerful static type system. It might seem like overkill to use
two different languages, and we are certainly very conscious of this! Our ped-
agogical goal here is to reinforce the idea that we are not learning specialized
idiosyncrasies of a particular language. Rather, we want to focus on the guiding
high-level principles that exist in many different languages, and we believe that
the best way to do this is to explore how these principles are expressed in mul-
tiple languages at once, to gain a deeper understanding of these ideas. We will
explore language design features like scope, function call strategies, and tail re-
cursion, comparing Racket and Haskell with each other and with more familiar
languages like Python and Java. We will also use this as an opportunity to gain
lots of experience with functional programming idioms: (structural) recursion;
the list functions map, filter, and fold; and higher-order functions and closures.

Chapter 2. In the next section of the course, we’ll do a deep dive into two substan-
tial programming language features: object-oriented programming and (simu-
lating) non-deterministic choices. Rather than study just the features themselves,
we’ll take the approach of a programming language designer, and ask the ques-
tion “How do we implement such a feature?” This lens will give us more than
just a greater understanding of these language features. Our quest for user-
friendly implementations will lead us to the defining feature of Racket: a pow-
erful macro system that allows us to extend the very syntax and semantics of a
programming language.13

13 Put another way, to allow us to
introduce new kinds of nodes into an
abstract syntax tree.Chapter 3. If the preceding chapter is all about macros being used to express new

concepts and paradigms in a language, our last section of the course is dual to
this: expressing constraints in a language, through the creation of types. We are
all familiar with types; but as with other aspects of programming languages, in
this course we’ll study types with more attention to detail and creativity than
you likely have in the past. In particular, we’ll explore Haskell’s powerful static
type system, and see how to use it to express not just simple notions like “don’t
add a number to a string”, but more abstract concepts like failing computations,
mutable state, and external I/O, all with strong guarantees from our Haskell
compiler.14

14 One particularly nifty feature we’ll
talk about is type inference, a Haskell
compiler feature that means we get all
the benefits of static typing without the
verbosity of Java’s Kingdom of Nouns.

http://steve-yegge.blogspot.ca/2006/03/execution-in-kingdom-of-nouns.html

1 Functional Programming: Theory and Practice

Any sufficiently complicated C or
Fortran program contains an ad
hoc, informally-specified,
bug-ridden, slow implementation
of half of Common Lisp.

Greenspun’s tenth rule of
programming

In 1958, John McCarthy created Lisp, a bare-bones programming language based
on Church’s lambda calculus.1 Since then, Lisp has spawned many dialects

1 Lisp itself is still used to this day;
in fact, it has the honour of being the
second-oldest programming language
still in use. The oldest? Fortran.

(languages based on Lisp with some deviations from its original specifications),
among which are Common Lisp, Clojure (which compiles to the Java Virtual Ma-
chine), and Racket (a language used actively in educational and programming
language research contexts).

In 1987, it was decided at the conference Functional Programming Languages and
Computer Architecture2 to form a committee to consolidate and standardize exist-

2 Now part of this one: http://www.
icfpconference.org/ing non-strict functional languages, and so Haskell was born (we’ll study what

the term “non-strict” means in this chapter). Though mainly still used in the aca-
demic community for research, Haskell has become more widespread as func-
tional programming has become, well, more mainstream. Like Lisp, Haskell
is a functional programming language: its main mode of computation involves
defining pure functions and combining them to produce complex computation.
However, Haskell has many differences from the Lisp family, both immediately
noticeable and profound.

Our goal in this chapter is to expose you to some of the central concepts in pro-
gramming language theory, and functional programming in particular, without
being constrained to one particular language. So in this chapter, we’ll draw on
examples from three languages: Racket, Haskell, and Python. Our hope here is
that by studying the similarities and differences between these languages, you’ll
gain more insights into the deep concepts in this chapter than by studying any
one of these languages alone.

http://www.icfpconference.org/
http://www.icfpconference.org/

18 david liu

The baseline: “universal” built-ins

While one of the major strengths of the lambda calculus as a model of compu-
tation is its simplicity, in practice we want built-in data types and functions to
scaffold our programs. Of course, programming languages vary in how they
build in their data types and the operations that they support, and so we’ll re-
strict most of our attention in this course to a fairly conservative set of built-ins,
common to all three languages:

• Primitive data types and literals: integers, floats, booleans, strings
• Compound data types: lists and maps
• Built-in functions on these data types3

3 Note that different languages will have
different names for these functions; it’ll
be up to you to consult documentation
regularly.

• Boolean operations (and, or, not) and if expressions (aka “ternary ifs”)

Function expressions

With the built-ins out of the way, we’ll now turn to one of the first “new” aspects,
which is one of the central ideas of functional programming: functions are first-
class values, meaning that they can be treated and manipulated in the exact same
way as other kinds of values in a program.

This is actually a big idea! Many languages do not support functions as first-
class values, as there are some things you can do with other kinds of values that
you can’t do with functions. One of these is simple: what is the equivalent of a
standalone “function value” in a language?

Suppose we want to represent the integer value three in a program. We take for
granted how easy it is to do so: simply write the numeric literal 3! But suppose we
want to represent a function that “takes a number and adds 3 to it”; in Python,
you would probably write:

1 def f(x):

2 return x + 3

But there’s one big difference here: in the former case, we had the value 3

by itself, whereas in the latter case, there is both the function and a name f

associated with the function. In some programming languages, it is only possible
to define function values together with a given identifier to refer to the function.
However, if we want to functions to be first-class values, then we had better be
able to write them standalone, independent of a name binding! A function value
expressed independently of an identifier is called an anonymous function.

In the lambda calculus, all function function are anonymous: (λx.x) is a function
value, but doesn’t have an associated name. All three of Racket, Haskell, and
Python support anonymous functions as well, using the following syntax, each
inspired in its own way by the lambda calculus.4

4 We’ll use background colours to dis-
tinguish languages in code blocks, with
yellow for Racket, blue for Haskell, and
gray for all others.

principles of programming languages 19

1 ; Racket

2 (lambda (<param> ...) <body>)

1 -- Haskell

2 \<param> ... -> <body>

1 # Python

2 lambda <param> ... : <body>

In each of the above examples, each <param> is called a parameter of the func-
tion, and must be an identifier. The <body> is an expression called the body of
the function.

For programmers that have never seen anonymous functions before, such func-
tions might seem strange: what’s the point of writing a function if you don’t
have a name to refer to it? While we’ll see some motivating examples later
in this chapter, for now we’ll leave you with a different question: does every
expression you write have a name?

Function application

Calling functions in each of the three languages is straightforward, but note that
both Racket and Haskell use an unfamiliar syntax.

First, in Python a function call looks like most languages you’ve probably worked
with before:

1 <function>(<arg>, ...)

In Racket, the function expression goes inside the parentheses:5
5 This syntax is known as Polish prefix
notation.

1 (<function> <arg> ...)

One thing that trips students up is that in Racket, every parenthesized expres-
sion is treated as a function call, except for the ones starting with keywords like
lambda. This is in stark contrast with most programming languages, in which ex-
pressions are often enclosed in (redundant) parentheses to communicate group-
ing explicitly. Racket doesn’t have the concept of “redundant” parentheses!

20 david liu

In Haskell, parentheses are not required at all; instead, any two expressions
separated by a space are considered a function call:

1 <function> <arg> ...

Operators are functions

Consider common binary arithmetic operations like addition and multiplication,
which we normally think of as being written infix, i.e., between its two argument
expressions: 3 + 4 or 1.5 * 10.

Again in the theme of the centrality of functions to our programming, it’s im-
portant to realize that in fact, these operators are just functions, at least from a
mathematical point of view.6 In fact, all three of Racket, Haskell, and Python

6 Formally, we might write something
like + : R×R → R to represent the +
operation as taking two real numbers
and outputting a real number.

treat them as functions!

In Racket, operators are just identifiers that refer to built-in functions, and are
called the same way any other function would be called:

1 > (+ 10 20)

2 30

3 > (* 3 5)

4 15

In Python, operators are implemented under the hood by delegating to various
“dunder methods” for built-in classes:

1 >>> 10 + 20

2 30

3 >>> int.__add__(10, 20) # Equivalent to 10 + 20

4 30

Haskell uses a similar approach. Every infix operator (e.g., +) is a function whose
name is the same as the operator, but enclosed in parentheses (e.g., (+)):

1 > 10 + 20

2 30

3 > (+) 10 20

4 30

Again, pretty weird! If you’ve never thought about it before, this might seem
overly complex. Racket actually has the cleanest model (no infix operators, uni-
form prefix syntax for all functions), at the cost of being more unfamiliar; Python

principles of programming languages 21

and Haskell both include a level of indirection to support the more familiar infix
syntax we learn in mathematics.

Function purity

One thing you might notice about our grammar rules for defining functions is
that a function body is just a single expression. This is again a consequence
of our model of an expression-based language, rather than the imperative-style
“sequence of statements” that you normally see in other languages.

The best way to think about functions in this style of programming is by analogy
the mathematical functions, e.g. f (x) = x + 1, which are purely determined by
input-output pairs. In this definition, we say that the body of f is the expression
x + 1, and that we evaluate calls to f by substituting values for x into the body,
evaluating the body expression, and then returning the result.

In the function definition rules we gave above, all the function values produced
behave exactly the same as mathematical functions: their behaviour is entirely
determined by what their body expression evaluates to for a set of given argu-
ments. For example, consider the Racket function (lambda (x) (+ x 1)). If we
call this function on the number 10,

1 ((lambda (x) (+ x 1)) 10)

we evaluate this function call by taking the 10 and substituting it for x in the
expression (+ x 1), producing 11 as the returned value. Note that a return

keyword isn’t necessary: given the lambda expression, we know precisely that
the value of (+ x 1) (with something substituted for x) will be returned.

In programming, we say that a (mathematically) pure function is a function
that satisfies the following properties:

1. The function’s behaviour is exactly determined by the value of its inputs. For
example, the function cannot access data from “outside” its inputs, including
standard input, the file system, the Internet, etc. This also rules out random-
ized functions; we say that pure functions must be deterministic.

2. The function only returns a value, and does nothing else. In parallel to (1),
this means that pure functions cannot print to standard output, write to the
file system, or send data across the Internet. We call such actions side effects,
and so we say that “pure functions have no side effects.”

This definition might seem overly restrictive: we often want functions to com-
municate with the “outside world”, either for input or output! As is hopefully
becoming a common theme in this course, we start with this type of function
because such functions are easiest to reason about: if you understand substitu-
tion, then you’re good to go. In the final chapter of these notes, we’ll see how

22 david liu

to incorporate side effects like mutation and external I/O into a pure functional
model.

Name bindings

While Alonzo Church and Alan Turing showed that anonymous functions and
function application are sufficient to perform all computations that modern pro-
gramming languages can, even pure functional programming languages like
Haskell offer additional conveniences for the programmer. We’ve previously
discussed some of these—primitive values and built-in functions—and the fol-
lowing example illustrates another:

1 (((lambda (x)

2 ((lambda (f)

3 (lambda (n)

4 (if (equal? n 0) 1 (* n (f (- n 1))))))

5 (lambda (v) ((x x) v))))

6 (lambda (x) ((lambda (f)

7 (lambda (n)

8 (if (equal? n 0) 1 (* n (f (- n 1))))))

9 (lambda (v) ((x x) v)))))

10 10)

This monstrosity of a program evaluates to 3628800, which is 10!, illustrating
the power of anonymous functions to successfully implement something of a
recursive nature. However, we certainly don’t want to get stuck writing code
like this! Instead, every programming language gives us the ability to bind
identifiers to values, so that evaluating an identifier results in the value that the
identifier is bound to.

You have seen one kind of identifier already: the formal parameters used in
function definitions. These are a special type of identifier, and are bound to val-
ues when the function is called. In this subsection we’ll look at using identifiers
more generally. We’ll use identifiers for two purposes:

1. To “save” the value of subexpressions so that we can refer to them later.
2. To refer to a function name within the body of the function, enabling recursive

definitions.

The former is clearly just a convenience to the programmer; the latter does pose
a problem to us, but it turns out that writing recursive functions in the lambda
calculus is possible, as we illustrated in the above example.7

7 The main construct used to implement
recursive functions is known as the Y
combinator.It is important to keep in mind that all uses of identifiers beyond their use as

parameter names are as a convenience, to make our programs easier to under-
stand, but not to truly extend the power of the lambda calculus. Unlike the

principles of programming languages 23

imperative programming languages you’ve used so far, identifier bindings in
pure functional programming are immutable: once bound to a particular value,
that identifier cannot be re-bound, and so literally is an alias for a value. This
leads us to an extremely powerful concept known as referential transparency.
We say that an identifier is referentially transparent if it can be substituted with
its value in the source code without changing the meaning of the program.8

8 This again parallels mathematics.
When we write Llet x = 5" in a state-
ment or proof, any subsequent state-
ment we make about x should make
just as much sense if we replace the x
with 5.

This approach to identifiers in functional programming is hugely different than
what we are used to in imperative programming, in which re-binding names is
not just allowed, but required for some common constructs,9 or subverted by

9 e.g., loops
mutable data structures. Given that re-binding and mutation feels so natural to
us, why would we want to give it up? Or put another way, why is referential
transparency (which is violated by mutation) so valuable?

Mutation is a powerful tool, but also makes our code harder to reason about: we
need to constantly keep track of the “current value” of every identifier through-
out the execution of a program. Referential transparency means we can use
names and values interchangeably when we reason about our code regardless
of where these names appear in the program; a name, once defined, has the
same meaning for the rest of the time.10

10 In particular, the whole issue of
whether an identifier represents a value
or a reference is rendered completely
moot.

For about 95% of this course we will not use any mutation at all, and even when
we do use it, it will be in a very limited way. Remember that the point is to get
you thinking about programming in a different way, and we hope in fact that
this ban will simplify your programming!

Global (aka top-level) name bindings

In Racket, the syntax for a global name binding uses the keyword define:

1 (define <id> <expr>)

In Haskell and Python, global bindings are written using the familiar = symbol:

1 <id> = <expr>

These definitions bind the value of <expr> to the identifier <id>. Here are some
examples of these bindings, including a few that bind a name to a function.

1 # Racket

2 (define a 3)

3 (define add-three

4 (lambda (x) (+ x 3)))

5

6 # Haskell

7 a = 3

24 david liu

8 addThree = \x -> x + 3

9

10 # Python

11 a = 3

12 add_three = lambda x : x + 3

Because function definitions are so common, each language provides a concise
way of binding function values to names; you are already familiar with def in
Python. We’re going to use this more convenient notation for the rest of the
course, but keep in mind that in Racket and Haskell, these are merely “syntactic
sugar” for the lambda expression.11

11 Syntactic sugar is a part of a program-
ming language’s syntax that doesn’t
introduce new functionality, but is just
another way of writing existing func-
tionality in a simpler, more readable
way.

1 ; Racket

2 (define (add-three x) (+ x 3))

3 (define (almost-equal x y) (<= (abs (- x y)) 0.001))

1 -- Haskell

2 addThree x = x + 3

3 almostEqual x y = abs (x - y) <= 0.001

Local bindings

Most programming languages support local scopes as well as global scope;
among the most common of these is local scope within functions. For exam-
ple, function parameters are local to the body of the function.

1 (define (f x)

2 (+ x 10)) ; can refer to x here in the body of the function

3

4 (+ x 10) ; can't refer to x out here (try it!)

In Racket, we can also explicitly create a local scope using the keyword let*:

1 (let* ([<id> <expr>] ...)

2 <body>)

A let* expression takes pairs [<id> <expr>], binds each expression to the cor-
responding identifier, and evaluates the <body> expression using these bindings.
The value of the let* expression is the value of the <body>.

principles of programming languages 25

In Haskell, the same local scoping is achieved using the following:12

12 There’s one subtle difference between
Racket’s let* and Haskell’s let: the
latter allows for recursive bindings,
while the former does not. If you ever
need to do this in Racket, you can use
letrec instead.

1 let <id> = <expr>

2 ...

3 in

4 <body>

What about Python? Python certainly has the concept of local scope, e.g., func-
tion and class definitions, but it does not have special syntactic support for let
expressions, i.e., an expression that involves local bindings and that evaluates to
produce a value. This is yet another reminder of the way in which Python is
oriented around statements—assignment statements being the most common of
these—while Racket and Haskell are oriented around expressions.

Name bindings and code structure

In the previous chapter, we said that we would focus on programs in expression-
based contexts, in which a program is just a single expression to be evaluated.
In practice, this is unwieldy, and this section described the use of identifiers to
simplify complex expressions. Therefore the actual program form we’ll stick
with for this course is:

1 <prog> = <binding> ... <expr>

where <binding> is a top-level binding expression. Moreover, the <expr> can
now use let expressions, which are structured in the same style: an arbitrary
number of (distinct) name bindings, followed by a single expression to evaluate.
For example, here is a Racket program that computes the distance between three
distinct points and evaluates to the minimum distance:13

13 Try writing the equivalent program
without using any user-defined names!
It’s certainly possible, but quite terrible
to do so.

1 (define p1 (list 2 3))

2 (define p2 (list 10 8))

3 (define p3 (list -1 6))

4

5 (define (distance p q)

6 (let* ([dx (abs (- (first p) (first q)))]

7 [dy (abs (- (second p) (second q)))])

8 (sqrt (+ (* dx dx) (* dy dy)))))

9

10 (define distance-p1-p2 (distance p1 p2))

11 (define distance-p1-p3 (distance p1 p3))

12 (define distance-p2-p3 (distance p2 p3))

13

14 (min distance-p1-p2 distance-p1-p3 distance-p2-p3)

26 david liu

Written in Python, such a program is simply one where every global or local
block of code consists of an arbitrary number of assignments to distinct vari-
ables, followed by a single expression to evaluate (or return, if inside a function).
The important thing to keep in mind in that context is that such assignments are
non-mutating: we never bind to the same variable more than once!

Lists and structural recursion

The list data type is one of the most fundamental in programming languages;
it is an arbitrary-length compound data type, used to store any number of val-
ues.14 For many of us, lists are the first time we are able to write code that

14 In fact, the name “Lisp” comes from
“list processing.”operates on an arbitrary amount of data, without knowing ahead of time how

much data there is.

Imperative languages naturally process lists using loops, explicitly relying on
notions of time and state to keep track of the “current” list element. This follows
a metaphor of a list as a linear sequence of items, in which each item is “pro-
cessed” one at a time. However, because pure functional programming does not
permit the mutation required to re-bind an identifier to each element of the list
in turn, we must take another approach to writing programs involving lists.

The key insight here is to identify a recursive structure for the list data type, and
use this definition to inform both our representation of and operations on lists.
A list is defined recursively as:

• The empty list is a list. (Represented in Racket as '(), in Haskell and Python
as [].)

• If x is a value and lst is a list, then we can create a new list whose first element
is x and whose other items are the ones from lst. We call this combination
the cons operation,15 calling the produced list “x cons lst.” In Racket, this is

15 short for “construct”
represented by the cons function, and in Haskell by the infix operator (:).16

16 Python doesn’t have a built-in func-
tion that does this, perhaps evidence
that this recursive representation is not
central to Python lists (which it isn’t).

For example, we could construct the list [1, 2, 3] using this recursive defini-
tion in Racket as (cons 1 (cons 2 (cons 3 '()))), and in Haskell as 1:2:3:[].
In Racket and Haskell, we can deconstruct non-empty lists into their first and
other elements, by using functions first and rest (Racket), or head and tail

(Haskell). We have the identity lst = (cons (first lst) (rest lst)) for all
non-empty lists lst.

Structural recursion on lists

This recursive structure informs not just how we represent lists, but how we
operate on lists as well. For example, consider the problem of computing the
sum of the elements of a list. Whereas an iterative approach would process each
element in turn by adding its value to an accumulator, a recursive approach
mimics the recursive structure of the list itself:

principles of programming languages 27

• The sum of an empty list is equal to 0.
• The sum of “x cons lst” is equal to x plus the sum of lst.

The beauty of this English description is that it translates immediately into a
pure function:

1 ; Racket

2 (define (sum lst)

3 (if (empty? lst)

4 0

5 (+ (first lst)

6 (sum (rest lst)))))

1 -- Haskell

2 sum lst =

3 if null lst

4 then

5 0

6 else

7 head lst + sum (tail lst)

And here is a function that takes a list, and returns a new list containing just the
multiples of three in that list. Note that this is a filtering operation, something
we’ll return to later in this chapter.

1 (define (multiples-of-3 lst)

2 (cond [(empty? lst) '()]

3 [(equal? 0 (remainder (first lst) 3))

4 (cons (first lst)

5 (multiples-of-3 (rest lst)))]

6 [else (multiples-of-3 (rest lst))]))

This form of recursion is called structural recursion because the code follows the
structure of the data type on which it operates. What’s remarkable about this
technique is that because it is based solely on the form of the input data, we can
apply it to create a “code template” that works for many list functions:

1 (define (f lst)

2 (if (empty? lst)

3 ...

4 (... (first lst)

5 (f (rest lst)))))

28 david liu

Moreover, this technique can be used for any data type with a recursive defi-
nition, not just lists. The other fundamental example we’ll return to again and
again in this course is the recursive definition of trees, and specifically the ab-
stract syntax trees that we use to represent programs.

Exercise Break!

The following programming exercises are meant to give you practice working
with structural recursion on lists. We recommend completing them in both
Racket and Haskell.

1.1 Write a function to determine the length of a list.

1.2 Write a function to determine if a given item appears in a list.

1.3 Write a function to determine the number of duplicates in a list.

1.4 Write a function to remove all duplicates from a list.

1.5 Given two lists, output the items that appear in both lists (intersection). Then,
output the items that appear in at least one of the two lists (union).

1.6 Write a function that takes a list of lists, and returns the list that contains the
largest item (e.g., given (list (list 1 2 3) (list 45 10) (list) (list 15)),
return (list 45 10).

1.7 Write a function that takes an item and a list of lists, and inserts the item at
the front of every list.

1.8 Write a function that takes a list with no duplicates representing a set (order
doesn’t matter), and returns a list of lists containing all of its subsets.

1.9 Write a function that takes a list with no duplicates, and a number k, and
returns all subsets of size k of that list.

1.10 (Racket only) Modify your function to the previous question so that the pa-
rameter k is optional, and if not specified, the function returns all subsets.

1.11 Write a function that takes a list, and returns all permutations of that list.

1.12 A sublist of a list is a series of consecutive items of the list. Given a list of
numbers, find the maximum sum of any sublist of that list. (Note: there is a
O(n) algorithm that does this, although you should try to get any algorithm
that is correct first, as the O(n) algorithm is a little more complex.)

Pattern-matching

We’ll now take a short detour away from the pure lambda calculus to introduce
one of the most underutilized programming language features: pattern-matching,
which allows the programmer to specify conditional behaviour depending on
the structure of a given value in a concise and understandable syntax. As an
example, consider the following value-based branching function definition:

principles of programming languages 29

1 f x =

2 if x == 0

3 then

4 10

5 else if x == 1

6 then

7 20

8 else

9 x + 30

While this is fine, we can shorten this substantially in Haskell by using value
pattern-matching in the function definition.17 Rather than giving one generic

17 Here, we’ll focus on pattern-matching
for function definitions only, although
both Racket and Haskell support
pattern-matching as an arbitrary ex-
pression form as well.

function signature f x = ..., we give three pattern-based definitions:

1 f 0 = 10

2 f 1 = 20

3 f x = x + 30

Essentially, Haskell’s function definition syntax allows us to eliminate the ex-
plicit use of if-else tests; instead, we provide the patterns (in this case, 0, 1,
or x—an identifier matches anything18) and the Haskell compiler generates the

18 Order matters! The patterns are
checked top-down, with the first match
being selected.

equivalent code that does the testing for us whenever this function is called.

Here is the same idea expressed in Racket. The syntax isn’t quite as terse (note
the use of the define/match keyword), but is certainly more concise than using
ifs or even cond:

1 (define/match (f x)

2 [(0) 10]

3 [(1) 20]

4 [(_) (+ x 30)]) ; The underscore matches anything

While the above example is cute, you might be skeptical that it generalizes; after
all, how often do we write explicit special cases when defining functions? But it
turns out that pattern-matching goes far beyond simple value-equality checks.
Consider now this recursive list function from the previous section, which we
generalized into a template for structural recursion on lists.

1 (define (sum lst)

2 (if (empty? lst)

3 0

4 (+ (first lst)

5 (sum (rest lst)))))

30 david liu

Both Racket and Haskell support structural pattern-matching, a concise syntax for
decomposing a value into subparts and binding each part to a new identifier
that can be referred to independently. In Racket patterns, we use the expres-
sion (list) to pattern-match on an empty list, and we use cons to perform a
structural decomposition pattern match of a list into its “first and rest”.19

19 This kind of decomposition is some-
times referred to as destructuring in
other languages.1 (define/match (sum lst)

2 [((list)) 0]

3 [((cons x xs)) (+ x (sum xs))])

In Haskell, the syntax is even terser, using the same expressions [] and : as
when we create lists.20

20 As we’ll see later when we discuss
algebraic data type, this is emphatically
not a coincidence.1 sum [] = 0

2 sum (x:xs) = x + sum xs

Exercise Break!

1.13 Redo your solutions to the previous set of list exercises using pattern-matching
in both Racket and Haskell.

Tail call elimination

As you have studied in previous courses, function calls are stored on the call
stack, a part of memory that stores information about the currently active func-
tions as the program runs. In non-recursive programs, the size of the call stack
is generally not an issue, but with recursion the call stack quickly fills up with
recursive calls. Here is a quick Python example, in which the number of function
calls is Θ(n):

1 def f(n):

2 if n == 0:

3 return 0

4 else:

5 return f(n - 1)

6

7 # This raises a RuntimeError because the call stack limit is reached.

8 f(10000)

In fact, the same issue of recursion taking up a large amount of memory occurs
in Racket and Haskell as well. However, these languages (and many others)

principles of programming languages 31

perform tail call elimination, which can significantly reduce the space require-
ments for recursive functions. A tail call is a function call that happens as the
last instruction of a function before the return; the f(n-1) call in the previous
example has this property. When a tail call occurs, there is no need to remember
where it was called from, because the only thing that’s going to happen after-
wards is that the value will be returned to the original caller.21 This property of

21 Simply put: if f calls g and g just calls
h and returns its value, then when h

is called there is no need to keep any
information about g; just return the
value to f directly!

tail calls is common to all languages; however, some languages take advantage
of this, and others do not. Racket is one that does: when it calls a function that
it detects is in tail call position, it first removes the calling function’s stack frame
from the call stack, leading to constant stack height for this:

1 (define (f n)

2 (if (equal? n 0)

3 0

4 (f (- n 1))))

Transforming simple recursive functions into tail-recursive ones

Now let’s return our our sum implementation from the previous section:

1 (define (sum lst)

2 (if (empty? lst)

3 0

4 (+ (first lst)

5 (sum (rest lst)))))

This implementation is not tail-recursive! In the “else” expression, it is the +,
not sum, that is called in tail position. The sum call is enclosed inside the outer
function call (+ (first lst) _): after the recursive sum call returns, its result is
added to (first lst) before being returned.22

22 The notation (+ (first lst) _)

captures the idea of a continuation that
we’ll study in more detail in the next
chapter.

In this case, there is a natural way to convert this sum implementation into one
that is tail-recursive by essentially replacing the (+ (first lst) _) with a single
recursive call. To do this, we use an extra accumulating parameter to store the
“add (first lst)” part, updating its value at each recursive call. Here is our
tail-recursive implementation:

1 (define (sum-tail lst)

2 (sum-helper lst 0))

3

4 (define (sum-helper lst acc)

5 (if (empty? lst)

6 acc

7 (sum-helper (rest lst) (+ acc (first lst)))))

32 david liu

In the above example, the parameter acc plays this role, accumulating the sum
of the items “processed so far” in the list. We can use substitution to see exactly
what happens when we call (sum-tail '(1 2 3 4)):

1 (sum-tail '(1 2 3 4))

2 (sum-helper '(1 2 3 4) 0) ; Initial call to sum-helper; acc = 0

3 (sum-helper '(2 3 4) 1) ; The new acc value is

4 ; (+ 0 (first '(1 2 3 4))) = = 1

5 (sum-helper '(3 4) 3) ; acc = (+ 1 (first '(2 3 4))) = 3

6 (sum-helper '(4) 6) ; acc = (+ 3 (first '(3 4))) = 6

7 (sum-helper '() 10) ; acc = (+ 6 (first '(4))) = 10

8 10 ; Base case: acc is returned

As you might expect, this transformation technique generalized beyond this sim-
ple example! For example, here is the exact same idea applied to our earlier
multiples-of-3 function:23

23 Question: Why did we use append

and not cons here?

1 (define (multiples-of-3 lst)

2 (multiples-of-3-helper lst '()))

3

4 (define (multiples-of-3-helper lst acc)

5 (if (empty? lst)

6 acc

7 (multiples-of-3-helper (rest lst)

8 (if (equal? 0 (remainder (first lst) 3))

9 (append acc (list (first lst)))

10 acc))))

Exercise Break!

1.14 Rewrite your solutions to the previous exercises using tail recursion.

1.15 Consider a generalized version of the standard recursive template:

1 (define (f lst)

2 (if (empty? lst)

3 x

4 (g (first lst) (f (rest lst)))))

(Here, x and g are arbitrary.) Transform f into an equivalent tail-recursive
function.

principles of programming languages 33

From tail recursion to loops

Let’s look once more at sum-tail:

1 (define (sum-tail lst)

2 (sum-helper lst 0))

3

4 (define (sum-helper lst acc)

5 (if (empty? lst)

6 acc

7 (sum-helper (rest lst) (+ acc (first lst)))))

Our previous trace through the evaluation of (sum-tail '(1 2 3 4)) produced
the function calls (sum-helper '(1 2 3 4) 0), (sum-helper '(2 3 4) 1), etc.
In a language without tail call elimination, all of these sum-helper calls would
occupy separate frames on the stack, but in a language (like Racket) that per-
forms tail call elimination, we know that each of these function calls replaces the
stack frame for the one before it. In particular, we can view the sequence

1 (sum-helper '(1 2 3 4) 0)

2 (sum-helper '(2 3 4) 1)

3 (sum-helper '(3 4) 3)

4 (sum-helper '(4) 6)

5 (sum-helper '() 10)

not as five separate function calls, but instead five separate executions of the
function body, with the argument values lst and acc changing at each iteration.
And of course, repeated executions of a block of code is naturally represented
in an iterative manner using loops.

To see this transformation in action, we first write our existing code in Python:24

24 Note that while Python does not
perform tail-call elimination, that’s an
implementation detail—the algorithm
remains unchanged.

1 def sum_tail(main_lst):

2 return sum_helper(main_lst, 0)

3

4 def sum_helper(lst, acc):

5 if lst == []:

6 return acc

7 else:

8 # The lst[1:] implements (rest lst), but is unidiomatic Python.

9 return sum_helper(lst[1:], acc + lst[0])

We now will transform sum_helper into a while loop as follows:

• Initialize two variables lst and acc representing the parameters of sum_helper,

34 david liu

using the argument values in the initial call sum_helper(main_lst, 0).
• Place the body of sum_helper inside a while True loop.
• Replace the recursive sum_helper call with statements to update the values of

lst and acc.

Applying these rules gives us the resulting code:

1 def sum_tail2(main_lst):

2 lst, acc = main_lst, 0

3

4 while True:

5 if lst == []:

6 return acc

7 else:

8 lst, acc = lst[1:], acc + lst[0]

Now, this code is certainly unidiomatic Python code, both because of the while

True and because of the list slicing operation lst[1:]. The beauty of this ap-
proach is that we obtained this code by applying a mechanical transformation on
our tail-recursive version—that is, without taking into account anything about
the tail-recursive function did! Further analysis on our part would reveal that the
lst == [] and lst = lst[1:] pieces act as boilerplate to iterate through each
element of the list main_lst, and so we can simplify this to the very idiomatic

1 def sum_tail3(main_lst):

2 acc = 0

3 for x in main_lst:

4 acc = acc + x

5 return acc

Exercise Break!

1.16 Consider a Python function of the following form:

1 def f(main_lst):

2 lst, acc = main_lst, 0

3

4 while True:

5 if lst == []:

6 return g1(acc)

7 else:

8 lst, acc = lst[1:], g2(lst[0], acc)

principles of programming languages 35

Rewrite this function into idiomatic Python, in the same way we did for
sum_tail3. Make sure you understand exactly what mechanical steps you
need to perform!

Higher-order functions

So far, we have kept a strict division between our types representing data values—
numbers, booleans, strings, and lists—and the functions that operate on them.
However, as we said earlier, functions are values, so it is natural to ask: can
functions operate on other functions?

The answer in our course is a most emphatic yes, and in fact this is the heart
of functional programming: the ability for functions to take in other functions
and use them, combine them, and even return new ones. Let’s see some simple
programming examples.25

25 The differential operator, which takes
as input a function f (x) and returns
its derivative f ′(x), is another example
of a “higher-order function” (although
most calculus courses won’t use this
terminology). By the way, so is the
indefinite integral.

1 ; Take an input *function* and apply it to 1

2 (define (apply-to-1 f) (f 1))

3 (apply-to-1 even?) ; #f

4 (apply-to-1 list) ; '(1)

5 (apply-to-1 (lambda (x) (+ 15 x))) ; 16

6

7 ; Take two functions and apply them to the same argument

8 (define (apply-two f1 f2 x)

9 (list (f1 x) (f2 x)))

10 (apply-two even? odd? 16) ; '(#t #f)

11

12 ; Apply the same function to an argument twice in a row

13 (define (apply-twice f x)

14 (f (f x)))

15 (apply-twice sqr 3) ; 81

Higher-order list functions

With the discussion in the previous section, you might get the impression that
people who use functional programming spend all of their time using recursion.
But in fact this is not the case! Instead of using recursion explicitly, code often
uses three critical higher-order functions to compute with lists.26 The first two,

26 Of course, these higher-order func-
tions themselves are implemented
recursively.

map and filter are extremely straightforward:

1 ; (map f lst)

2 ; Returns a new list by applying `f` to each element in `lst`

3 > (map (lambda (x) (* x 3)) (list 1 2 3 4))

4 '(3 6 9 12)

5

36 david liu

6 ; (filter pred lst)

7 ; Creates a new list whose elements are those in 'lst'

8 ; that make `pred` output #t.

9 > (filter (lambda (x) (> x 1)) (list 4 -1 0 15))

10 '(4 15)

To illustrate the third common higher-order function, let’s first demonstrate how
we might write map and filter using loops and mutation:

1 def map(f, lst):

2 acc = []

3 for x in lst:

4 acc.append(f(x))

5 return acc

6

7 def filter(pred, lst):

8 acc = []

9 for x in lst:

10 if pred(x):

11 acc.append(x)

12 return acc

Both of these functions use the same accumulator pattern, using an accumulator
variable to store a value that gets updated at each loop iteration, and is finally
returned at the function’s end. We can generalize this pattern into a higher-order
function accepting two additional arguments: an initial value and a function to
update the accumulator inside the loop.

1 def accumulate(combine, init, lst):

2 acc = init

3 for x in lst:

4 acc = combine(acc, x)

5 return acc

This more general loop pattern is codified in a recursive fashion in both Racket
and Haskell in a function called foldl:27

27 Note that the order of the arguments
of the “combine” functions are different
in the two languages.

1 (define (foldl combine init lst)

2 (if (empty? lst)

3 init

4 (foldl combine

5 (combine (first lst) init)

6 (rest lst))))

principles of programming languages 37

1 foldl combine init lst =

2 if null lst

3 then

4 init

5 else

6 foldl combine (combine init (head lst)) (tail lst)

Though all three of map, filter, and foldl are extremely useful in performing
most computations on lists, both map and filter are constrained in having to
return lists, while foldl can return any data type. In fact, given the flexibility
of this function illustrated in its corresponding loop version, it should be clear
at least conceptually that it is possible to implement map and filter in terms of
foldl—doing so is a great exercise at this point in your learning.

Exercise Break!

1.17 You might notice that the Racket implementation of foldl is very similar to
the implementation of sum-helper from the previous section. Use foldl to
implement sum in both Racket and Haskell. Note that you should be able to
pass in the “plus” function directly (i.e., not using a lambda), but this may
require a bit of research when doing so in Haskell.

1.18 Implement a function that takes a predicate (boolean function) and a list, and
returns the number of items in the list that satisfy the predicate.

1.19 Is foldl tail-recursive? If so, explain why. If not, rewrite it to be tail-recursive.

1.20 Reimplement all of the previous exercises using map, filter, and/or foldl,
without using explicit recursion.

1.21 Write a function that takes a list of unary functions, and a value arg, and
returns a list of the results of applying each function to arg.

1.22 Implement map and filter using foldl.

1.23 The “l” in foldl stands for “left”, because items in the list are combined with
the accumulator in order from left to right.

1 (foldl f 0 (list 1 2 3 4))

2 ; equivalent to...

3 (f 4 (f 3 (f 2 (f 1 0))))

Write another version of fold called foldr, which combines the items in the
list from right to left:

1 (foldr f 0 '(1 2 3 4))

2 ; equivalent to...

3 (f 1 (f 2 (f 3 (f 4 0))))

38 david liu

Hint: this can be done using basic structural recursion—start by mentally
dividing the input list into first and rest.

Currying

Currying is a powerful feature of functional programming languages that allows
a function to be applied to only some of its arguments. We’ll talk more about
currying when we discuss Haskell’s static type system, but for now our interest
is in how currying simplifies functions whose bodies call higher-order functions.

Suppose we want to write a function big that takes a list lst and returns a list
containing only the elements from lst that are larger than 5. We can accomplish
this using the filter higher-order function:

1 big lst = filter (\x -> 5 < x) lst

But notice that the anonymous function there is simply calling the < function
with its first argument set to 5. That is, it’s the < function “partially applied” to
one of its two arguments. Currying allows us to dispense with the anonymous
function, writing simply:

1 big lst = filter ((<) 5) lst

This kind of flexibility would be very strange indeed for imperative languages
like C and Java. But it is this flexibility that gives functional programming its
power: it lets us adapt the arity of a function to contexts for which the function
may not have been explicitly designed!

The higher-order function apply

Next, we will look at one more fundamental higher-order function. As a warm-
up, consider the following mysteriously-named function:

1 (define ($ f x) (f x))

This function takes two arguments, a function and a value, and then applies the
function to that value. This is fine for when f is unary, but what happens when
it’s not? For example, what if we wanted to give $ a binary function and two
more arguments, and apply the function to those two arguments? Of course, we
could write another function for this purpose, but then what about a function
that takes three arguments, or one that takes ten? What we would like, of course,
is a higher-order function that takes a function, then any number of additional

principles of programming languages 39

arguments, and applies that function to those extra arguments. In Racket, we
have a built-in function called apply that does almost this:

1 ; (apply f lst)

2 ; Call f with arguments taken from the elements of lst

3 (apply + (list 1 2 3 4))

4 ; equivalent to...

5 (+ 1 2 3 4)

6

7 ; More generally,

8 (apply f (list x1 x2 x3 ... xn))

9 ; equivalent to...

10 (f x1 x2 x3 ... xn)

Note that apply differs from map, even though the types of their arguments
are very similar (both take a function and a list). Remember that map calls its
function argument once for each value in the list separately, while apply calls its
function argument just once, on all of the items in the list at once. The return
value of map is always a list; the return value of apply is whatever its function
argument returns.

In Haskell, the story is similar but not identical. We have a binary infix operator
($), which acts as unary function application:

1 f $ x

2 -- equivalent to...

3 f x

However, due to constraints imposed by Haskell’s type system, it does not pro-
vide an equivalent to Racket’s apply, which works on functions of arbitrary arity.
We’ll discuss Haskell’s type system in detail later in this course.

Exercise Break!

1.24 Look up rest arguments in Racket, which allow you to define functions that
take in an arbitrary number of arguments. Then, implement a function ($$ f

x1 ... xn), which is equivalent to (f x1 ... xn).

Functions returning functions

We have now seen functions that take primitive values and other functions, but
so far they have all had primitive values as their output. Now, we’ll turn our
attention to another type of higher-order function: a function that returns a func-
tion. This is extremely powerful: in its most general form, it allows us to define

40 david liu

new functions dynamically, that is, during the execution of a program. Here is
a simple example of this:

1 (define (make-adder x)

2 ; The body of make-adder is a function value.

3 (lambda (y) (+ x y)))

4 (make-adder 10) ; #<procedure>

5

6 (define add-10 (make-adder 10))

7 add-10 ; #<procedure>

8 (add-10 3) ; 13

The function add-10 certainly seems to be adding ten to its argument; using the
substitution model of evaluation for (make-adder 10), we see how this happens:

1 (make-adder 10)

2 ; ==> (substitute 10 for x in the body of make-adder)

3 (lambda (y) (+ 10 y))

Exercise Break!

1.25 Write a function that takes a single argument x, and returns a new function
that takes a list and checks whether x is in that list or not.

1.26 Write a function that takes a unary function and a positive integer n, and
returns a new unary function that applies the function to its argument n
times.

1.27 Write a function flip that takes a binary function f, and returns a new binary
function g such that (g x y) = (f y x) for all valid arguments x and y.

1.28 Write a function that takes two unary functions f and g, and returns a new
unary function that always returns the max of f and g applied to its argument.

1.29 Write the following Racket function:

1 #|

2 (fix f n x)

3 f: a function taking m arguments

4 n: a natural number, 1 <= n <= m

5 x: an argument

6

7 Return a new function g that takes m-1 arguments,

8 which acts as follows:

9 (g a_1 ... a_{n-1} a_{n+1} ... a_m)

10 = (f a_1 ... a_{n-1} x a_{n+1} ... a_m)

11

principles of programming languages 41

12 That is, x is inserted as the nth argument in a call to f.

13

14 > (define f (lambda (x y z) (+ x (* y (+ z 1)))))

15 > (define g (fix f 2 100))

16 > (g 2 4) ; equivalent to (f 2 100 4)

17 502

18 |#

(Hint: recall rest arguments from an earlier exercise.)

1.30 Write a function curry, which does the following:

1 #|

2 (curry f)

3 f: a binary function

4

5 Return a new higher-order unary function g that takes an

6 argument x, and returns a new unary function h that takes

7 an argument y, and returns (f x y).

8

9 > (define f (lambda (x y) (- x y)))

10 > (define g (curry f))

11 > ((g 10) 14) ; equivalent to (f 10 14)

12 -4

13 |#

1.31 Generalize your previous function to work on a function with m arguments,
where m is given as a parameter.

42 david liu

Programming with abstract syntax trees

A natural generalization of the list data type is the tree data type, in which
the “recursive” part contains an arbitrary number of recursive subcomponents
rather than just one. In this section, we’ll start looking at how abstract syntax
trees (ASTs) are represented in real code, and how our discussion of structural
recursion allows us to easily operate on such trees.

Racket: Quoted expressions

First, let’s see how we can represent ASTs in Racket. This is actually one of
the fundamental strengths of all Lisp languages: the parenthesization of the
source code immediately creates a nested list structure, which is simply another
representation of a tree. To make this even more explicit in the language, any
Racket expression (no matter how complex or deeply nested) can be turned
into a static nested list simply by prefixing it with an apostrophe. We call this
quoting an expression.

1 > (+ 1 2) ; A regular Racket expression

2 3

3 > '(+ 1 2) ; Quoting the expression: a list of three elements.

4 '(+ 1 2)

5 > (first '(+ 1 2))

6 '+

7 > (second '(+ 1 2))

8 1

9 > (third '(+ 1 2))

10 2

11 > '(+ (* 2 3) (* 4 5)) ; This is a nested list

12 '(+ (* 2 3) (* 4 5))

Even though in Racket a quoted expression really is just a list, we will call it a
Racket datum28 to distinguish it from a regular list. Formally, here are the types

28 plural: “datums”, not “data” to avoid
confusionof values that comprise the “tree” in a Racket datum:

1. Quoted literals (5, #t, "hello") represent those same values as in the original
code: for example, (equal? '5 5) returns true.

2. Quoted identifiers and keywords become symbols; a symbol is a primitive
datatype that functions as a unique identifier. For example, the datum '(+

1 2) has as its first element the symbol '+, which can be compared using
equal? to other values, and used in pattern-matching. Note that keywords
like define also get quoted into symbols, and so the only way to determine
which symbols correspond to identifiers and which correspond to keywords
is to start with a fixed set of keywords to check.

3. Quoted compound expressions become lists, in which each element is the
quoted version of the corresponding subexpression. '(+ 2 3) is equivalent

principles of programming languages 43

to (list '+ '2 '3), which is in turn equivalent to (list '+ 2 3).

Given this structure, we can use structural pattern-matching to take in a datum
and perform recursive computations on it. For example, here is a function that
takes a Racket datum consisting of just numeric literals, identifiers, and arith-
metic function calls, and returns the number of times + is used:

1 (define/match (num-plus datum)

2 ; For a function call (which in this case is *any* parenthesized

3 ; expression), recurse on each subexpression and add up the total

4 ; number of occurrences. Note the use of (list expr ...) to bind

5 ; lists of arbitrary length to expr.

6 [((list expr ...))

7 (apply + (map num-plus expr))]

8 ; Value pattern-match on '+

9 [('+) 1]

10 ; For any other atomic value (identifier or literal), return 0

11 [(_) 0])

12

13 > (num-plus '+)

14 1

15 > (num-plus 3)

16 0

17 > (num-plus '(+ (* 4 5) (+ (- (+ 3 6) 7) 8)))

18 3

Haskell: value constructors

As a consequence of Haskell’s type system, we cannot store values of differ-
ent types in the same list, making it cumbersome to directly represent Racket
datums in the same way (note that those Racket lists freely mix nested lists,
symbols, and literals of all different types). Instead, Haskell’s type system per-
mits the concise declaration of, and pattern-matching on, a type with multiple
different constructors. We will study this more formally later in the course, but
for now we think you’ll find the following representation of an “expression”
type to be quite intuitive:

1 data Expr = NumLiteral Int -- An integer literal

2 | Identifier String -- An identifier

3 | Call Expr [Expr] -- A function call, where the first

4 -- Expr is the function being called,

5 -- and the list [Expr] contains the

6 -- argument expressions.

44 david liu

Again, the syntax is not too important here; the main point is that NumLiteral,
Identifier, and Call are three value constructors that take in, respectively, an
integer, a string, and another expression and list of expressions, and return a
value of type Expr. Note that NumLiteral and Identifier are atomic expressions
(they are leaves in the AST), while Call is recursive. As an example, we would
represent the Racket expression (+ 2 3) by the value:

1 Call (Identifier "+") [NumLiteral 2, NumLiteral 3]

This might seem cumbersome at first, but because of structural pattern-matching,
it is just as easy to implement the num-plus function in Haskell.29

29 We explicitly differentiate between
the Identifier and NumLiteral case
for illustrative purposes only. As long
as we kept the first two lines the same,
we could have used a single _ in the
third pattern, in the same way we did
for Racket.

1 numPlus (Call f args) = numPlus f + sum (map numPlus args)

2 numPlus (Identifier "+") = 1

3 numPlus (Identifier _) = 0

4 numPlus (NumLiteral _) = 0

Undefined programs and evaluation order

So far in this chapter, we have focused on the denotational semantics of pure func-
tional programs: what they mean, or what they evaluate to.30 We have seen how

30 Remember that we think of programs
as consisting of a sequence of defini-
tions followed by a single expression to
evaluate.

the tools of recursion and higher-order functions can be used to express interest-
ing computations in this setting, but even then have focused on the simple rule
of function application as substitution.

While the denotational semantics of a language determine what expressions
must evaluate to, the operational semantics determine how expressions are eval-
uated. For simple expressions like 5, (+ 20 30), and ((lambda (x) x) 1), this
is not very interesting: literals are evaluated simply by using their literal value,
while the other two expressions reach a numeric value of 50 and 1, respectively,
in just a single simplification step each. However, operational semantics must
cover not just these simple cases, but more complex expressions as well. Con-
sider the expression ((lambda (x) (+ x 6)) (+ 4 4)). We have a choice about
how to evaluate this function call. We could evaluate the (+ 4 4) first, and then
call the lambda expression on it:

1 ((lambda (x) (+ x 6)) (+ 4 4))

2 ; evaluate (+ 4 4)

3 ((lambda (x) (+ x 6)) 8)

4 ; substitute 8 for x

5 (+ 8 6)

6 14

principles of programming languages 45

Or, we could substitute the entire (+ 4 4) expression into the body of the
lambda first, and then evaluate the result:

1 ((lambda (x) (+ x 6)) (+ 4 4))

2 ; substitute (+ 4 4) for x

3 (+ (+ 4 4) 6)

4 ; evaluate (+ 4 4)

5 (+ 8 6)

6 ; evaluate (+ 8 6)

7 14

Perhaps unsurprisingly, it turns out that these two are equivalent. In fact, the
Church-Rosser Theorem says (informally) that for any program of this form in
the lambda calculus, every possible order of function application must result in
the same final value. Informally, every road leads to the same destination.

However, even this informal version of the theorem only applies to valid function
applications, and not ones that result in an error or non-terminating computa-
tion. What happens in those cases?

It is the answer to this question that leads to our discussion of the different
evaluation orders used to deal with function applications, which has significant
implications for a programming language.31

31 While we’ll stick to the pure func-
tional world here, evaluation order is
even more important in imperative-
style languages that support functions
with side effects.

Consider, for example, the function call (f 10 (/ 1 0)). Is this always guaran-
teed to raise an error for any binary function f?

Strict evaluation semantics

Your intuition for the previous question is probably a resounding yes, as this
is the behaviour used in almost every modern programming language. First,
we say that an expression has an undefined value if it represents a computa-
tion that does not complete, e.g. due to its corresponding abstract mathematical
meaning (e.g., division by 0), or because it represents a non-terminating com-
putation.32 For a given type of expression, we say that it has strict evaluation

32 This “undefined” value is commonly
referred to as bottom in the program-
ming languages literature.

denotational semantics if and only if whenever an expression of that type con-
tains a subexpression whose value is undefined, the value of the expression itself
is also undefined.

Most modern programming languages use strict denotational semantics for func-
tion calls. In this context, the function call has two kinds of subexpressions: the
function being called, and the arguments to the function; if any of these con-
tains an error, the function call itself generates this error. This is most commonly
implemented by (i.e., induces an operational semantics of) a left-to-right eager
evaluation of function call expressions:

• When evaluating a function call, first evaluate the subexpression representing
the function being called (often, but not always, an identifier).

46 david liu

• Then evaluate each argument subexpression, in left-to-right order.
• Finally, “call” the function by substituting the value of each subexpression into

the body of the function.

Because arguments are evaluated before being substituted into the body of a
function, this guarantees that if one of the argument subexpressions (or even the
function subexpression itself) is undefined, this is discovered before the function
is actually called.

Similarly, most languages use strict semantics for name bindings; for example, in
Racket the top-level binding (define <id> <expr>) first evaluates <expr>, and
then binds the value of that expression to the <id>.33

33 In introductory classes, we normally
learn this as “first evaluate the right-
hand side of the =, then assign the value
to the left-hand side.”Non-strict syntactic forms

In your programming experience so far, you have probably taken for granted
eager evaluation order in function calls. However, you also learned that there
are certain types of expressions that do not eagerly evaluate all of their subex-
pressions, for example, boolean operators and conditionals. In Racket, these are
and, or, if, and cond; even though these may look like ordinary functions, they
aren’t! Suppose we wrote our own “and” function by wrapping the built-in
Racket and: (define (my-and x y) (and x y)).

Even though my-and looks identical to and, it’s not, all because of evaluation or-
der. Whereas the built-in and can stop evaluating its arguments when it reaches
a “false” value, the same is not true of my-and—the latter is a function, and so
eagerly evaluates all of its arguments before passing their values to and:

1 (and #f (/ 1 0)) ; evaluates to #f

2 (my-and #f (/ 1 0)) ; raises an error

Because of this, we say that and, or, if, and cond are syntactic forms, rather than
identifiers that refer to built-in functions. This point is actually rather subtle, and
in fact is not specific to Racket at all! In any programming language that uses ea-
ger evaluation for functions, short-circuiting boolean operations and conditional
are all implemented as syntactic constructs, not simple function calls.

Function bodies and delaying evaluation

Now that we’ve given a name to eager evaluation, you might look for other
places where languages may or may not eagerly evaluate expressions. Consider
the following Racket function:

1 (define (f x)

2 (length (range 3000000)))

principles of programming languages 47

Note that the body of this function doesn’t use the parameter x; when the Racket
interpreter evaluates this function, does it eagerly evaluate the body of f? How
about in other languages that you know?

It turns out that Racket doesn’t: in general, a function’s body is not evaluated
until the function is called, even if the body doesn’t depend on the function’s
parameters.34 This means that we can delay the evaluation of an expression sim-

34 This isn’t entirely true for modern
compilers, which may evaluate constant
expressions during compilation to
speed up program execution time. This
optimization, known as constant folding,
is outside the scope of this course.

ply by putting it inside a function body. We give the name thunk to any nullary
function whose purpose is to delay the evaluation of its body expression. For
example, (lambda () (/ 1 0)) is a thunk, wrapping around the error-raising
division expression. When we evaluate the lambda, this doesn’t evaluate its body:

1 > (lambda () (/ 1 0)) ; A thunk as an anonymous function

2 #<procedure>

3 > (define (bad) (/ 1 0)) ; A thunk bound to a name

4 > bad ; No error when the name is evaluated

5 #<procedure:bad>

6 > (bad) ; *Calling* the thunk raises an error

7 /: division by zero

Using this idea, we can simulate non-strict semantics for function calls by pass-
ing in thunks that wrap the “actual” arguments:

1 ; x and y are now thunks

2 (define (my-and x y)

3 (and (x) (y)))

4

5 > (my-and (lambda () #f) (lambda () (/ 1 0)))

6 #f ; The (/ 1 0) is never evaluated!

Exercise Break!

1.32 Given the following nested function call expression, write the order in which
the functions are evaluated:

(f (a b (c d) (d)) e (e) (f (f g)))

1.33 Draw an abstract syntax tree associated with the previous expression, where
each internal node represents a function call, whose children are the argu-
ments to that function.

1.34 Racket has lambda and define expressions. Neither of these are functions, but
are instead also syntactic forms (like and); how do you know?

48 david liu

Non-strict semantics in Haskell

As we mentioned at the start of this chapter, one of the initial design features
that set Haskell apart from other languages is that it uses non-strict semantics
for both function calls and name bindings. In a function call, the argument
subexpressions are not evaluated right away. Instead, they are only evaluated
if and when they are used, and so if an argument is never used, it is never
evaluated. This evaluation strategy is known as lazy evaluation. Consider the
following example:

1 > onlyFirst x y = x

2 > onlyFirst 15 (head [])

3 15

4 > onlyFirst (head []) 15

5 *** Exception: Prelude.head: empty list

The function onlyFirst requires only its first argument to evaluate its body, so
in the first call, the argument (head []) is never evaluated. This means that we
can define a short-circuiting “and” function just like any other Haskell function:

1 > myAnd x y = if x then y else False

2 > myAnd False (head [])

3 False

In fact, the (&&) and (||) boolean operators really are just built-in functions for
Haskell, unlike in most other programming languages!

Things get even more surprising when it comes to name bindings. In Haskell,
the binding <id> = <expr> does not evaluate <expr>, but instead binds the ex-
pression to the identifier. It’s only when that identifier is required to be evalu-
ated does <expr> get evaluated:

1 > x = error "This is an error" -- No error when x is bound.

2 > x -- Error when x is evaluated.

3 *** Exception: This is an error

Indeed, you may have wondered what the syntax is for defining nullary func-
tions in Haskell, given that the general function definition syntax (<id> <param>

... = <body>) seems to coincide with a “simple” name binding (<id> = <expr>)
when there are no parameters. Now we are able to answer this question: every
name binding in Haskell defines a function! The binding <id> = <expr> defines
a thunk, analogous to (define (<id>) <expr>) in Racket, making it clear that
the expression is not evaluated at the time of definition.

principles of programming languages 49

The trouble with Haskell’s foldl

To wrap up this section, we’ll revisit one particularly famous wart of Haskell’s
implementation. Even though we have not discussed efficiency (either time or
space) too much in this course, there is one place where this has already come
up: the notion of tail call optimization, which is central to mitigating call stack
growth when using recursion. To start, let’s look at how our old friend foldl is
implemented in Haskell (this mimics the definition in Racket):

1 foldl _ acc [] = acc

2 foldl f acc (x:xs) =

3 let acc' = f acc x

4 in

5 foldl f acc' xs

We use a let here to split off an intermediate definition of acc' from the recur-
sive call, to make it more obvious that the recursive call to foldl is in tail call
position. And indeed, Haskell does perform tail call optimization, as you would
expect from a pure functional language. However, when we try running a large
computation like foldl max 0 [1..100000000], not only does the computation
take a long time, but its memory usage increases linearly over time. What gives?

The key to understanding this is in understanding Haskell’s lazy evaluation
order. Even though laziness might seem like a neat feature, it does have its
drawbacks. The evaluation of functions becomes more unpredictable, making
it harder to correctly reason about both the time and space efficiency of a pro-
gram. In the case of our foldl implementation, laziness means that the let

bindings don’t actually get evaluated until absolutely necessary—and when is
that? Certainly not when we make the recursive call. The expression

1 let acc' = f acc x

2 in

3 foldl f acc' xs

reduces to foldl f (f acc x) xs. That is, the second argument passed to the
recursive call is a thunk whose body is (f acc x), not the value produced by
actually calling f. Let’s make that a bit more concrete. Consider calling foldl

max 0 [1, 2, 3]. In the initial call, the body of foldl becomes

1 let acc' = max 0 1

2 in

3 foldl max acc' [2, 3]

In a language with strict binding semantics, we would expect max 0 1 to eval-
uate to 1 before being bound to acc', leading to the recursive call foldl max 1

50 david liu

[2, 3]. This is the case in, say, Racket, and combined with tail call optimization
this leads to space usage that is constant with respect to the size of the input
list, since the space used to store the accumulator is fixed (a single integer). In
the case of Haskell, however, acc' is bound to a thunk containing (max 0 1).
So then even when the recursive call undergoes tail call optimization, the re-
sulting argument data takes a bit more space than before: a thunk instead of
the initial integer 0. This space usage accumulates35 through the recursive calls,

35 pun definitely intended
with each new binding of acc' resulting in a new thunk being stored, leading
to the linearly increasing space usage we observe when we call this function.
Indeed, these thunks are only called when we reach the end of the list, and acc

is returned and printed (assuming we call this directly in the Haskell REPL).

Because laziness presents its own unique problems, the Haskell language pro-
vides ways of explicitly forcing the evaluation of an expression, even when that
expression’s value is not “necessary” for evaluating its containing outer expres-
sion. One approach is with the compiler extension BangPatterns, whose use is
illustrated here:

1 {-# LANGUAGE BangPatterns #-}

2

3 foldl _ !acc [] = acc

4 foldl f !acc (x:xs) =

5 let acc' = f acc x

6 in

7 foldl f acc' xs

The only difference, of course, is the first line (telling the compiler to use the
BangPatterns extension), and the exclamation mark preceding the acc parame-
ter in the function definition. This has the effect of making acc a strict parameter:
whenever foldl is called, the argument expression corresponding to acc must
be evaluated before being passed to foldl, and of course this includes recursive
calls. With this implementation of foldl we get the constant space evaluation
of foldl max 0 [1..100000000], taking advantage of both tail call optimization
and eager evaluation of the calls to f to ensure that only an integer accumulator
is passed through the recursive calls.

A final note: why did we call foldl one of Haskell’s “famous warts”? It turns
out that even though this is a well-known issue in the Haskell community, for
historical reasons the more naturally-named function, foldl, behaves in the lazy
way and so is generally discouraged. Instead, users wanting to use the more
space-efficient version can import foldl' from Data.List, paying the price of
both an extra import and a clumsier name. Go figure.

Lexical closures

To end this chapter, we’ll study in more detail one of the most interesting im-
plementation details of a functional programming language: supporting the dy-

principles of programming languages 51

namic creation of functions in a space-efficient manner. Recall the make-adder

function, which takes a number x and returns a new “add x” function:

1 (define (make-adder x)

2 (lambda (y) (+ x y)))

Suppose we call make-adder multiple times: (make-adder 10), (make-adder

-1), (make-adder 9000), etc. A naive (but correct!) implementation of Racket
would create and store in memory brand-new functions for each call:

1 ; (make-adder 10)

2 (lambda (y) (+ x 10))

3 ; (make-adder -1)

4 (lambda (y) (+ x -1))

5 ; (make-adder 9000)

6 (lambda (y) (+ x 9000))

But it seems rather wasteful for Racket to create and store in memory brand-new
functions each time, when really all of the function values have essentially the
same body, differing only in their value of x.

A better implementation factors out the literal lambda expression (lambda (y)

(+ x y)), which is common to all calls to make-adder, and instead stores simply
the binding for x, which can vary for each function call. And in fact, this is
exactly what Racket does! An abstract, but more accurate, representation of the
previous example calls is:36

36 Keep in mind that the (lambda (y)

(+ x y)) is stored once in memory, and
make-adder returns just a reference or
pointer to that lambda.

1 ; (make-adder 10)

2 (x: 10) '(lambda (y) (+ x y))

3 ; (make-adder -1)

4 (x: -1) '(lambda (y) (+ x y))

5 ; (make-adder 9000)

6 (x: 9000) '(lambda (y) (+ x y))

The data structure storing the reference to the function code, and the binding for
x, is called a closure. All along, when we’ve referred to lambdas as “function val-
ues”, each one was actually implemented as a closure! Why has this never come
up before? Closures are conceptually necessary only when the function body
has a free identifier, which is an identifier that is not local to the function. This
should make intuitive sense: suppose we have a function where every identifier
in its body is either a parameter, or bound in a local let expression. Then every
time the function is called, all of the data necessary to evaluate that function
call is contained in the arguments and the function body—no additional lookup
necessary. In the definition of make-adder, the inner lambda expression has a free
identifier x, and this is the name whose value will need to be looked up in the

52 david liu

closure. When this closure is itself called, say in the expression ((make-adder

10) 3), we take the function (lambda (y) (+ x y)), and look up the value of x
in the closure to retrieve the 10.

In summary, a closure is a data structure containing a pointer to a function,
as well as a collection of name-value bindings for all free identifiers for that
function. If the body doesn’t have any free identifiers, then the closure can be
identified with the function body itself, since its name-value binding is empty.
Note that in order for the closure to be evaluated, all of the identifiers inside the
function body must be in scope when the function is defined, just not necessarily
local to the function. This was true for the previous example: while x was a free
identifier for the inner lambda, it was still in scope because it was a parameter
of the enclosing make-adder. In contrast, the following variation would raise a
runtime error because of an unbound identifier:

1 (define (make-adder x)

2 (lambda (y) (+ z y)))

Lexical and dynamic scope

We have just finished saying that closures—and in particular, name bindings—
are created when a lambda expression is evaluated. But this is actually not the
full story; there is yet another consideration to take into account when reasoning
about how closures work. Consider the variation of make-adder:

1 (define z 10)

2 (define (make-z-adder) (lambda (x) (+ x z)))

3 (define add-z (make-z-adder))

4

5 > (add-z 5)

6 15

So far, so good. The body of make-z-adder is a function with a free identifier
z. Calling make-z-adder evaluates the lambda, returning a closure in which the
free z refers to the global one, and so binds to the value 10. But what happens
when we shadow this z, and then call make-z-adder?

1 (let* ([z 100])

2 (let* ([add-z-2 (make-z-adder)])

3 (add-z-2 5)))

Now the lambda expression is evaluated when we call the function in the local
scope, but what value of z gets bound in the closure? Put more concretely, does
this expression output 15 (because z is bound to 10) or 105 (because z is bound

principles of programming languages 53

to 100)? It turns out that this expression evaluates to 15, just like the previous
example. Our goal is to understand why.

The question of how to resolve free identifiers when creating closures is very
important, even though we usually take it for granted. In Racket, the value
used is the one bound to the name that is in scope where the lambda expression
appears in the source code. That is, though closures are created at runtime, how
the closures are created (i.e., which bindings are used) is based only on where
they are written in the source code. In the previous example, the z in the closure
returned by make-z-adder is bound to the value of the global z, which is the one
that is in scope where the lambda expression is written.

More generally, the binding for any identifier in Racket can be determined by
taking its location in the source code, and proceeding outwards through enclos-
ing expressions until you find where this identifier is first introduced (either
through a binding or a parameter declaration). We say that identifiers in Racket
obey lexical scope or static scope, referring to the fact that this resolution can
be done by analysing the source code itself, prior to actually running any code.

In contrast to this is dynamic scope, in which identifiers are resolved based
on when the identifier is used during program execution, rather than where it
appears in the code. If Racket used dynamic scope, the above example would
output 105, because the closure created by make-z-adder would now bind the
enclosing local z.

Here is an example of how dynamic scoping works in the bash shell scripting
language:

1 (let* ([z 100])

2 (let* ([add-z-2 (make-z-adder)])

3 (add-z-2 5)))

In other words, lexical scoping resolves names based on context from the source
code, whereas dynamic scoping resolves names based on context from the pro-
gram state at runtime. Early programming languages used dynamic scope be-
cause it was easier to implement, as names could be resolved by looking for
the nearest binding on the function call stack, or by recursively accumulating
name bindings in an interpreter. However, dynamic scope makes programs very
difficult to reason about, as the values of non-parameter names of a function
depended on the myriad places the function is used, rather than the single place
where it is defined. Lexical scope was a revolution in how it simplified program-
ming tasks, and is used by every modern programming language today.37 And

37 ALGOL was the first language to use
lexical scope, in 1958.it is ideas like that which motivate research in programming languages!

A Python puzzle

Closures are often used in the web programming language JavaScript to dynam-
ically create and bind callbacks, which are functions used to respond to events

54 david liu

like a user clicking a button or entering some text. A common beginner mistake
when creating these functions exposes a very subtle misconception about clo-
sures when they are combined with mutation. We’ll take a look at an analogous
example in Python.

1 def make_functions():

2 flist = []

3 for i in [1, 2, 3]:

4 def print_i():

5 print(i)

6 print_i()

7 flist.append(print_i)

8 print('End of flist')

9 return flist

10

11 def main():

12 flist = make_functions()

13 for f in flist:

14 f()

15

16 >>> main()

17 1

18 2

19 3

20 End of flist

21 3

22 3

23 3

The fact that Python also uses lexical scope means that the closure of each of the
three print_i functions refers to the same i variable (in the enclosing scope).
That is, the closures here store a reference, and not a value.38 After the loop exits,

38 Since we have been avoiding mutation
up to this point, there hasn’t yet been a
distinction between the two.

i has value 3, and so each of the functions prints the value 3. Note that the
closures of the functions store this reference even after make_functions exits,
and the local variable i goes out of scope!

By the way, if you wanted to fix this behaviour, one way would be to not use the
i variable directly in the created functions, but instead pass its value to another
higher-order function. In the code below, each print_i function has a closure
looking up x, which is bound to different values and not changed as the loop
iterates.

1 def create_printer(x):

2 def print_x():

3 print(x)

4 return print_x

5

6 def make_functions():

principles of programming languages 55

7 flist = []

8 for i in [1, 2, 3]:

9 print_i = create_printer(i)

10 print_i()

11 flist.append(print_i)

12 print('End of loop')

13

14 def main():

15 flist = make_functions()

16 for f in flist:

17 f()

Secret sharing

Here’s one more cute example of using closures to allow “secret” communication
between two functions in Python.39

39 The nonlocal keyword is used to
prevent name shadowing, which would
happen if a local secret variable were
created.

1 def make_secret():

2 secret = ''

3

4 def alice(s):

5 nonlocal secret

6 secret = s

7

8 def bob():

9 nonlocal secret

10 print(secret)

11 # Reset secret

12 secret = ''

13

14 return alice, bob

15

16 >>> alice, bob = make_secret()

17 >>> alice('Hi bob!')

18 >>> bob()

19 Hi bob!

20 >>> secret

21 Error ...

Exercise Break!

1.35 In the following lambda expressions, what are the free identifiers (if any)?
(Remember that this is important for understanding what a closure actually
stores.)

56 david liu

1 (lambda (x y) (+ x (* y z))) ; (a)

2

3 (lambda (x y) (+ x (w y z))) ; (b)

4

5 (lambda (x y) ; (c)

6 (let ([z x]

7 [y z])

8 (+ x y z)))

9

10 (lambda (x y) ; (d)

11 (let* ([z x]

12 [y z])

13 (+ x y z)))

14

15 (let ([z 10]) ; (e)

16 (lambda (x y) (+ x y z)))

17

18 (define a 10) ; (f)

19 (lambda (x y) (+ x y a))

1.36 Write a snippet of Racket code that contains a function call expression that
will evaluate to different values depending on whether Racket uses lexical
scope or dynamic scope.

Summary

In this chapter, we looked at the basics of functional programming in two new
languages, Racket and Haskell. Discarding mutation and the notion of a “se-
quence of statements,” we framed computation as the evaluation of functions
using higher-order functions to build more and more complex programs. How-
ever, we did not escape notion of time entirely; in our study of evaluation order,
we learned precisely how Racket (and most other languages) eagerly evaluate
function call arguments, and how special syntactic forms distinguish themselves
from functions precisely because of how their arguments are evaluated. We con-
trasted this with Haskell, which lazily evaluates its arguments only if and when
they are needed.

Our discussion of higher-order functions culminated in our discussion of clo-
sures, allowing us to create functions that return new functions, and so achieve
an even higher level of abstraction in our program design. Along the way, we
discovered the important difference between lexical and dynamic scope, an il-
lustration of one of the big wins that static analysis yields to the programmer.
Finally, we saw how closures could be used to share internal state between func-
tions without exposing that data. In fact, this encapsulation of data to internal
use in functions should sound familiar from your previous programming expe-
rience, and will be explored in the next chapter.

2 Macros, Objects, and Backtracking

In most programming languages,
syntax is complex. Macros have to
take apart program syntax, analyze
it, and reassemble it. . . A Lisp
macro is not handed a string, but a
preparsed piece of source code in
the form of a list, because the
source of a Lisp program is not a
string; it is a list. And Lisp
programs are really good at taking
apart lists and putting them back
together. They do this reliably,
every day.

Mark Jason Dominus

Now that we have some experience with functional programming, we will briefly
study two other programming language paradigms. The first, object-oriented pro-
gramming, is likely very familiar to you, while the second, logic programming, is
likely not. Because of our limited time in this course, we will not treat either
topic with as much detail each deserves, as neither is a true focus of this course.
Instead, we will stay in Racket, and implement support for these paradigms into
the Racket programming language itself, and so achieve two goals at once: first,
you will gain deeper understanding of these paradigms by studying the de-
sign decisions and trade-offs made in implementing them; and second, you will
learn how to use a powerful macro system to fundamentally extend the syntax
and semantics of a programming language itself.

58 david liu

Object-oriented programming: a re-introduction

OOP to me means only messaging,
local retention and protection and
hiding of state-process, and
extreme late-binding of all things.

Alan Kay

Because we have often highlighted the stark differences between imperative and
functional programming, you may be surprised to learn that our study of func-
tions has given us all the tools we need to implement a basic object-oriented
system like the one you’re familiar with from Python (and other imperative lan-
guages).

Recall the definition of a closure: a data structure containing a reference to func-
tion code together with the lexical environment storing the values of the free
variables in the function body. Now consider what we mean by an object in a
traditional OOP setting: an object is a data structure that stores values called the
(instance) attributes of the object, that is also associated with functions called
(instance) methods that operate of this data.

This paradigm was developed as a way to organize data that promotes encapsu-
lation, separating private concerns of how this data is organized from the public
interface that determine how other code may interact with the data. Unlike the
pure functions we have studied so far, a method always takes a special argu-
ment,1 an associated object that we say is calling the method. Though internal

1 This “calling object” is often an im-
plicit argument with a fixed keyword
name like this or self.

attributes of an object are generally not accessible from outside the object, they
are accessible from within the body of methods that the object calls.

Historically, the centrality of the object itself to call methods and access (pub-
lic) attributes led to the natural metaphor of entities sending and responding
to messages for modeling computation. Putting the public/private distinction
front and centre, we can view an object not as “data + methods”, but rather as
an entity that can receive messages from external code, and then respond to that
message (say by changing its internal state or returning a value). And of course,
“receive a message and return a value” is just another way of describing what a
function does, as we illustrate in the following example:2

2 We’ll use the convention in these
notes of treating messages to objects
as symbols naming the attribute or
method to access.

1 (define (point msg)

2 (cond [(equal? msg 'x) 10]

3 [(equal? msg 'y) -5]

4 [else "Unrecognized message"]))

5

6 > (point 'x)

7 10

8 > (point 'y)

9 -5

principles of programming languages 59

Classes as higher-order functions

Of course, this “point object” is not very compelling: it only has attributes but no
methods, making it more like a C struct, and its attribute values are hard-coded.

One solution to the latter problem is to create a point class, a template that
specifies both the attributes and methods for a type of object. In class-based
object-oriented programming, every object is an instance of a class, obtaining
their attributes and methods from the class definition.3 Objects are created by

3 Even though class-based OOP is the
most common approach, it is not the
only one. JavaScript uses prototypal
inheritance to enable behaviour reuse;
objects are not instances of classes, but
instead inherit attributes and methods
directly from other objects.

calling a class constructor, a function whose purpose is to return a new instance
of that class, often initializing all of the new instance’s attributes.

To translate this into our language of functions, a constructor for Point is a func-
tion that takes two numbers, and returns a function analogous to the one above,
except with the 10 and 5 replaced by the constructor’s arguments.4

4 We follow the convention of giving the
constructor the same (capitalized) name
as the class itself.

1 (define (Point x y)

2 (lambda (msg)

3 (cond [(equal? msg 'x) x]

4 [(equal? msg 'y) y]

5 [else "Unrecognized message"])))

6

7 > (define p (Point 2 -100))

8 > (p 'x)

9 2

10 > (p 'y)

11 -100

And now we see explicitly the relationship between closures and objects in this
model: in the returned function, x and y are free identifiers, and so must have
values bound in a closure when the Point constructor returns. Moreover, be-
cause the identifiers x and y are local to the Point constructor, even though their
values are stored in the closure, once the constructor has returned they can’t be
accessed without passing a message to the object.5 This is the property of clo-

5 This is analogous to the secret vari-
able in the example at the end of the
last chapter.

sures that enables encapsulation: even though both x and y values are accessible
by passing the right messages to the object, it is certainly possible to implement
“private” attributes in this model.

One other point: lexical closures is absolutely required to maintain proper en-
capsulation of the attributes. Imagine what would happen if the following code
were executed in a dynamically-scoped language, and what implications this
would have when we create multiple instances of the same class.

1 (define p (Point 2 3))

2 (let ([x 10])

3 (p 'x))

60 david liu

Adding methods to our class

Next, let’s add two simple methods to our Point class. Because Racket functions
are first-class values, we can treat attributes and methods in the same way: a
method is just an attribute that happens to be a function!6 Of course, one of the

6 This is a different view than the one
taken by, say, Java, in which methods
are completely separate from data
attributes.

characteristics that distinguishes methods from arbitrary functions is that in the
body of a method, we expect to be able to access all instance attributes of the
calling object. It turns out that this is not an issue; study the example below, and
see if you can determine why not!

1 (define (Point x y)

2 (lambda (msg)

3 (cond [(equal? msg 'x) x]

4 [(equal? msg 'y) y]

5 [(equal? msg 'to-string)

6 (lambda ()

7 (format "(~a, ~a)" x y))]

8 [(equal? msg 'distance)

9 ; Return the distance between this and other-point.

10 (lambda (other-point)

11 (let ([dx (- x (other-point 'x))]

12 [dy (- y (other-point 'y))])

13 (sqrt (+ (* dx dx) (* dy dy)))))]

14 [else "Unrecognized message"])))

15

16 > (define p (Point 3 4))

17 > (p 'to-string)

18 #<procedure>

19 > ((p 'to-string))

20 "(3, 4)"

21 > ; Note that (p 'distance) returns a function, so the expression

22 > ; below is a *nested function call*.

23 > ((p 'distance) (Point 0 0))

24 5

The problem of boilerplate code

Cool! We have seen just the tip of the iceberg of implementing class-based objects
with pure functions. As intellectually stimulating as this is, however, the current
technique is not very practical. Imagine creating a series of new classes—and all
of the boilerplate code7 you would have to write each time.

7 e.g., the message handling with cond

and equal?, "Unrecognized message",
etc.What we’ll study next is a way to augment the very syntax of Racket to achieve the

exact same behaviour in a much more concise, natural way:

principles of programming languages 61

1 (class Person

2 ; Expression listing all attributes

3 (name age likes-chocolate)

4

5 ; Method

6 [(greet other-person)

7 (string-append "Hello, "

8 (other-person 'name)

9 "! My name is "

10 name

11 ".")]

12

13 ; Another method

14 [(can-vote?) (>= age 18)])

Exercise Break!

2.1 First, carefully review the final implementation of the Point class we gave
above. This first question is meant to reinforce your understanding about
function syntax in Racket. Predict the value of each of the following expres-
sions (many of them are erroneous—make sure you understand why).

1 Point

2 (Point 3 4)

3 (Point 3)

4 (Point 3 4 'x)

5 ((Point 3 4))

6 ((Point 3 4) 'x)

7 ((Point 3 4) 'distance)

8 ((Point 3 4) 'distance (Point 3 10))

9 (((Point 3 4) 'distance) (Point 3 10))

2.2 Take a look at the Person example given above. Even though it is currently
invalid Racket code, its intended semantics should be quite clear. Write a
Person class in the same style as the Point class above. This will ensure
that you understand our approach for creating classes, so that you are well
prepared for the next section.

Pattern-based macros

As we have previously touched on, Racket’s extremely simple syntax—programs
are nested lists—not only makes code easy to parse, but also easy to manipu-
late.8 One neat consequence of this is that Racket has a very powerful macro

8 This is one of the most distinctive
features that all Lisp dialects share.

62 david liu

system, with which developers can quite easily extend the language by adding
new keywords, and even embedding entire domain-specific languages.

We are used to thinking about functions as operating on values: a function is
an entity that takes values as inputs and returns a new value. As the building
blocks of programs, functions are versatile and powerful, and so it is easy to
forget that they have limitations: their syntax and semantics are defined by the
programming language itself, and not the programmer who writes them. For
example, regardless of what function we write in Racket, we know that calling it
will invoke a left-to-right eager evaluation of its arguments, because this is how
the Racket interpreter has been implemented to handle function calls.

On the other hand, a macro is a function that operates on program source code:
a macro takes code as input and returns new code. Many of the features of Inte-
grated Development Environments (IDEs) that we take for granted are macros:
code formatting, identifier renaming, automatic refactoring, getter and setter
generation, etc. But IDEs are themselves software that operate on text files con-
taining source code, so it is perhaps not too surprising that they implement
these features. What is far more interesting, and the topic of this section, is
when programming languages themselves allow the programmer to define their
own macros, just as they can define their own functions. In such languages,
there is an additional step between the parsing of source code and generation of
machine code or runtime evaluation, called macro expansion, in which macros
(both built-in and user-defined) are applied to the abstract syntax tree to gener-
ate a new abstract syntax tree. That is, the AST that is actually used to generate
machine code or to be interpreted is not necessarily the one originally produced
by the parser, and might actually look very different, depending on the macros
applied to it!

This may seem kind of abstract: why might we want to use macros? The main
use of macros we’ll see is to introduce new syntax into a programming language.
In this section, we’ll build up a nifty syntactic construct: the list comprehension.
First, let’s see how list comprehensions work in Haskell:9

9 You may have seen list comprehen-
sions in Python—this was borrowed
liberally from Haskell’s syntax.

1 >>> [x + 2 | x <- [0, 10, -2]]

2 [2,12,0]

The list comprehension consists of three important parts: an output expression,
an identifier, and an input list. Expressed as a grammar rule, we have:

1 <list-comp> = "[" <out-expr> "|" <id> "<-" <list-expr> "]"

Unfortunately, Racket does not have this built-in list comprehension syntax; for-
tunately, its macro system will enable to to implement it ourselves! Here is an
example of the kind of Racket expression that is our goal:10

10 For a technical reason, we have to use
: instead of | in Racket.

principles of programming languages 63

1 > (list-comp (+ x 2) : x <- (list 0 10 -2))

2 '(2 12 0)

Let’s first think about how we might implement the high-level functionality in
Racket, ignoring the syntactic requirements. Recalling your work in the previous
chapter, you might notice that a list comprehension is essentially a map:

1 > (map (lambda (x) (+ x 2)) (list 0 10 -2))

2 '(2 12 0)

Now, we do some pattern-matching to generalize:

1 ; Putting our examples side by side...

2 (list-comp (+ x 2) : x <- (list 0 10 -2))

3 (map (lambda (x) (+ x 2)) '(0 10 -2))

4

5 ; leads to the following generalization.

6 (list-comp <out-expr> : <id> <- <list-expr>)

7 (map (lambda (<id>) <out-expr>) <list-expr>)

This step is actually the most important one, because it tells us (the program-
mers) what syntactic transformation the interpreter will need to perform: every
time it sees a list comprehension, it should transform it into a call to map. It
remains to actually tell the Racket interpreter to do this transformation; we do
this by writing a pattern-based macro:

1 (define-syntax list-comp

2 (syntax-rules (: <-)

3 [(list-comp <out-expr> : <id> <- <list-expr>)

4 (map (lambda (<id>) <out-expr>) <list-expr>)]))

Let’s break that down. The top-level define-syntax is a syntactic form that de-
fines a name binding for a new macro (analogous to define for values). Its first
argument is the name of the macro—in our case, list-comp— and the second
argument is the macro expression. In this course, we’ll stick to pattern-based
macros, which are created using syntax-rules. syntax-rules itself takes two or
more arguments: a list of the literal keywords in the syntax—in our case, : and
<-—followed by one or more syntax pattern rules, which are pairs of expressions,
similar to define/match. In each rule, the first expression is a pattern to match
(starting with list-comp), while the second expression is called a template that
specifies how the new syntax should be generated from parts of the pattern. We
only have one pattern rule right now, but that will change shortly.

64 david liu

With this macro defined, we can now evaluate our Racket list-comp expression:

1 > (list-comp (+ x 2) : x <- (list 0 10 -2))

2 '(2 12 0)

While this might look just like a plain function call, it isn’t! There are two phases
involved to produce the result '(2 12 0):

1. First, the list-comp expression is transformed into a map function call expres-
sion, by applying the syntax pattern rule we defined. This is a code transfor-
mation; you could achieve the same effect by literally typing in (map (lambda

(x) (+ x 2)) (list 0 10 -2)) instead.
2. Second, the map expression is evaluated, using plain old function call seman-

tics.

One way to see the difference between list-comp and a regular function is to
use the syntax in incorrect ways:

1 > (list-comp 1 2 3)

2 list-comp: bad syntax in: (list-comp 1 2 3)

3 > (list-comp (+ x 2) : x <- 10)

4 map: contract violation

5 expected: list?

6 given: 10

7 argument position: 2nd

8 other arguments...:

9 #<procedure>

The first error is a syntax error: Racket is saying that it doesn’t have a syntax
pattern rule that matches the given expression. The second error really demon-
strates that a syntax transformation occurs: (list-comp (+ x 2) : x <- 10)}

might be syntactically valid, but it expands into (map (lambda (x) (+ x 2))

10), which raises the runtime error you see above.

The purpose of literal keywords

Our syntax pattern rule makes use of both pattern variables and literal key-
words. A pattern variable is an identifier that can be bound to an arbitrary
expression when the pattern matches; in this course, we’ll follow a conven-
tion of naming these with enclosing angle brackets, but this is not required by
Racket. During macro expansion, when Racket finds a pattern-match, it binds
the pattern variable to the corresponding expression, and then substitutes this
expression where ever the variable appears in the rule’s template. This is sim-
ilar to function calls, in which argument values are bound to parameter names

principles of programming languages 65

and substituted into the body of a function, but there is a crucial difference: in
macro expansion, expressions aren’t evaluated before they are bound! This should
make intuitive sense as long as you remember that macros are fundamentally
about transforming code, not about evaluation; when we say that an expression
is bound to a pattern variable, we literally mean that entire expression is bound
to the variable, not the value of the expression.

On the other hand, literal keywords are parts of the syntax rule that must appear
literally in the syntax expression. These play the same role as keywords in other
programming languages (e.g., else, : in Python), namely to give structure to
the program syntax.11 If we try to use list-comp without the two keywords,

11 This is less important in Racket than
other languages, because Racket’s
parenthesized nature provides enough
structure already. However, literal
keywords can still promote readability:
contrast (list-comp (+ x 2) : x <-

(list 0 10 -2)) and (list-comp (+ x

2) x (list 0 10 -2)).

we get a syntax error—the Racket interpreter does not recognize the expression,
because it no longer pattern-matches our rule:

1 > (list-comp (+ x 2) 3 x "hi" (list 0 10 -2))

2 list-comp: bad syntax ...

Macros with multiple pattern rules

In Haskell, list comprehensions support optional filtering of the input list:

1 >>> [x + 2 | x <- [0, 10, -2], x >= 0]

2 [2, 12]

To achieve this form of list comprehension in Racket, we simply add an extra
syntax rule to our macro definition, much like we can add an extra pattern rule
to a define/match!12

12 You’ll notice that we cannot use , in
our macro, replacing it instead with the
Python-style if.2 (define-syntax list-comp

3 (syntax-rules (: <-)

4 [(list-comp <out-expr> : <id> ... <- <list-expr>)

5 (map (lambda (<id> ...) <out-expr>) <list-expr>)]))

6

7

8 (define-syntax list-comp-if

9 (syntax-rules (: <- if)

10 ; This is the old pattern rule.

11 [(list-comp-if <out-expr> : <id> <- <list-expr>)

12 (map (lambda (<id>) <out-expr>) <list-expr>)]

13

14 ; This is the new pattern rule.

15 [(list-comp-if <out-expr> : <id> <- <list-expr> if <condition>)

16 (map (lambda (<id>) <out-expr>)

17 (filter (lambda (<id>) <condition>)

18 <list-expr>))]))

66 david liu

With these two rules in place, we now can use both our original and extended
form of list-comp:

1 > (list-comp-if (+ x 2) : x <- (list 0 10 -2))

2 '(2 12 0)

3 > (list-comp-if (+ x 2) : x <- (list 0 10 -2) if (>= x 0))

4 '(2 12)

As with functions defined using pattern-matching in both Racket and Haskell,
macro pattern rules are checked top-to-bottom, with the first match being the
one that is chosen. In this example the rules are mutually exclusive, but in
general it’s certainly possible to define two syntax pattern rules that overlap, so
be careful about this when writing your own macros!

Text-based vs. AST-based macros

If you’ve heard of macros before learning a Lisp-family language, it was prob-
ably from C or C++.13 The C macro system operates on the source text itself,

13 The typesetting language LaTeX also
uses macros extensively.rather than a parsed AST. In the macro example above we noted that we couldn’t

use | or , as literal keywords; this is because they are special characters that af-
fect the parsing of Racket code into an AST, and so have an effect even before the
macro expansion phase. This limitation aside, it is far easier and safer to define
AST-based macros. In this section, we look at two examples of how text-based
C macros can lead to unexpected pitfalls.

First, here is a simple example of a C macro that takes one argument and multi-
plies its argument by 2:

1 #define double(x) 2 * x

When we use this macro on an integer literal or an identifier, things seem to
work fine:

1 #include <stdio.h>

2

3 #define double(x) 2 * x

4

5 int main(void) {

6 int a = 10;

7 printf("%d\n", double(100)); // Correctly prints 200.

8 printf("%d\n", double(a)); // Correctly prints 20.

9 return 0;

10 }

principles of programming languages 67

In each of the above invocations, the source text involving double is replaced:
double(100) by 2 * 100 and double(a) by 2 * a. But consider this usage of the
macro instead:

1 printf("%d\n", double(5 + 5));

Our intuition tells us that again 20 would be printed, but this is not what hap-
pens! To see what goes wrong, we need to understand how the substitution
works in C macros. Like Racket, macros in C do not evaluate their arguments
before substitution; instead, the entire subexpression 5 + 5 is substituted for x

into the body of the macro. The problem arises from the fact that this is a text-
based substitution; since the body of the macro is (in text) 2 * x, the resulting
macro expansion yields 2 * 5 + 5, and so 15 is printed!

In other words, because C macros use text-based substitution, their arguments
are not necessarily preserved as individual subexpressions when put into the
macro body—it depends on how the compiler then parses the resulting text.
In the above example, the precedence rules governing the parsing of arithmetic
expressions caused the 5 + 5 to be split up.

To prevent this, a common rule of thumb when writing C macros is to always
parenthesize macro variables in the macro body:14

14 For a similar reason, another rule of
thumb is to surround the entire macro
body in parentheses when it is a single
expression.

1 #define double(x) 2 * (x)

Because Racket macros operate on abstract syntax trees, this problem is avoided
entirely. When the substitution occurs, the exact expression structure of the
Racket program has already been determined, and macro expansion simply
swaps subexpressions matching a pattern rule with the corresponding template.
The only new subexpressions that appear in the resulting AST are the ones that
were explicitly written in the macro definition, and the macro’s arguments.

Now consider the following macro, which uses a temporary variable to swap
two integers. It seems to work just fine in this small program.

1 #include <stdio.h>

2

3 #define swap(a, b) int temp = a; a = b; b = temp;

4

5 int main(void) {

6 int x = 0, y = 10;

7 swap(x, y)

8 printf("x is now %d, y is now %d\n", x, y);

9 return 0;

10 }

68 david liu

But we run into a problem when trying to compile the following code:

1 #include <stdio.h>

2

3 #define swap(a, b) int temp = a; a = b; b = temp;

4

5 int main(void) {

6 int x = 0, y = 10;

7 swap(x, y)

8 swap(x, y)

9 printf("x is now %d, y is now %d\n", x, y);

10 return 0;

11 }

We get the message error: redefinition of 'temp'; each use of the macro
declares a local variable temp, which is a compilation error. Now, C allows for
local scopes to be introduced through curly braces, and so we can solve this
problem by enclosing the macro body in curly braces:

1 #define swap(a, b) {int temp = a; a = b; b = temp;}

However, another problem emerges: what if one of the variables we wanted to
swap was named temp?

1 #include <stdio.h>

2

3 #define swap(a, b) {int temp = a; a = b; b = temp;}

4

5 int main(void) {

6 int x = 0, temp = 10;

7 swap(x, temp)

8 printf("x is now %d, temp is now %d\n", x, temp);

9 return 0;

10 }

This program compiles successfully, but when run it prints:

1 x is now 0, temp is now 10

The variables weren’t swapped! To see why, we again can look at the literal text
substitution of swap(x, temp):

principles of programming languages 69

1 {int temp = x; x = temp; temp = temp;}

In this case, all references to temp in the macro are for the block-local temp,
not the temp that was initialized to 10 at the top of main. So the local temp is
initialized to the current value of x (0), then x is assigned that value (0), and
then temp is assigned its current value. After the block executes, the values of x
and temp haven’t changed at all.

A third approach is to require declaration of temp before using this macro. This
does work correctly, at the cost of an additional requirement placed on users of
this macro.

1 #include <stdio.h>

2

3 #define swap(a, b) {temp = a; a = b; b = temp;}

4

5 int main(void) {

6 int x = 0, y = 10, temp;

7 swap(x, y);

8 printf("x is now %d, y is now %d\n", x, y);

9 return 0;

10 }

These three examples of swap illustrate the ways in which the body of a C macro
can interact with the scope in which it is used: first, introducing names into the
outer scope; second, by inadvertently shadowing identifiers that are passed as
arguments to the macro; and third, by directly accessing (and mutating) values
from that outer scope. The ability for a C macro to refer to identifiers defined in
an outer scope is known as name capture, and is a common source of error when
writing C macros. The behaviour of these macros depends not just on how
they’re defined, but on where they are used. If this sounds familiar, it should!
Identifiers in C macros obey dynamic scope.

That C macros behave in this ways is a natural consequence of how identifiers
are just substituted as text during macro expansion. Even though we know
that Racket macros are based on AST transformation, it is still plausible for
individual identifiers to be substituted as-is during macro expansion. Let’s try
out a simple example and see what happens.

1 (define-syntax add-temp

2 (syntax-rules ()

3 [(add-temp <x>)

4 (+ <x> temp)]))

70 david liu

It may look like temp is undefined in the body of add-temp, much like temp

was undeclared in the macro body of our third example. The question is, what
happens with:

1 (let* ([temp 10])

2 (add-temp 100))

Using a literal textual substitution of identifiers, after macro expansion this ex-
pression would become

1 (let* ([temp 10])

2 (+ 100 temp))

This is certainly a valid Racket expression, and would evaluate to 110. However,
this is not what happens!

1 > (let* ([temp 10])

2 (add-temp 100))

3 ERROR temp: undefined;

4 cannot reference an identifier before its definition

That is, the temp in the add-temp macro template obeys lexical scope, and cannot
be bound dynamically where the macro is used.

This is true for all Racket macros: free identifiers in the macro obey lexical scope,
meaning they are bound to whatever identifier is in scope where the macro is
originally defined, and cannot accidentally bind names when it is used. Because
this was seen as a massive improvement over the previous dynamically-scoped
macros, early developers of Lisp termed this form of macro hygienic macros.15

15 This behaviour suggests something
interesting about macro expansion
in Racket. It isn’t just that expan-
sion occurs at the level of ASTs; even
individual identifiers are just not substi-
tuted literally during expansion. While
the exact implementation of hygienic
macros are beyond the scope of this
course, a simplified mental model you
can use here is that all local identifiers
in a macro body are renamed during
expansion to guarantee that there are
no collisions with the scope in which
the macro is used.

As a consequence of macro hygiene, identifiers defined within a macro body are
not accessible outside of the macro body—that is, they’re local to the macro—
even when a straight textual substitution would suggest otherwise. For example:

1 (define-syntax defs

2 (syntax-rules ()

3 [(defs)

4 (begin ; We use begin to enclose multiple expressions

5 (define x 1)

6 (define y (+ x 10))

7 ; x and y are both in scope here.

8 (+ x y))]))

9

10 (defs) ; This evaluates to 12

11 x ; This is an error! x and y are not in scope.

principles of programming languages 71

Contrast this behaviour against simply using the begin instead of our defs

macro:

1 ; This still evaluates to 12

2 (begin

3 (define x 1)

4 (define y (+ x 10))

5 (+ x y))

6

7 ; But now x is defined as well! The following evaluates to 1.

8 x

Macro ellipses

It is often the case that we want a macro that can be applied to an arbitrary
number of expressions.16 This poses a challenge when writing macro pattern

16 e.g., and, or, cond
rules, as we can’t write an explicit pattern variable for each expression we expect
to match. Instead, we can use the ellipsis ... in a pattern: <pat> ... matches
zero or more instances of the pattern <pat>, which could be a pattern variable
or a complex pattern itself.17

17 This is analogous to the * operator in
regular expressions, which can match
an arbitrary number of any character
(.*) or a complex pattern (a[0-9]*)*.

Here is one example of using the ellipsis in a recursive macro that implements
cond in terms of if. Recall that branching of “else if” expressions can be rewrit-
ten in terms of nested if expressions:

1 (cond [c1 x1]

2 [c2 x2]

3 [c3 x3]

4 [else y])

5

6 ; as one cond inside an if...

7 (if c1

8 x1

9 (cond [c2 x2]

10 [c3 x3]

11 [else y]))

12

13 ; eventually expanding to...

14 (if c1

15 x1

16 (if c2

17 x2

18 (if c3

19 x3

20 y)))

72 david liu

Here is our macro that achieves this behaviour:

1 (define-syntax my-cond

2 (syntax-rules (else) ; Note that `else` is a literal keyword here

3 [(my-cond) (void)]

4 [(my-cond [else <val>]) <val>]

5 [(my-cond [<test> <val>] <next-pair> ...)

6 (if <test> <val> (my-cond <next-pair> ...))]))

This example actually illustrates two important concepts with Racket’s pattern-
based macros. The first is how this macro defines not just a syntax pattern, but a
nested syntax pattern. The first pattern rule will match the expression (my-cond

[else 5]), but not (my-cond else 5)—parentheses matter.18 The second is the
18 Although note that this rule will also
match (my-cond (else 5)). Racket
treats () and [] as synonymous.

<next-pair> ... part of the second pattern, which binds all arguments after
the first one. For example, here’s a use of the macro, and one step of macro
expansion, which should give you a sense of how this recursive macro works:

1 (my-cond [c1 x1]

2 [c2 x2]

3 [c3 x3]

4 [else y]))

5

6 ; <test> is bound to c1, <val> is bound to x1,

7 ; and <next-pair> ... is bound to ALL of

8 ; [c2 x2] [c3 x3] [else y]

9 (if c1

10 x1

11 (my-cond [c2 x2] [c3 x3] [else y]))

Warning: don’t think of the ellipsis as a separate entity, but instead as a modifier
for <next-pair>. We say that the ellipsis is “bound” to <next-pair>, and must
appear together with <next-pair> in the rule’s template.19 A beginner mistake

19 The binding goes both ways:
<next-pair> can’t appear without
the ellipsis, either.

is to try to treat the ellipsis as an identifier in its own right, bound to the “rest”
of the arguments:

1 (define-syntax my-cond-bad

2 (syntax-rules (else)

3 [(my-cond-bad [else <val>]) <val>]

4 [(my-cond-bad [<test> <val>] ...)

5 ; This would make sense if ... was a variable representing the

6 ; remaining arguments, but it isn't.

7 ; Instead, the rule below is a syntax error; the ... cannot be

8 ; used independently of the pattern it's bound to.

9 (if <test> <val> (my-cond-bad ...))]))

principles of programming languages 73

To summarize, a pattern variable that is modified with an ellipsis is no longer
bound to an individual expression, but instead to the entire sequence of expres-
sions. We’ll see how to make powerful use of this sequence in the next section.

Exercise Break!

2.3 Explain how a macro is different from a function. Explain how it is similar to
a function.

2.4 Below, we define a macro, and then use it in a few expressions. Write the
resulting expressions after the macros are expanded. Note: do not evaluate
any of the resulting expressions! This question is a good check to make sure
you understand the difference between the macro expansion and evaluation
phases of the Racket interpreter.

1 (define-syntax my-mac

2 (syntax-rules ()

3 [(my-mac x) (list x x)]))

4

5 (my-mac 3)

6 (my-mac (+ 4 2))

7 (my-mac (my-mac 1000))

2.5 Write macros to implement and and or in terms of if. Note that both syntactic
forms take an arbitrary number of arguments.

2.6 Why could we not accomplish the task in the previous question with func-
tions?

2.7 Consult the official Haskell documentation on list comprehensions. One ad-
ditional feature we did not cover is list comprehensions on multiple variables.

Modify our existing list-comp macro to handle this case. Hint: first convert
the above expression into a list comprehension within a list comprehension,
and use apply append.

2.8 Add support for ifs in list comprehensions with multiple variables. Are there
any syntactic issues you need to think through?

74 david liu

Objects revisited

Now that we have seen how to define Racket macros, let’s return to our basic
implementation of objects and classes. To start, here is an abbreviated Point

class with only the two attributes and no methods.

1 (define (Point x y)

2 (lambda (msg)

3 (cond [(equal? msg 'x) x]

4 [(equal? msg 'y) y]

5 [else "Unrecognized message!"])))

The goal now is to abstract away the details of defining a constructor function
and the message handling to enable easy declaration of new classes. Because
we are interested in defining new identifiers for class constructors, our previous
tool for abstraction, functions, is insufficient for this task.20 Instead, we turn to

20 Why?
macros to introduce a new syntactic form into the language, my-class:

1 ; This expression should expand into the definition above.

2 (my-class Point

3 (x y))

Performing the same pattern-matching procedure as we did for list-comp, we
can see how we might write a skeleton of the macro (accepting not just two but
an arbitrary number of attribute names).

1 (define-syntax my-class

2 (syntax-rules ()

3 [(my-class <class-name> (<attr> ...))

4 (define (<class-name> <attr> ...)

5 (lambda (msg)

6 (cond ???

7 [else "Unrecognized message!"])))]))

Unfortunately, this macro is incomplete; without the ???, it would generate the
following code:

1 (my-class Point (x y))

2 ; => (macro expansion)

3 (define (Point x y)

4 (lambda (msg)

5 (cond [else "Unrecognized message!"])))

principles of programming languages 75

What’s missing, of course, are the other expressions in the cond that match mes-
sages corresponding to the attribute names. Let’s consider the first attribute x.
For this attribute, we want to generate the code

1 [(equal? msg 'x) x]

Now, to do this we need some way of converting an identifier into a symbol,
which we can do using the syntactic form quote:

1 [(equal? msg (quote x) x)]

For (my-class Point (x y)), we actually want this expression to appear for
both x and y:

1 [(equal? msg (quote x) x)]

2 [(equal? msg (quote y) y)]

So the question is how to generate one of these expressions for each of the at-
tributes bound to <attr> ...; that is, repeat the above pattern an arbitrary num-
ber of times, depending on the number of attributes. It turns out that macro
ellipses support precisely this behaviour:21

21 I hope you’re suitably impressed. I
know I am.

1 (define-syntax my-class

2 (syntax-rules ()

3 [(my-class <class-name> (<attr> ...))

4 (define (<class-name> <attr> ...)

5 (lambda (msg)

6 (cond [(equal? msg (quote <attr>)) <attr>]

7 ; Repeat the previous expression once per expression

8 ; in <attr> ..., replacing just occurrences of <attr>

9 ...

10 [else "Unrecognized message!"])))]))

Adding methods

Now, let us augment our macro to allow method definitions. Even though we
previously made a stink about methods just being any other type of attribute,
there is one important difference: it isn’t enough to provide just the name of the
method in the class definition; we need to provide the method body as well. We
will use the following syntax, mimicking Racket’s own macro pattern-matching
syntax:

76 david liu

1 (my-class <class-name> (<attr> ...)

2 (method (<method-name> <param> ...) <body>) ...)

Once again, the easiest way to write the pattern-based macro is to create an
instance of both the syntactic form we want to write, and the expression we
want to expand it into. To use our ongoing point example:

1 ; What we want to write:

2 (my-class Point (x y)

3 (method (distance other-point)

4 (let* ([dx (- x (other-point 'x))]

5 [dy (- y (other-point 'y))])

6 (sqrt (+ (* dx dx) (* dy dy))))))

7

8 ; What we want it to expand into:

9 (define (Point x y)

10 (lambda (msg)

11 (cond [(equal? msg 'x) x]

12 [(equal? msg 'y) y]

13 [(equal? msg 'distance)

14 (lambda (other-point)

15 (let* ([dx (- x (other-point 'x))]

16 [dy (- y (other-point 'y))])

17 (sqrt (+ (* dx dx) (* dy dy)))))])))

After carefully examining these two expressions, the pieces just fall into place:22

22 This showcases the use of nested
ellipses in a pattern expression. Holy
cow, that rocks! Racket’s insistence in
always pairing an ellipsis with a named
identifier and strict use of parentheses
really help distinguish the ellipsis
pairings.

1 (define-syntax my-class

2 (syntax-rules (method)

3 [(my-class <class-name>

4 ; This ellipsis is paired with <attr>

5 (<attr> ...)

6 ; This ellipsis is paired with <param>

7 (method (<method-name> <param> ...) <body>)

8 ; This ellipsis is paired with the whole previous pattern

9 ...)

10 (define (<class-name> <attr> ...)

11 (lambda (msg)

12 (cond [(equal? msg (quote <attr>)) <attr>]

13 ...

14 [(equal? msg (quote <method-name>))

15 (lambda (<param> ...) <body>)]

16 ...

17 [else "Unrecognized message!"])))]))

principles of programming languages 77

The object __dict__

You might notice that the repeated (equal? msg <symbol>) clauses of the cond

implement a (slow!) dictionary lookup, where the name of an attribute is keyed
to its value for that object. Indeed, in Python every object has a special attribute
__dict__ that refers precisely to its dictionary of attributes (but not methods—
more on this later):

1 class A:

2 def __init__(self, x):

3 self.x = x

4 self.y = 10

5 self.z = 'hello!'

6

7 >>> a = A(True)

8 >>> a.__dict__

9 {'x': True, 'y': 10, 'z': 'hello!'}

We can improve the performance of our my-class macro by using a built-in
hashing data structure in Racket to store our attributes and methods.

3 (define-syntax my-class

4 (syntax-rules (method)

5 [(my-class <class-name> (<attr> ...)

6 (method (<method-name> <param> ...) <body>) ...)

7

8 (define (<class-name> <attr> ...)

9 (lambda (msg)

10 (let* ([__dict__ ; Use the same name as Python

11 (make-immutable-hash

12 (list (cons (quote <attr>) <attr>)

13 ...

14 (cons (quote <method-name>)

15 (lambda (<param> ...) <body>))

16 ...

17))])

18

19 ; Look up the given attribute in the object's dictionary.

20 (hash-ref __dict__ msg

21 ; Raise an error if attribute not found.

22 (attribute-error (quote <class-name>) msg)))))]))

23

24 ; Return a thunk that raises an attribute error (with an appropriate message).

25 (define (attribute-error object attr)

26 (lambda () (error (format "~a has no attribute ~a." object attr))))

78 david liu

Exercise Break!

2.9 Modify the __dict__-based class implementation to enable accessing the __dict__

value from outside the object, as we can in Python. For example:

1 > (define p (Point 2 3))

2 > (p '__dict__)

3 '#hash((x . 2) (y . 3))

Note that in Python, the __dict__ attribute itself doesn’t appear in the object’s
dictionary. Can you achieve the same effect in Racket?

The problem of self

So far, our implementation of classes may seem to work, but it has one major de-
ficiency: we cannot explicitly reference the calling object in a method. Consider
the following example in Python:

1 class Point:

2 def __init__(self, x, y):

3 self.x = x

4 self.y = y

5

6 def size(self):

7 return math.sqrt(self.x ** 2 + self.y ** 2)

8

9 def same_radius(self, other):

10 return self.size() == other.size()

Our current implementation has no trouble implementing the initializer method
__init__ (it does this automatically), and it can handle simple attribute access
of x and y because those identifiers would be bound in the closure returned by
our class constructor. However, self.same_radius() poses a problem:

1 (my-class Point (x y)

2 (method (size) (sqrt (+ (* x x) (* y y))))

3 (method (same-radius other)

4 (equal? ??? ((other 'size)))))

principles of programming languages 79

Unlike x and y, there is no size identifier in scope in the closure: instead, 'size is
a key in the dictionary, but we have no way to automatically convert it! Perhaps
the most direct way of solving this problem is to modify our macro to introduce
identifiers for each method as well, making them exactly parallel to the “data”
attributes that are the constructor parameters:23

23 This models the notion of an implicit
this in, e.g., Java.

1 (method (same-radius other)

2 (equal? (size) (other 'size)))

However, this has the drawback that we still wouldn’t have a way of referencing
self, e.g., to pass the calling object to a completely different function. So instead,
we’ll look at an approach to make self an accessible identifier, referencing the
calling object:

1 (method (same-radius other)

2 (equal? ((self 'size)) ((other 'size))))

Pythonic inspiration

To guide our design and implementation, let’s first review how self works in
Python. You are already familiar with the most visible part: self is an explicit
parameter written in every instance method of the class!24 In fact, if we adopt

24 In fact, the name self is just a con-
vention: technically, Python interprets
the first parameter as the one that is
bound to the calling object, whatever
the parameter name actually is.

this convention then we can write the following Racket code without making
any changes to our macro at all:

1 (my-class Point (x y)

2 (method (size self) (sqrt (+ (* (self 'x) (self 'x))

3 (* (self 'y) (self 'y)))))

4 (method (same-radius self other)

5 (equal? ((self 'size) self) ((other 'size) other))))

Look at that last line carefully—what’s going on there? Our goal is for (self

'size) to return a function that takes no arguments, so that we can just call it (by
enclosing it in parentheses). However, what we have here is that (self 'size)

returns a function that takes a single argument, self, and so we need to pass
that argument. The same is true when we call (other 'size), too. Of course,
this is very redundant: since we’re calling (self 'size) already, we know what
the calling object is, and shouldn’t need to pass it in again!

This is solved in Python: an instance method call self.size() automatically
binds the value to the left of the period, self, to the first parameter of the
size method; the arguments in the parentheses get bound to the remaining

80 david liu

method parameters. So how do we modify our macro to add this “automatic
self binding.”? We again turn to Python.

Recall that in our initial look at Python __dict__ values we noted that an object’s
__dict__ only stored its data attributes, and not its methods. It turns out that
this is because methods are stored in the __dict__ of the class itself :

1 >>> Point.__dict__

2 # something that's a wrapper around a dictionary

3 >>> Point.__dict__['size']

4 <function Point.size at 0x04986300>

5 >>> Point.__dict__['same_radius']

6 <function Point.same_radius at 0x04986228>

This gives us a path towards an implementation of methods in our Racket macro:

1. Store methods in a separate class-level dictionary shared among all instances.
2. When methods are looked up in this dictionary, don’t just return the method

as-is; instead, bind the first parameter of the method to the calling object, and
return that new method!25

25 Put another way, we partially apply the
method on the first argument.

Here’s an implementation of (1), showing only the macro template:

1 (begin

2 ; This is a dictionary of the methods associated with a class.

3 (define class__dict__

4 (make-immutable-hash (list

5 (cons (quote <method-name>)

6 (lambda (<params> ...) <body>))

7 ...)))

8 (define (<class-name> <attr> ...)

9 (let*
10 ([self__dict__

11 ; The object's __dict__ now only stores non-function

12 ; attributes. Methods are looked up in class__dict__.

13 (make-immutable-hash

14 (list (cons (quote <attr>) <attr>) ...))])

15 (lambda (attr)

16 (cond

17 ; Note the lookup order (first object, then class).

18 ; This is the same as Python.

19 [(hash-has-key? self__dict__ attr)

20 (hash-ref self__dict__ attr)]

21 [(hash-has-key? class__dict__ attr)

22 (hash-ref class__dict__ attr)]

23 [else (attribute-error (quote <class-name>) msg)])))))

principles of programming languages 81

This is a little longer, but conceptually the only thing we’ve done is taken our
original object dictionary and split it in to two, putting the data attributes in one
and the methods in the other. (Unfortunately, our methods can’t access instance
variables anymore, because methods are no longer in the lambda (<params>

...) closure. We’ll fix that in our next iteration.)

However, this alone doesn’t solve (2). First, we introduce the function fix-first,26

26 We leave the implementation of this
function as an exercise.which is a higher-order function that takes a function f that takes n + 1 argu-

ments, and a value x, and returns a function g that takes n arguments, such that
g(x1, x2, ..., xn) is equivalent to f(x, x1, x2, ... xn). So then in the sec-
ond branch of the cond, we can do (fix-first ??? (hash-ref class_dict__

attr)). But what goes in the ???? We need a way to refer to the object itself—
and remember that the “object” is the entire lambda expression itself. In other
words, this expression needs to be recursive; we can do this by using letrec:

6 (define-syntax my-class

7 (syntax-rules (method)

8 [(my-class <class-name> (<attr> ...)

9 (method (<method-name> <params> ...) <body>) ...)

10

11 (begin

12 ; This is a dictionary of the methods associated with a class.

13 (define class__dict__

14 (make-immutable-hash (list

15 (cons (quote <method-name>)

16 (lambda (<params> ...) <body>))

17 ...)))

18 (define (<class-name> <attr> ...)

19 ; We use letrec to give a name to the object we're returning.

20 ; This is so that we can bind the object to the 'self'

21 ; parameter in the call to fix-first.

22 (letrec

23 ([self__dict__

24 ; The object's __dict__ now only stores non-function

25 ; attributes. Methods are looked up in class__dict__.

26 (make-immutable-hash

27 (list (cons (quote <attr>) <attr>) ...))]

28 [me (lambda (attr)

29 (cond

30 [(hash-has-key? self__dict__ attr)

31 (hash-ref self__dict__ attr)]

32 [(hash-has-key? class__dict__ attr)

33 (fix-first me (hash-ref class__dict__ attr))]

34 [else

35 ((attribute-error (quote <class-name>) attr))]))])

36 ; Return the lambda representing the object.

37 me)))]))

82 david liu

The power of chained lookups

In the previous section, we used the idea of a lookup chain to separate instance
attributes and methods. The idea of using multiple dictionaries to store dif-
ferent kinds of “attributes” is a versatile technique, and is commonly used in
interpreters to implement different forms of inheritance. In Python, for exam-
ple, since each class has its own __dict__, it is straightforward to implement
method inheritance simply by inspecting the sequence of superclasses until the
method is found.27

27 This works even though Python
supports multiple inheritance; the built-
in mro function, standing for method
resolution order, returns a sequence of
the superclasses in the order they are
checked for a given method.

JavaScript dispenses with the notion of separate “classes”, and instead supports
a chain of objects directly. In this language, almost every object keeps a reference
to another object, called its prototype. When an attribute is accessed on an object,
the object’s own “dictionary” is checked first; if the attribute isn’t found, the
object’s prototype is checked, and then the object’s prototype’s prototype, and
so on until the root “base object” (with no prototype) is reached. This form
of inheritance is known as prototypal inheritance, distinguishing it from the class-
based inheritance of Python and other languages. But fundamentally, both class-
based and prototypal inheritance can be thought of as variations of the same idea
of chained lookups!

Exercise Break!

Each of these exercises involves extending our basic class macro in interesting
ways. Be warned that these are more challenging than the usual exercises.

2.10 Modify the my-class macro to add support for private attributes.

2.11 Modify the my-class macro to add support for some form of inheritance, as
described in the previous section.

principles of programming languages 83

Manipulating control flow I: streams

In the first half of this chapter, we saw how to use macros to introduce new
syntactic forms to reduce boilerplate code and create name bindings for classes.
Hopefully this gave you a taste of the flexibility and power of macros: by chang-
ing the very syntax of our core language, we enable new paradigms, and hence
new idioms and techniques for crafting software. Now, we’ll start to look more
explicitly at another common usage of macros: manipulating control flow to
circumvent the eager evaluation of function calls in Racket.

Our first foray into this area will be to implement streams, a “lazy” analogue of
the familiar list data type. First, recall the recursive definition of a list:

• A list is either empty, or
• A value “cons’d” with another list.

In Racket, cons is a function, and so all lists built up using cons are eagerly eval-
uated: all list elements are evaluated when the list is constructed.28 However,

28 The same is true of the Racket built-in
list, as it too is a function.this is often not necessary: when we traverse a list, we often only care about

accessing one element at a time, and do not need the other elements to have
been evaluated at this point. This motivates our implementation of a stream in
Racket, which follows the following recursive definition:

• A stream is either empty, or
• A thunk wrapping a value “cons’d” with a thunk wrapping another stream.

As we discussed in the previous chapter, the thunks here are used to delay
the evaluation of the elements of the stream until it is called. While we could
implement this stream version of cons by explicitly passing thunks into the built-
in cons, we again use macros to reduce some boilerplate:

13 ; Empty stream value, and check for empty stream.

14 (define s-null 's-null)

15 (define (s-null? stream) (equal? stream s-null))

16

17 #|

18 (s-cons <first> <rest>) -> stream?

19 <first>: any/c?

20 <rest>: stream?

21 E.g., s-null or another s-cons expression).

22

23 Creates a stream whose first value is <first>, and whose other

24 items are the ones in <rest>. Unlike a regular list, both <first>

25 and <rest> are wrapped in a thunks, delaying their evaluation.

26

27 Note: s-cons is a MACRO, not a function!

28 |#

29 (define-syntax s-cons

84 david liu

30 (syntax-rules ()

31 [(s-cons <first> <rest>)

32 (cons (thunk <first>) (thunk <rest>))]))

33

34 ; These two define the stream-equivalents of "first" and "rest".

35 ; We need to use `car` and `cdr` here for a technical reason that

36 ; isn't important for this course.

37 (define (s-first stream) ((car stream)))

38 (define (s-rest stream) ((cdr stream)))

39

40

41 #|

42 (make-stream <expr> ...) -> stream?

43 <expr> ... : any/c?

44

45 Returns a stream containing the given values.

46 Note that this is also a macro. (why?)

47 |#

48 (define-syntax make-stream

49 (syntax-rules ()

50 [(make-stream) s-null]

51 [(make-stream <first> <rest> ...)

52 (s-cons <first> (make-stream <rest> ...))]))

The beauty of this macro-based stream implementation is that its public interface
is identical to built-in lists:

1 > (define s1 (s-cons 3 (s-cons 4 (s-cons 5 s-null))))

2 > (s-first s1)

3 3

4 > (s-first (s-rest s1))

5 4

6 > (s-first (s-rest (s-rest s1)))

7 5

8 > (s-null? (s-rest (s-rest (s-rest s1))))

9 #t

The difference, of course, is in the creation of these streams:

1 > (define items1 (list 1 2 (error "error")))

2 ERROR error

3 > (define items2 (make-stream 1 2 (error "error")))

4 > (s-first items2)

5 1

principles of programming languages 85

Lazy lists in Haskell

It’s been a while since we worked with Haskell, but it’s worth pointing out that
Haskell uses lazy evaluation for all of its function calls, and so the cons operation
(:) is already lazy. This means that in Haskell, the list data type we’ve been
using all along are already streams:

1 > x = [1, 2, error "error"]

2 > head x

3 1

Infinite streams

In this section, we’ll take a brief look at one of the mind-bending consequences
of using streams to delay evaluation of the elements in a sequence: constructing
and manipulating infinite sequences. While we could do this in Racket, we’ll use
Haskell’s built-in list data types to underscore the fact that Haskell’s lists really
are streams.

Here are some simple examples.

1 myRepeat x = x : myRepeat x

2

3 > take 3 (myRepeat 6)

4 [6,6,6]

5

6 nats = 0 : map (+1) nats

7

8 > take nats 5

9 [0,1,2,3,4]

What’s going on with that wild nats definition? How does take nats 5 work?
To understand what’s going on, let’s look at a simpler example: head nats. Let’s
carefully trace it using the central mechanic of pure functional programming:
substitution.

1. In Haskell, head is defined through pattern-matching as head (x:_) = x.
2. nats is defined as 0 : map (+1) nats. When we pattern-match nats against

the definition for head, we get x = 0, and 0 is returned. Note that head com-
pletely ignores the rest of the list, and so we don’t need to look at the recursive
part at all!

86 david liu

Now something a bit more complicated: head (tail nats). Again, let’s substi-
tute, keeping in mind the definition for tail, tail (_:xs) = xs.

1 head (tail nats)

2 -- We can't call `head` until we can pattern-match on (x:_).

3 -- To do this, we'll need to expand `(tail nats)` a bit.

4 head (tail (0 : map (+1) nats))

5 -- We can evaluate the inner part using pattern-matching on the

6 -- implementation of tail:

7 -- tail (_:xs) = xs

8 head (map (+1) nats)

9 -- Now we need the following definition of map:

10 -- map _ [] = []

11 -- map f (x:xs) = (f x) : (map f xs)

12 -- In order to pattern-match, we need to expand nats again.

13 head (map (+1) (0 : map (+1) nats))

14 -- This allows us to pattern-match: x = 0, and xs = map plus1 nats.

15 -- We do the substitution into the second rule, but remember:

16 -- we aren't evaluating the inner expressions!

17 head (((+1) 0) : (map (+1) (map (+1) nats)))

18 -- At this point, we can *finally* pattern-match against `head`.

19 -- As before, we get to discard the complex "tail" of the argument.

20 (+1) 0

21 -- Finally, we evaluate ((+1) 0) directly to display the result.

22 1

So the first two elements of nats are 0 and 1. The expansion we did suggests
what would happen if we access further elements. The part that we discarded,
(map plus1 (map plus1 nats)), adds one, twice. In subsequent recursive ex-
pansions of nats, the map plus1 function calls accumulate, leading to larger and
larger numbers.

Since all of the common higher-order list functions work recursively, they apply
equally well to infinite lists:

1 squares = map (\x -> x * x) nats

2 evens = filter (\x -> x `mod` 2 == 0) nats

3

4 > take 4 squares

5 [0,1,4,9]

We’ll wrap up with a cute example of the Fibonacci numbers.29

29 Exercise: how does this work?

1 fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

principles of programming languages 87

Exercise Break!

2.12 Define an infinite list containing all negative numbers. Then, define an infinite
list ints containing all integers such that elem x ints halts whenever x is an
integer.

2.13 Define an infinite list containing all rational numbers.

2.14 (Joke) Define an infinite list containing all real numbers.30

30 Bonus: why is this funny?

2.15 Look up Pascal’s Triangle. Represent this structure in Haskell.

2.16 Repeat your work in the Infinite streams section using the stream interface we
developed in Racket (i.e., s-cons, make-stream, etc.).

Manipulating control flow II: the ambiguous operator -<

In the previous section, we looked at a rather simple application of macros to
create an implementation of streams, a lazy data structure used to decouple the
creation of data from the consumption of that data. For the remainder of this
chapter, we’ll explore this idea in a different context, one in which the data
we create is specified by expressions using non-deterministic choice, and the con-
sumption of that data is exposed explicitly through an impure function next.
Our implementation of such expressions will introduce one new technical con-
cept in programming language theory: the continuation, a representation of the
control flow at a given point in the execution of a program.

Defining -< and next

Because you may not be familiar with this language feature, we will describe
the functionality of the two relevant expressions before discussing their imple-
mentation. The main one is a macro called -< (pronounced “amb”, short for
“ambiguous”),31 and it behaves as follows:

31 This name was coined by John Mc-
Carthy, inventor of Lisp!

• -< takes an arbitrary positive number of argument subexpressions, represent-
ing the possible choices for the whole -< expression.

• If there is at least one argument, -< evaluates and returns the value of the first
argument.

• In addition, if there is more than one argument, -< stores a “choice point” that
(somehow) contains the remaining arguments so that they can be accessed,
one at a time, by calling a separate function next!.

• Once all of the arguments have been evaluated, subsequent calls to next!

return a special constant DONE.

Note that here we’re describing the denotational semantics of -< and next!, but
not their operational semantics! That is, before we get to any implementation at

88 david liu

all, we want you to understand the expected behaviour of these two forms. Here
is an example of how we would like to use them in tandem:

1 > (-< 1 2 (+ 3 4)) ; The expression first evaluates to 1.

2 1

3 > (next!) ; Calls to (next!) evaluate and return the other "choices".

4 2

5 > (next!)

6 7

7 > (next!) ; Here our constant DONE is represented as a symbol 'done.

8 'done

-< as a self-modifying stream

To get started, let’s write a skeleton definition for both -< and next!. Our
inspiration—which might be yours too, based on the previous example—is a
self-modifying stream: a sequence of values that is accessed one at a time using
next!, but that actually uses mutation to keep track of which item is next.

The high-level description of our implementation is the following: we’ll use
a private “stream-like” variable choices that is initialized by calling -< and is
accessed and mutated by calling next!:

23 (define choices (void))

24 (define (set-choices! val) (set! choices val))

25

26 ; A constant representing the state of having "no more choices".

27 (define DONE 'done)

28

29 (define-syntax -<

30 (syntax-rules ()

31 ; Given one option, reset `choices` and return the option.

32 [(-< <expr1>)

33 (begin

34 (set-choices! (void))

35 <expr1>)]

36

37 ; If there are two or more values, return the first one and

38 ; store the others in a thunk.

39 [(-< <expr1> <expr2> ...)

40 (begin

41 ; 1. Update `choices` to store a *thunk* that wraps the

42 ; remaining expressions. None of them are evaluated.

43 (set-choices! (thunk (-< <expr2> ...)))

44

45 ; 2. Evaluate and return the first expression.

46 <expr1>)]))

principles of programming languages 89

47

48

49 #|

50 (next!) -> any/c?

51

52 Returns the next choice, or DONE if there are no more choices.

53 |#

54 (define (next!)

55 (if (void? choices)

56 DONE

57 (choices)))

Because we are (for the first time!) using mutation in our approach, our code
looks a little different than all of the code we’ve written so far. In particular, we
use the set! syntactic form to bind a new value to an existing name (wrapped
in the helper set-choices!), and begin to enclose a sequence of expressions,
evaluating each in turn and returning the value of the final one.32

32 In a pure functional approach, it
doesn’t make sense to evaluate a
sequence of expressions but only return
the last one, because all the previous
expressions can do nothing but return
a value. But now with the introduction
of set!, previous expressions can have
a side-effecting behaviour like variable
reassignment. This is also why we use
an exclamation mark at the end of the
function name next!.

We can verify that our macro works as intended on the example above:

1 > (-< 1 2 (+ 3 4))

2 1

3 > (next!)

4 2

5 > (next!)

6 7

7 > (next!)

8 'done

What’s happening is the initial call to -< is returning the first argument (1) and
storing the other expressions in a “stream” in choices. Calling next! is like
calling s-first on the “stream” to return the first value, but because of the
-< macro, this also has the effect of replacing choices with something akin to
(s-rest choices); i.e., permanently consuming the first element so that only
the rest of the stream remains.

One particularly nice feature of this implementation is that because the set-choices!
expression is evaluated before <expr1> in the macro template, choices will up-
date even if the next expression raises an error:

1 > (-< 1 2 (/ 1 0) 4)

2 1

3 > (next!)

4 2

5 > (next!)

6 ERROR /: division by zero

90 david liu

7 > (next!)

8 4

This implementation is more complicated than it needs to be, if this were the
limit of what we wanted to achieve. But we aren’t done yet! While this imple-
mentation is able to store the other choices, that’s all it saves.

1 > (+ 3 (-< 1 2 (+ 3 4)))

2 4

3 > (next!)

4 2

5 > (next!)

6 7

When the first expression is evaluated, (-< 1 2) returns 1 to the outer expres-
sion, which is why the output is 4. However, our implementation sets next! to
(thunk (-< 2 (+ 3 4))), and so when it is called, it simply returns 2.

In other words, even though the remaining choices in the choice expression are
saved, the computational context33 in which the expression occurs is not. To fix

33 In the previous example, the “+ 3” is
the computational context.this problem, we’ll need some way of saving this computational context—and

this brings us to the realm of continuations.

Continuations

In our studies to date, we have largely been passive participants in the opera-
tional semantics of our languages, subject to the evaluation orders of function
calls and special syntactic forms. Even with macros, which do allow us to ma-
nipulate evaluation order, we have done so only by rewriting expressions into
a fixed set of built-in macros and function calls. However, Racket has a data
structure to directly represent (and hence manipulate) control flow from within
a program: the continuation. Consider the following simple expression:

1 (+ (* 3 4) (first (list 1 2 3)))

By now, you should have a very clear sense of how this expression is evaluated,
and in particular the order in which the subexpressions are evaluated.34 For each

34 For example, the fact that (* 3 4)

is evaluated before the name first is
looked up in the global environment.

subexpression s, we define its continuation to be a representation of what re-
mains to be evaluated after s itself has been evaluated. Put another way, the
continuation of s is a representation of the control flow from immediately after s
has been evaluated, up to the final evaluation of the enclosing top-level expres-
sion (or enclosing continuation delimiter, a topic we’ll explore later this chap-
ter). For example, the continuation of the subexpression (* 3 4) is, in English,
“evaluate (first (list 1 2 3)) and then add it to the result.” We represent

principles of programming languages 91

this symbolically using an underscore to represent the “hole” in the remaining
expression: (+ _ (first (list 1 2 3))).35 While it might seem like we can

35 We can also represent the continua-
tion as a unary function (lambda (x)

(+ x (first (list 1 2 3)))).
determine continuations simply by literally replacing a subexpression with an
underscore, this isn’t exactly true. The continuation of the subexpression (first

(list 1 2 3)) is (+ 12 _); because of left-to-right evaluation order in function
calls, the (* 3 4) is evaluated before the call to first, and so the continuation of
the latter call is simply “add 12 to the result.”

Since both identifiers and literal values are themselves expressions, they too
have continuations. The continuation of 4 in the above expression is (+ (* 3
) (first (list 1 2 3))), and the continuation of first is (+ 12 ((list 1

2 3))). Finally, the continuation of the whole expression (+ (* 3 4) (first

(list 1 2 3))) is simply “return the value,” which we represent simply as _.

Warning: students often think that an expression’s continuation includes the
evaluation of the expression itself, which is incorrect—an expression’s continua-
tion represents only the control flow after its evaluation. This is why we replace
the expression with an underscore in the above representation! An easy way
to remember this is that an expression’s continuation doesn’t depend on the
expression itself, but rather the expression’s position in the larger program.

shift: reifying continuations

So far, continuations sound like a rather abstract representation of control flow.
What’s quite spectacular about Racket is that it it provides ways to access con-
tinuations during the executaion of a program. We say that Racket reifies contin-
uations, meaning it exposes continuations as values that a program can access
and manipulate as easily as numbers and lists. We as humans can read a whole
expression and determine the continuations for each of its subexpressions (like
we did in the previous section). How can we write a program that does this kind
of meta-analysis for us?

Though it turns out to be quite possible to implement reified continuations
purely in terms of functions, this is beyond the scope of the course.36 Instead,

36 Those interested should look up
continuation-passing style.we will use Racket’s syntactic form shift to capture continuations for us.

Note: shift is imported from racket/control; include (require racket/control)

for all code examples in this section.

Here is the relevant syntax pattern:

1 (shift <id> <body> ...)

A shift expression has the following semantics:

1. The current continuation of the shift expression is bound to <id>. By con-
vention, we often use k for the <id>.

2. The <body> ... is evaluated (with <id> in scope).

92 david liu

3. The current continuation is discarded, and the value returned is simply the
value of the last expression in <body>

The first two points are pretty straightforward (the binding of the name and
evaluation of an expression); the third point is the most surprising, as it causes
the value of the shift expression to “escape” any enclosing expressions.37 Let’s

37 This is similar to using a return deep
inside a function body, or raise/throw
for exceptions.

start just by illustrating the second and third points, without worrying about the
continuation binding.

1 > (shift k (+ 4 5)) ; The shift's body is evaluated and returned.

2 9

3 > (* 100 (shift k (+ 4 5))) ; The shift's continuation, (* 100 _), is discarded!

4 9

Now let’s return to point 1 above; the identifier k is bound to the shift expres-
sions continuation. In the first example, this was simply the identity continua-
tion (“return the value”), and in the second example, this was the continuation
(* 100 _). Of course, just binding the continuation to the name k is not very
useful. Moreover, k is local to the shift expression, so we cannot refer to it after
the expression has been evaluated. We’ll use mutation to save the stored contin-
uation.38 Note that as in the previous section, shift can take multiple <body>

38 You might have some fun thinking
about how to approach this and the
rest of the chapter without using any
mutation.

expressions, evaluating each one and returning the value of the last one.

1 > (define saved-cont (void))

2 > (* 100

3 (shift k

4 ; Store the bound continuation in the global variable.

5 (set! saved-cont k)

6 ; Evaluate and return this last expression.

7 (+ 4 5)))

8 9

As expected, when we evaluate the expression, the (* 100 _) is discarded, and
the (+ 4 5) is evaluated and returns. But now we have a global variable storing
the bound continuation—let’s check it out.

1 > saved-cont

2 #<procedure>

Racket stored the continuation (* 100 _) as the unary function (lambda (x) (*
100 x))—and we can now call it, just as we would any other function.

1 > (saved-cont 9)

2 900

principles of programming languages 93

Pretty cool! But it seems like shift did something we didn’t want: discard the
current continuation. It would be great if we could both store the continuation
for future use, but also not interrupt the regular control flow, so that shift be-
haves like other kinds of Racket expressions. This turns out to be quite straight-
foward, once we remember that we have access to the current continuation right
in the body of the shift!

1 > (* 100

2 (shift k

3 ; Store the bound continuation in the global variable.

4 (set! saved-cont k)

5 ; Call the current continuation k on the desired argument.

6 (k (+ 4 5))))

7 900

Using continuations in -<

Recall that our motivation for learning about continuations was that our current
-< macro implementation stored the choices, but not the computational context
around each choice. We now have a name for that computational context: it’s
just the continuation of the -< expression! Let’s see how to improve our macro
using shift. Here’s a first attempt, replacing the begin with a shift:

1 (define-syntax -<

2 (syntax-rules ()

3 [(-< <expr1>)

4 (begin

5 (set-choices! (void))

6 <expr1>)]

7

8 [(-< <expr1> <expr2> ...)

9 ; k is bound to the continuation of the (-< ...) expression

10 (shift k

11 (set-choices! (thunk (-< <expr2> ...)))

12 (k <expr1>))]))

For example, in the expression (+ 1 (-< 1 2 3)), k would be bound to (+ 1
_).

Of course, our macro is incomplete, as it doesn’t actually “save” k. Doing this is
straight-forward: inside our saved thunk, rather than simply returning the next
choice (with (-< <expr2> ...)), we call k on the result!39

39 Of course, the mechanism that actu-
ally “saves” k is the closure created by
the thunk. Hey, remember those?

94 david liu

31 (define-syntax -<

32 (syntax-rules ()

33 [(-< <expr1>)

34 (begin

35 (set-choices! (void))

36 <expr1>)]

37

38 ; Same as before, except the current continuation is stored in the

39 ; choices thunk!

40 [(-< <expr1> <expr2> ...)

41 (shift k

42 (set-choices! (thunk (k (-< <expr2> ...))))

43 (k <expr1>))]))

And now we get our desired behaviour:

1 > (+ 1 (-< 10 20)) ; `k` is (+ 1 _)

2 11

3 > (next!) ; `choices` is (thunk ((+ 1 _) (-< 20))))

4 21

5 > (next!)

6 'done

It is rather amazing that such a small change unlocks a huge number of possibil-
ities for our macro; this truly illustrates the power of continuations and macros.

Using choices as subexpressions

So far, we’ve been focused on the construction of the choices themselves, and
checked our work by calling (next!) at the top-level (in the REPL). But because
the continuations we’re storing behave as unary functions, we can take the value
returned and pass them to a larger computation. For example:

1 > (* 100 (-< 1 2))

2 100

3 > (+ 3 (next!))

4 203

This is a pretty useful property that we seem to get “for free”. However, it turns
out that there are two subtle issues with our current implementation that come
up when embedding (next!) inside larger expressions; exploring these will
tighten up our implementation and deepen our understanding of continuations.

principles of programming languages 95

Delimiting continuations with reset

First, it turns out that shift’s ability to dynamically capture continuations is
a bit too powerful. Suppose we extended our previous example with a third
choice:

1 > (* 100 (-< 1 2 3))

2 100

3 > (+ 3 (next!)) ; Evaluates to (+ 3 (* 100 2))

4 203

If we call next! by itself one final time, something interesting happens:

1 > (next!)

2 303

This returns 303 rather than 300! It seems that the continuation (+ 3 _) was
captured in the first call to next!—why?

Recall that (next!) simply calls the thunk stored in choices, so let’s take a closer
look at the thunk that’s stored. Let’s take (* 100 (-< 1 2 3)) and perform one
step of the macro expansion:

1 (* 100 (-< 1 2 3))

2 ; ==>

3 (* 100

4 (shift k

5 (set-choices! (thunk (k (-< 2 3))))

6 (k 1)))

This macro is recursive: we see that the choices thunk contains another use of
-<, which expands into another use of shift:

1 (* 100

2 (shift k

3 (set-choices!

4 (thunk (k

5 (shift k2 ; Renaming to k2 for clarity

6 (set-choices! (thunk (k2 (-< 3))))

7 (k2 2)))))

8 (k 1)))

96 david liu

So when we call (next!) inside (+ 3 (next!)), we call the choices thunk,
which then evaluates a shift—and this new shift captures its current contin-
uation, which includes not just the stored (* 100 _), but the enclosing (+ 3 _)

as well! The continuation bound to k2 isn’t just (* 100 _), but instead (+ 3 (*
100 _))—and when we call that continuation on the last choice 3, we get 303.

This example is a bit counter-intuitive, and illustrates a pitfall of dynamic be-
haviour: because our current design of -< contains delayed calls to shift, the
actual choices produced by -< depend on just on the initial context in which the
-< was used, but also the contexts in which (next!) is called. As with many
dynamic language features, this is not necessarily a bad thing, though it can it
harder to predict the behaviour of our program. So in this section, we’ll look
at how to modify our implementation so that calls to next! do not modify the
continuation applied to subsequent choices.

So far, we’ve been using shift to capture the continuation represented by the
entire enclosing expression. However, Racket provides mechanisms to delimit
continuations, enabling the programmer to exert control over which parts of
a continuation are stored and discarded. The key ingredient we’ll use here is
reset, which you can think of as being a “barrier” that limits the continuation
“scope” of a shift. When a shift occurs as a subexpression of a reset, the
“current continuation” bound in the shift and discarded after the shift is eval-
uated only extends to the reset, and so doesn’t include any expressions outside
of the reset. Here are some examples:

1 > (* 100 (reset (* 2 (shift k 9)))) ; The (* 2 _) is discarded...

2 900 ; but the (* 100 _) is not.

3

4 > (define saved-cont (void))

5 > (* 100

6 (reset (* 2 (shift k

7 (set! saved-cont k)

8 9))))

9 900

10 > (saved-cont 9) ; saved-cont is (* 2 _); doesn't include (* 100 _)!

11 18

So to prevent calls to (next!) from capturing new continuations in subsequent
choices, we can use reset to wrap the thunk calls:

1 (define (next!)

2 (if (void? choices)

3 DONE

4 (reset (choices))))

5

6 > (* 100 (-< 1 2 3))

7 100

8 > (+ 3 (next!))

principles of programming languages 97

9 203

10 > (next!)

11 300

Aborting a computation with shift

Now consider a dual problem:

1 > (* 100 (-< 1 2))

2 100

3 > (+ 3 (next!)) ; Evaluates to (+ 3 (* 100 2))

4 203

If we repeat the call to next! inside a larger expression, we get an error:

1 > (+ 3 (next!))

2 +: contract violation

3 expected: number?

4 given: 'done

5 argument position: 2nd

6 other arguments...:

On the one hand, we should expect this to happen: calling (next!) when there
are no more choices returns our special constant DONE, which cannot be added to
a number. On the other, this is pretty annoying: under our current implementa-
tion, whenever we embed (next!) inside a larger expression, we either need to
guarantee that there is at least one remaining choice, or do an explicit check on
whether the value that’s returned by (next!) is DONE or not before proceeding
with the rest of the computation.

Given this trade-off, we’d like to a way for a call to (next!) to immediately
return DONE, skipping any other computation around the (next!). And as you
might recall from earlier in this chapter, this exact behaviour is provided by
shift! So here is the change to our next! implementation:

1 (define (next!)

2 (if (void? choices)

3 (shift k DONE)

4 (reset (choices))))

If there are no more choices, rather than simply return DONE, we instead evaluate
(shift k DONE), which causes any surrounding computation to be discarded.40

40 It’s worth repeating here that this
idea of “surrounding computation”
is fundamentally dynamic. In the
body of next!, it looks like there’s
nothing around shift other than the
if expression, but the continuation
of the shift is determined when it is
evaluated, which is in turn determined
by where (next!) is called.

98 david liu

With this change in place, we are able to now call (next!) freely within larger
expressions, and have a 'done “interrupt” the remaining computation.

1 > (* 100 (-< 1 2))

2 100

3 > (+ 3 (next!)) ; Evaluates to (+ 3 (* 100 2))

4 203

5 > (+ 3 (next!)) ; No more error!

6 'done

Branching choices

Even with the improvements of the previous section, we aren’t quite done yet.
Our overwriting of choices means that at any time, our program is only aware
of one choice point. So in the example below, evaluating the second choice
clobbers the first:

1 > (+ (-< 10 20) (-< 2 3))

2 12

3 > (next!)

4 13

5 > (next!)

6 'done

Now, as programming language designers we might stop here and say, “Well,
too bad! You can only use one -< expression per program.” But this is rather
unsatisfying for our users, and so let’s work a little harder to support multiple
choice points. Obviously, just adding more global variables (choices1, choices2,
etc.) isn’t an option. We’ll need to be able to represent an arbitrary number of
choice points, and so a collection-type data structure is most appropriate. For
simplicity, we’ll use a straightforward one: a stack implemented with a list, with
the front of the list representing the top of the stack:

1 ; choices is now a list of thunks rather than a single thunk.

2 (define choices null)

3 (define (add-choice! c) (push! choices c))

4 (define (get-choice!) (pop! choices))

5

6 ; Push a value onto a stack (add to front of list).

7 (define-syntax push!

8 (syntax-rules ()

9 [(push! <id> obj)

10 (set! <id> (cons obj <id>))]))

11

principles of programming languages 99

12 ; Pop a value from a stack (remove from front of list).

13 (define-syntax pop!

14 (syntax-rules ()

15 [(pop! <id>)

16 (let* ([obj (first <id>)])

17 (set! <id> (rest <id>))

18 obj)]))

The idea is pretty straight-forward: every time we encounter a choice expression,
we push the corresponding thunk onto the choices stack, and every time we call
next!, we pop a thunk off the stack and call it.41

41 This approach is the same as a stack-
based implementation of depth-first
search—this is not a coincidence.28 (define-syntax -<

29 (syntax-rules ()

30 [(-< <expr1>) <expr1>]

31

32 [(-< <expr1> <expr2> ...)

33 (shift k

34 (add-choice! (thunk (k (-< <expr2> ...))))

35 (k <expr1>))]))

36

37 #|

38 (next!) -> any/c

39

40 Returns the next choice, or DONE if there are no more choices.

41 |#

42 (define (next!)

43 (if (null? choices)

44 (shift k DONE)

45 (reset ((get-choice!)))))

Now let’s see what happens when we runour previous example.

1 > (+ (-< 1 2) (-< 3 10))

2 4

3 > choices ; choices stores two thunks, one for each -< expression

4 '(#<procedure> #<procedure>)

After evaluating the expression containing two choice expressions, we see that
choices now stores two thunks.

1 > (next!)

2 11

3 > (next!)

100 david liu

4 5

5 > (next!)

6 12

7 > (next!)

8 'done

An important detail

Even though it is gratifying that the implementation yields the correct result, it
should be at least somewhat surprising that this works so well. In particular,
let us trace through that previous example again, but inspect the contents of
choices each time:

1 > choices

2 '()

3 > (+ (-< 1 2) (-< 3 10))

4 4

5 > choices

6 '(#<procedure> #<procedure>)

As before, we know that the first element contains the choice (-< 10), while the
second contains (-< 2).

1 > (next!)

2 11

3 > choices

4 '(#<procedure>)

After the first call to (next!), the top choice is popped and evaluated, yielding
10. But why is 11 output? The captured continuation, of course: (+ 1 _)—note
that by the time the second choice expression has been evaluated, the first was
already evaluated to 1.

Only the single choice (-< 2) remains on the stack; because it contains just one
argument, the natural thing to expect when calling next again is for this choice
to be popped from the stack, leaving no choices. However, this is not what
happens:

1 > (next!)

2 5

3 > choices

4 '(#<procedure>)

principles of programming languages 101

Why is a 5 output, and why is there still a function on choices? The answer to
both of these questions lies in the continuation of the first expression (-< 1 2):
(+ _ (-< 3 10))). That’s right, the continuation of the first choice expression
contains the second one! This is why a 5 is output; the choice (-< 2) is eval-
uated and passed to the continuation, which then evaluates the second choice
expression (-< 3 10), which both returns a 3 and pushes a new thunk onto the
stack.

Note that the new function on the stack has the same choice as earlier, (-< 10),
but its continuation is different: “add 2” rather than “add 1”. This is what causes
the final output:

1 > (next!)

2 12

3 > choices

4 '()

5 > (next!)

6 'done

Towards declarative programming

Even though we hope you find our work for the choice macro intellectually stim-
ulating in its own right, you should know that this truly is a powerful mecha-
nism that can change the way you write programs. Just as how in our discussion
of streams we saw how thunks could be used to decouple the production and
consumption of linear data, our choice library allows this decoupling to occur
even when how we produce data is non-linear.

So far in this course, we have contrasted functional programming with impera-
tive programming, with one of the main points of contrast being writing code
that is more descriptive of the computation you want the computer to perform,
rather than describing how to do it—that is, writing programs that are more
declarative in nature.42

42 In this course, we take the view of
declarative as being a spectrum rather
than a yes/no binary characteristic. So
we won’t say that a language or style
is declarative, but rather that it’s more
declarative than what we’re used to.

For example, here is a simple expression that generates all possible binary
strings of length 5, following the English expression “take five characters, each
of which is a 0 or 1”:43

43 Racket uses the #\ prefix to indicate a
character literal.1 > (string (-< #\0 #\1)

2 (-< #\0 #\1)

3 (-< #\0 #\1)

4 (-< #\0 #\1)

5 (-< #\0 #\1))

6 "00000"

7 > (next!)

8 "00001"

102 david liu

9 > (next!)

10 "00010"

11 > (next!)

12 "00011"

13 > (next!)

14 "00100"

This easy composability is quite remarkable, and is arguably as close to a human
English description as possible.44 Though we can achieve analogous behaviour

44 Modulo the code repetition—see the
exercises below for further discussion
on that.

with plain higher-order list functions (or nested loops), the simplicity of this
approach is quite beautiful.

Exercise Break!

2.17 Suppose we tried to generate all binary strings of length 5 by doing the fol-
lowing:

1 (let* ([char (-< #\0 #\1)])

2 (string char char char char char))

What does this generate? Explain why. Fix this problem using thunks.

Predicates and backtracking

Generating “all possible combinations” of choices is fun and impressive, but not
necessarily that useful without some kind of mechanism to filter out unwanted
combinations. While we could do this by collecting choices into a stream and
applying a traditional filter operation, we’ll instead take a different approach
to combine the automatic generation that choice expressions give us with automatic
backtracking, which is at the core of the technique used by logic programming
languages like Prolog. The logic programming paradigm is centred on one sim-
ple question: “is this true?” Programs are not a sequence of steps to perform,
nor the combination of functions; instead, a logic program consists of the defi-
nition of a search space (the universe of values known to the program) and the
statement of queries for the computer to answer based on these values. Based on
this description, it is probably not hard to see that logic programs are generally
more declarative than either imperative or functional programs, given that they
fundamentally specify what is being queried, but leave it up to the underlying
implementation of the language to determine how to answer the query.45

45 A more familiar instance of this
idea is the database query language
SQL, in which programmers write
queries specifying what data they want,
without worrying (too much) about
how this data will be retrieved.

Now, we already have a mechanism for defining a search space, using combina-
tions of choices. What about queries? To start, we will define a query operator
?-, which takes a unary predicate and an expression, and returns the value of
the expression if it satisfies the predicate, and DONE if it doesn’t.

principles of programming languages 103

1 (define (?- pred expr)

2 (if (pred expr)

3 expr

4 DONE))

5

6 > (?- even? 10)

7 10

8 > (?- even? -3)

9 'done

Now, all of the work we did in the previous sections pays off: we can call this
function with a choice expression!

1 > (?- even? (-< 1 2 3 4))

2 'done

3 > (next!)

4 2

5 > (next!)

6 'done

7 > (next!)

8 'done

When the ?- is originally called, it gets passed the first value in the choice
expression (i.e., 1); but the continuation of the choice expression is (?- even?
_), and so each time next! is called, the next choice gets passed to the query. To
use some terminology of artificial intelligence, calling next! causes backtracking,
in which the program goes back to a previous point in its execution, and makes
a different choice.

When making queries with choices, it is often the case that we’ll only care about
the choices that succeed (i.e., satisfy the predicate), and ignore the others. There-
fore it would be nice not to see the intermediate 'done outputs; we can make
one simple change to our predicate to have this available:

1 (define (?- pred expr)

2 (if (pred expr)

3 expr

4 ; Rather than giving up, just try the next choice!

5 (next!)))

6

7 > (?- even? (-< 1 2 3 4))

8 2

9 > (next!)

10 4

11 > (next!)

12 'done

104 david liu

Now, every time the (pred expr) test fails, (next!) is called, which calls ?- on
the next choice; in other words, we automatically backtrack on failures.

The subtletly of capturing continuations

Not so fast! There’s a bug with this implementation of ?-. Suppose we want to
nest ?- inside a larger expressions; for example, the expression below represents
the computation “multiply by 100 a choice of an even number between 1 and 5.”
Unfortunately, it doesn’t work:

1 > (* 100 (?- even? (-< 1 2 3 4 5)))

2 20000

3 > (next!)

4 40000

5 > (next!)

6 'done

Something appears to be working: it does look like ?- correctly selects the even
numbers from the choice. The problem is there seems to be an extra multiplica-
tion by 100—which suggests that the (* 100 _) is being applied twice. Why?

The subtlety lies in the fact that next! returns ((get-choice!)) without dis-
carding the current continuation (as we saw earlier, this allows (next!) to be
composed with larger expressions). But when we “backtrack”, we really don’t
want to preserve the current continuation; we want to entirely start over at a
previous point in our computation. Once we understand this, the fix is straight-
forward: we wrap (next!) inside a shift to discard the current continuation.

1 (define (backtrack!)

2 (shift k (next!))

3

4 (define (?- pred expr)

5 (if (pred expr)

6 expr

7 (backtrack!)))

8

9 > (* 100 (?- even? (-< 1 2 3 4 5)))

10 200

11 > (next!)

12 400

13 > (next!)

14 'done

principles of programming languages 105

Search examples

Probably the easiest way to appreciate the power that this combination of choice
and querying yields is to see some examples in action. We have already seen
the use of this automated backtracking as a lazy filter operation, producing
values in a list of arguments that satisfy a predicate one at a time, rather than
all at once. We can extend this fairly easily to passing in multiple choice points,
with the one downside being that our ?- function only takes unary predicates,
and so we’ll need to pass all of the choices into a list of arguments.

Our problem will be the following: given a number n, determine all triples of
numbers (a, b, c) whose product is n. Here are the definitions of the input
data and predicate we’ll use.

7 #|

8 (num-between start end) -> integer?

9 start: integer?

10 end: integer?

11 Precondition: start < end

12 Returns a choice of a number in the range [start..end - 1], inclusive.

13 |#

14 (define (num-between start end)

15 (if (equal? start (- end 1))

16 (-< start)

17 (-< start (num-between (+ 1 start) end))))

18

19 #|

20 (triples n) -> (listof integer?)

21 n: integer?

22

23 Returns a choice of a list of three integers between 1 and n, inclusive.

24 |#

25 (define (triples n)

26 (list (num-between 1 (+ n 1))

27 (num-between 1 (+ n 1))

28 (num-between 1 (+ n 1))))

29

30 #|

31 (product? n) -> (-> (listof integer?) boolean?)

32 n: integer?

33

34 Returns a predicate that takes a list of integers and returns whether

35 their product is n.

36 |#

37 (define (product? n)

38 (lambda (triple)

39 (equal? n (apply * triple))))

106 david liu

Finally, here is a use of the query for the range 1–12:

1 > (?- (product? 12) (triples 12))

2 '(1 1 12)

3 > (next!)

4 '(1 2 6)

5 ...

6 > (next!)

7 '(12 1 1)

8 > (next!)

9 'done

See that? In just a few lines of code, we expressed a computation for finding
factorizations in a purely declarative way: specifying what we wanted to find,
rather than how to find the solutions. This is the essence of pure logic program-
ming: we take a problem and break it down into logical constraints on certain
values, give our program these constraints, and let it find the solutions. This
should almost feel like cheating—isn’t the program doing all of the hard work?

Remember that we are studying not just different programming paradigms, but
also trying to understand what it means to design a language. We spent a fair
amount of time implementing the language features -<, next!, and ?-, expressly
for the purpose of making it easier for users of our augmented Racket to write
code. So here we’re putting on our user hats, and take advantage of the design-
ers’ work!

Satisfiability

One of the most famous problems in computer science is a distilled essence of
the above approach: the satisfiability problem, in which we are given a proposi-
tional boolean formula, and asked whether or not we can make that formula
true. Here is an example of such a formula, written in the notation of Racket:46

46 x1, x2, x3, and x4 are boolean vari-
ables

1 (and (or x1 (not x2) x4)

2 (or x2 x3 x4)

3 (or (not x2) (not x3) (not x4))

4 (or (not x1) x3 (not x4))

5 (or x1 x2 x3)

6 (or x1 (not x2) (not x4)))

With our current system, it is easy to find solutions:

principles of programming languages 107

1 (define (sat lst)

2 (let ([x1 (first lst)]

3 [x2 (second lst)]

4 [x3 (third lst)]

5 [x4 (fourth lst)])

6 (and (or x1 (not x2) x4)

7 (or x2 x3 x4)

8 (or (not x2) (not x3) (not x4))

9 (or (not x1) x3 (not x4))

10 (or x1 x2 x3)

11 (or x1 (not x2) (not x4)))))

12

13 > (?- sat (list (-< #t #f)

14 (-< #t #f)

15 (-< #t #f)

16 (-< #t #f)))

17 '(#t #t #t #f)

18 > (next!)

19 '(#t #t #f #f)

20 > (next!)

21 '(#t #f #t #t)

22 > (next!)

23 '(#t #f #t #f)

24 > (next!)

25 '(#f #f #t #t)

26 > (next!)

27 '(#f #f #t #f)

28 > (next!)

29 'done

3 Type systems

I conclude that there are two ways
of constructing a software design:
One way is to make it so simple
that there are obviously no
deficiencies and the other way is to
make it so complicated that there
are no obvious deficiencies.

Tony Hoare

Here is a problematic Racket function.

1 (define (f x)

2 (+ x (first x)))

Calling this function on any input will fail, due to a type error: the parameter x

cannot simultaneously be a number (to be a valid argument to +) and a list (to
be a valid argument to first). Our goal for this chapter is to study type systems
implemented by different programming languages. While you certainly have an
intuitive notion of types coming from past programming experience, you may
not yet have appreciated the complex design decisions that go into how types are
represented and used in a programming language, and how differences in these
decisions can have major impacts on the programs written in these languages.

We start with a few definitions to make sure we’re on the same page. A type
is a set of values together with a set of behaviours on those values. Note that
this is a pretty abstract notion that differs among programming languages: an
integer in Racket can take on a different set of values than an int in C,1 and

1 Try adding two very large integers in
each language!the built-in String functions in Haskell are different from the String methods

in Java. But what is common to all of these languages is the notion of what
information a type conveys: if we say that an expression E has type “integer”,
this constrains both the possible values we expect that expression to have (i.e.,
what its denotational meaning is), and how we can use this expression in the
context of a large program (e.g., (+ 1 E) is okay but E[10] is not). A type system
is the set of rules in a programming language governing the semantics of types
in the language. This includes how types are defined, the syntax rules governing
where and how types can be written, and how types affect the operational and

110 david liu

denotational semantics of the language.

Describing type systems

Our plan for this chapter is to focus mainly on Haskell’s type system, though
we’ll make frequent comparisons to other languages. To begin, we’ll look at two
general spectrums on which a programming language’s type system can reside;
these are some of the most commonly-cited characteristics of a type system.

Strong and weak typing

One of the more confused notions is the difference between strong/weak typ-
ing and static/dynamic typing. Let’s start with strong/weak typing. However,
please keep in mind that there is some disagreement about the exact meaning of
strong/weak typing, and we present only one such interpretation here.

In a strongly-typed language, every value has a fixed type during the execution
of a program.2 Even though this might seem fairly obvious, keep in mind that

2 This does not imply that the type of an
identifier never changes during runtime.
More on this later.

this property isn’t strictly necessary: all data is stored in memory as 0’s and 1’s,
and it is possible that the types are not stored at all!

Most modern languages are strongly-typed, which is why we get type errors
when we try to call a function on arguments of the wrong type. On the other
hand, a weakly-typed language has no such guarantees: values can be implic-
itly interpreted as having a completely different type at runtime than what was
originally intended, in a phenomenon known as type coercion. For example, in
many languages the expression "5" + 6 is semantically valid, raising no run-
time errors. Many languages will convert the integer 6 into the string "6", and
concatenate the strings to obtain the string "56".3 A Java feature called auto-

3 Be aware of your biases here! This
evaluation to get "56" is so familiar we
don’t bat an eye. But in other languages
like PHP, the same expression would be
evaluated to 11.

boxing allows primitive values to be coerced into their corresponding wrapper
classes (e.g., int to Integer) during runtime.

The previous examples of type coercion might be surprising, but aren’t neces-
sarily safety concerns. In C, the situation is quite different:4

4 We don’t want to ruin the fun—-try
running this program yourself!

1 #include <stdio.h>

2

3 int main(void) {

4 printf("56" + 1);

5 return 0;

6 }

Depending on who you ask, different levels of type coercion might warrant
the label of strong or weak typing. For example, basically every programming
language successfully adds 3.5 + 4 without raising a type error. So as with
many properties of languages, the takeaway message is that strong/weak typing

principles of programming languages 111

is not a binary property, but a set of nuanced rules about what types can be
coerced and when. It goes without saying that mastering these rules is important
for facility in any programming language.

Static and dynamic typing

Even assuming that we are in a very strongly-typed language with little or no
type coercion, there is still the fundamental question of “when does the pro-
gram know about (and check) types?” The answer to this question is one of the
key characteristics of a programming language, as it deeply influences both the
language’s semantics and the implementation of any interpreter or compiler for
that language.

In statically-typed languages, the type of every expression is determined di-
rectly from the source code, before any code is actually executed. In languages that
permit mutation, static typing requires that even as variables change values, they
can only change to values within the same type. Most of these languages require
an explicit type to be specified at the declaration of each variable, although as
we’ll discuss later, this is not an absolute requirement for static typing.

In contrast, dynamically-typed languages do not perform any type-checking
until the program is run. In such languages, a type error is a runtime error—in
the same category as division by zero or array out-of-bounds errors.

As we mentioned earlier, types really form a collection of constraints on pro-
grams, so it shouldn’t come as a surprise that static typing is really a form of
program verification (like proving program correctness from CSC236). If a com-
piler can check that nowhere in the code does a variable take on a different type,
we are guaranteed that at no point in the program’s runtime does that variable
take on a different type. By checking the types of all expressions, variables,
and functions, the compiler is able to detect code errors (such as invalid func-
tion calls) before any code is run at all. Moreover, static type analysis can be
sometimes used as a compiler optimization: if we have compile-time guarantees
about the types of all expressions during the program’s run, we can then drop
the runtime type checks when functions are called. As we’ll discuss in the next
section, statically-typed languages perform type checking before programs are
run, essentially rejecting certain programs because they have type errors. This
sounds great, and it very often is. However, type systems gain their power by
enforcing type constraints; the stricter the constraints, the more erroneous pro-
grams can be rejected. This can also have the consequence of rejecting perfectly
correct programs5 that do not satisfy these constraints. However, it’s also worth

5 We’ll see a few examples of this when
we study Haskell’s type system in the
next section.

pointing out that most statically-typed languages have a way of “escaping” the
type system with a universal type like Object or Any, and in this way allow one
to write code without any type constraints.

112 david liu

The basics of Haskell’s type system

In Haskell, types are denoted by capitalized names like Bool, Char, and Integer.
In the Haskell interpreter, you can see the type of any expression with :type,
or :t for short. Some examples follow; since Haskell’s numeric types are a bit
complex, we’re deferring them until later.

1 > :t True

2 True :: Bool

3 > :t 'a'

4 'a' :: Char

5 > :t "Hello"

6 "Hello" :: [Char]

Note that the square brackets surrounding the Char indicates a list: like C,
Haskell interprets strings simply as a list of characters.6 One important dif-

6 Haskell also provides a type synonym
(i.e., alias) for [Char] called String.ference between Haskell and Racket is that lists must contain values of the same

type, so the expression [True, 'a'] is rejected by Haskell. A similar restriction
also applies to if expressions: both the then and else subexpressions must have
the same type:

1 > :t (if 3 > 1 then "hi" else "bye")

2 (if 3 > 1 then "hi" else "bye") :: [Char]

The above example illustrates the static nature of Haskell’s type-checking: the
type of the entire if expression is given, without evaluating it! Haskell can
do this precisely because of the aforementioned restriction: because the Haskell
compiler knows that both branches evaluate to strings, it is able to determine
that the type of the overall expression is a string without knowing which branch
would actually be evaluated!

Function types and currying

In Haskell, all functions have a type that can be inspected in the same way.

1 > :t not

2 not :: Bool -> Bool

The type signature Bool -> Bool means that not is a function that takes as in-
put a Bool value, and then returns a Bool value. The very existence of a type
signature for a function has huge implications for how functions can be used.
For instance, functions in Haskell must have a fixed number of arguments, fixed
types for all their arguments, and one fixed return type. Contrast this with
Racket’s member function, which returns either a list or #f (a boolean).

principles of programming languages 113

What about functions that take in two parameters? For example, what is the
type of the “and” function (&&)?

1 > :t (&&)

2 (&&) :: Bool -> Bool -> Bool

Huh, that’s weird. One probably would have expected something like (Bool,

Bool) -> Bool to denote that this function takes in two arguments. So what
does Bool -> Bool -> Bool actually mean? The -> operator in Haskell is right-
associative, which means that the proper grouping of that signature is Bool

-> (Bool -> Bool). This is quite suggestive: Haskell interprets (&&) as a unary
higher-order function that returns a function with type Bool -> Bool! This is the
great insight from the lambda calculus known as currying: any multi-parameter
function can be broken down into a nested composition of single-valued func-
tions.7

7 An observant reader might have no-
ticed that the syntactic rules in the
Prologue for generating lambda cal-
culus expressions did not contain any
mention of multi-parameter functions.
This is because currying makes it possi-
ble to express such functions within the
single-parameter syntax.

Consider the following function definition, which you can think of as a partial
application of (&&):

1 newF y = (&&) True y

The type of newF is certainly Bool -> Bool: if y is True then the function evalu-
ates to True, and if y is False then the expression is False. By fixing the value
of the first argument to (&&), we have created a new function. But in fact the
y is completely unnecessary to defining newF, and the following definition is
completely equivalent.

1 newF = (&&) True

This makes sense when we think in terms of referential transparency: every time
we see an expression like newF True, we can substitute this definition of newF to
obtain the completely equivalent expression (&&) True True.

It turns out that Haskell treats all functions as unary functions, and that function
application is indicated by simply separating two expressions with a space. An
expression like (&&) False True might look like a single function application on
two arguments, but the true syntactic form parsed by Haskell is ((&&) False)

True,8 where ((&&) False) is evaluated to create a new function, which is then
8 function application is left-associative

applied to True. In other words, the following definitions of (&&) are equivalent:

1 -- Usual definition

2 (&&) x y = if x then y else False

3 -- As a higher-order function

4 (&&) x = \y -> if x then y else False

114 david liu

These two definitions are completely equivalent in Haskell, even though they are
not in most other programming languages! Going a step further, the following
ternary function can be defined in Haskell in four completely equivalent ways:

1 f x y z = x + y * z

2 f x y = \z -> x + y * z

3 f x = \y -> (\z -> x + y * z) -- parentheses shown for clarity

4 f = \x ->

5 (\y -> (\z -> x + y * z))

Because binary operators are primarily meant to use infix, Haskell provides a
special syntax for currying infix operators called sectioning. Let’s return to (&&)

as an example of this syntax.

1 f = (True &&) -- equivalent to f x = True && x

2 g = (&& True) -- equivalent to g x = x && True

Note that unlike standard currying, in which partial application must be done
with a left-to-right argument order, sectioning allows us to partially apply an
operator by fixing either the first or the second argument.

In practice, partial application is a powerful tool for enabling great flexibility in
combining and creating functions. Consider the function addToAll, which adds
a number to every item in a list.

1 addToAll n lst = map (\x -> x + n) lst

This function is already quite concise because of our use of map, but using what
we’ve learned in this section, we can given an even more elegant definition.

First, rather than creating a new anonymous function (\x -> x + n), we can
use sectioning to express an “add n” function directly:

1 addToAll2 n lst = map (+ n) lst

Taking advantage of automatic currying, we can remove lst from both sides,
leaving just

1 addToAll3 n = map (+ n)

It might seem almost magical to define this function in such a short fashion. As
you get more comfortable with functional programming and thinking in terms

principles of programming languages 115

of combining and creating functions, you can interpret the final definition quite
elegantly as “addToAll3 maps the ‘add n’ function.”

Defining types in Haskell

Now that we have been introduced to Haskell’s type system, we’ll study how to
define our own types in this language.

The running example we’ll use in this section is a set of types representing
simple geometric objects. There’s quite a bit of new terminology in this section,
so make sure you read carefully! First, a point (x,y) in the Cartesian plane can
be represented by the following Point type.

1 data Point = Point Float Float

You can probably guess what this does: on the left side, we are defining a new
type Point using the data keyword. On the right, we define how to create
instances of this type; the Point is a value constructor, which takes two Float

arguments and returns a value of type Point. Let’s play around with this new
type.

1 > p = Point 3 4

2 > :t p

3 p :: Point

4 > :t Point

5 Point :: Float -> Float -> Point

There is a common source of confusion when it comes to Haskell’s treatment
of types that we are going to confront head-on. In Haskell, there is a strict
separation between the expression language used to define names and evaluate
expressions, and the type language used to represent the types of these expres-
sions. We have seen some artifacts of this separation already: for example, the
-> operator is used in expressions as part of the syntax for a lambda expression,
and in types to represent a function type. We have also seen the mingling of
these in type annotations, which come in the form <expression> :: <type>.

A type declaration is a different instance of this mingling. In our above example,
the Point on the left is the name of a new type, while the Point on the right is
the name of a function that returns values of that type. In typical object-oriented
languages, the constructor of a class is a special method, and its significance is
enforced semantically (in part) by having its name be the same as the class name.
This is actually not true in Haskell, as we illustrate below:

1 -- Point is the type and MyPoint is its constructor.

2 data Point = MyPoint Float Float

3

116 david liu

4 > p = MyPoint 3 4

5 > :t p

6 p :: Point

7 > :t MyPoint

8 MyPoint :: Float -> Float -> Point

Operating on points

This type definition is much more in the spirit of C structs than classes in the
familiar object-oriented setting, in that this allows us to define members of the
type (in the case of points, two floats), but not to bundle operations on these
types. In Haskell, we provide such operations by defining top-level functions,
but naively doing so almost immediately poses a problem:

1 -- Compute the distance between two points

2 distance :: Point -> Point -> Float

3 distance p1 p2 = ???

How can we access the Float attributes of the point values? Just as we define
functions by pattern matching on primitive values and lists, we can also pattern
match on any value constructor.9

9 In fact, the cons operator (:) is
actually a value constructor for the
built-in list type, so this is a feature
you’ve been using all along!

1 distance :: Point -> Point -> Float

2 distance (Point x1 y1) (Point x2 y2) =

3 let dx = abs (x1 - x2)

4 dy = abs (y1 - y2)

5 in

6 sqrt (dx*dx + dy*dy)

In another testament to the beauty of Haskell’s syntax, the left side of this func-
tion definition perfectly matches how we would call the function:

1 > distance (Point 3 4) (Point 1 2)

Here’s another example where we create new Point values.

1 -- Take a list of x values, y values, and return a list of Points.

2 makePoints :: [Float] -> [Float] -> [Point]

3 makePoints xs ys = zipWith (\x y -> Point x y) xs ys

4

5 -- Or better:

6 makePoints2 = zipWith (\x y -> Point x y)

principles of programming languages 117

Even though makePoints2 looks quite simple already, it turns out there’s an even
simpler representation using the fact that the Point value constructor is just another
function! So in fact, the most elegant way of writing this function is simply:

1 makePoints3 = zipWith Point

Unions

The previous section introduced struct-based types in Haskell, in which a con-
structor like Point is used essentially as a mechanism to group pieces of data
into one value. In this section, we’ll look at how Haskell supports union types,
starting with the most basic form that you may be familiar with already: enu-
merations.

Consider a type used to represent a day of the week: Monday, Tuesday, etc.
While we could use either a string or integer to represent such a type, both
of these primitive types have the drawback that they are more expressive than
required, and so checks for “invalid” days could not be caught by the type
system. Instead, since there are a small and finite number of possible days, we
can create an enumeration type by explicitly giving a list of possible constructors:

1 data Day = Monday --

2 | Tuesday --

3 | Wednesday --

4 | Thursday --

5 | Friday --

6 | Saturday --

7 | Sunday --

Here, the vertical bar | should be read as an “or”, separating the different possi-
ble value constructors for Day. Note that Monday, Tuesday, etc. are indeed value
constructors, same as Point in the previous section, except that they do not take
in any arguments:10

10 Due to Haskell’s laziness, we can
view these constructors either as
nullary functions, or simply as sin-
gleton values.

1 > :t Monday

2 Monday :: Day

118 david liu

This use of alternative constructors in Haskell is pretty standard in other lan-
guages as well. What is more unusual is Haskell’s ability to combine constructors
that take arguments with alternatives to declare types that have radically different
forms:

1 data Shape

2 = Circle Point Float -- ^ centre and radius

3 | Rectangle Point Point -- ^ top-left and bottom-right corners

Here it is really important to get the terminology correct. This code creates
a new type Shape, which has two value constructors: Circle and Rectangle.
Here’s how we might use this new type.11

11 Remember: Circle and Rectangle are
functions, while Shape is a type.

1 > shape = Circle (Point 3 4) 1

2 > :t shape

3 shape :: Shape

4 > :t [Circle (Point 3 4) 5, Rectangle (Point 0 0) (Point 1 1)]

5 [Circle (Point 3 4) 5, Rectangle (Point 0 0) (Point 1 1)] :: [Shape]

Here’s another example of using pattern-matching to write a function operating
on Shapes. Note that each constructor gets its own pattern-match rule, and we
can even nest patterns.

1 area :: Shape -> Float

2 area (Circle _ r) = pi * r * r

3 area (Rectangle (Point x1 y1) (Point x2 y2)) =

4 abs ((x2-x1) * (y2-y1))

5

6 > area (Circle (Point 3 4) 1)

7 3.141592653589793

8 > area (Rectangle (Point 4 5) (Point 6 2))

9 6.0

Unions in C

You might be familiar with struct and union types in C, which together ap-
proximate algebraic data types from Haskell. That said, the C syntax is quite a
bit more verbose. And for unions, there is additional legwork required of pro-
grammers to keep track of what part of the union is active. Here is how our
Shape example might look in C. Note that the circle and rectangle members
will overlap in memory: only one of them is available at a time.

principles of programming languages 119

1 #include <stdio.h>

2

3 struct Point {

4 float x, y;

5 };

6

7 union Shape {

8 struct Circle {

9 struct Point centre;

10 float radius;

11 } circle;

12 struct Rectangle {

13 struct Point corner1, corner2;

14 } rectangle;

15 };

16

17 int main(void) {

18 union Shape s;

19 s.circle = (struct Circle){.radius=1};

20 printf("Circle has radius %f\n", s.circle.radius);

21 s.rectangle = (struct Rectangle) {{4, 5}, {6, 2}};

22 printf(

23 "Rectangle with corner (%f, %f)\n",

24 s.rectangle.corner1.x,

25 s.rectangle.corner1.y

26);

27

28 return 0;

29 }

Now, what happens if we want to pass a union Shape to a function?

1 void area(union Shape s) {

2 if (... s is a circle) {

3 ... operate on the circle

4 } else {

5 ... operate on the rectangle

6 }

7 }

How do we know whether s is a circle or a rectangle? We don’t! And, unlike
in Haskell, we certainly can’t pattern-match to find out. The C solution is for
the programmer to explicitly maintain a tag field that indicates what the union
is currently storing.12 Unfortunately, this requires that we embed the union in a

12 This is reminiscent of what happens
when we pass an array to a function;
we have to manually keep track of the
array’s length.

struct that houses both the tag field and the union—compare to Haskell, which

120 david liu

keeps track of all of this for us!

1 #include <stdio.h>

2 #include <math.h>

3 #define pi 3.141592653589793

4

5 struct Point {

6 float x, y;

7 };

8

9 struct Shape {

10 enum {CIRCLE, RECTANGLE} shape_tag;

11 union {

12 struct Circle {

13 struct Point centre;

14 float radius;

15 } circle;

16 struct Rectangle {

17 struct Point corner1, corner2;

18 } rectangle;

19 } shape;

20 };

21

22 float area(struct Shape s) {

23 if (s.shape_tag == CIRCLE) {

24 float r = s.shape.circle.radius;

25 return pi * r * r;

26 } else { // rectangle

27 float x1 = s.shape.rectangle.corner1.x;

28 float y1 = s.shape.rectangle.corner1.y;

29 float x2 = s.shape.rectangle.corner2.x;

30 float y2 = s.shape.rectangle.corner2.y;

31 return abs ((x2-x1) * (y2-y1));

32 }

33 }

34

35 int main(void) {

36 struct Shape s;

37 s.shape_tag = CIRCLE;

38 s.shape.circle = (struct Circle){.radius=1};

39 printf("%f\n", area(s));

40 s.shape_tag = RECTANGLE;

41 s.shape.rectangle = (struct Rectangle) {{4, 5}, {6, 2}};

42 printf("%f\n", area(s));

43

44 return 0;

45 }

principles of programming languages 121

Algebraic data types

You now have the two main building blocks you need to create and understand
user-defined types in Haskell. We use value constructors (like Circle) to group
individual values together into a compound type with multiple fields, and use
unions (indicated by the vertical bar |) to specify the different ways that a value
of a particular type can be constructed. We call types that are created using
combinations of constructors and unions algebraic data types.13

13 The term “algebraic” here is sug-
gestive of the fact that such types are
built from a simple set of basic types by
applying operations on them.

Polymorphism I: type variables and generic polymorphism

Let’s now turn our attention to a more advanced feature of Haskell’s type sys-
tem: its support of polymorphism. The term polymorphism comes from the
Greek words poly, meaning “many”, and morphe, meaning “form” or “shape.”
In programming language theory, polymorphism refers to the ability of an en-
tity (e.g., function or class) to have valid behaviour in contexts of different types.
That’s a pretty abstract definition—let’s look at what this means in Haskell start-
ing from a familiar concept: the list.

The list type, for real

As we have previously discussed, Haskell’s type system imposes a restriction on
programmers, that a list value must contain elements of the same type:

1 > :t [True, False, True]

2 [True, False, True] :: [Bool]

3 > :t [(&&) True, not]

4 [(&&) True, not] :: [Bool -> Bool]

At the same time, lists are quite generic: as long as we adhere to this restriction,
we Haskell programmers can create lists of any type. But this raises the question:
what is the type of functions that operate on lists, like head? We know that head
takes as input a list and returns its first element, but the type of this element
depends on the type of the list, and we just said this could be anything!

1 > :t (head [True, False, True])

2 (head [True, False, True]) :: Bool

3 > :t (head "abc")

4 (head "abc") :: Char

5 > :t head

6 head :: [a] -> a

122 david liu

The type of head is [a] -> a. This differs from all other type signatures we
have seen so far because it contains a type variable a.14 A type variable is an

14 In type expressions, type variables
must start with a lowercase letter,
distinguishing them from types them-
selves.

identifier in a type expression that can be instantiated to any type, such as Bool

or Char. This type signature tells us that head works on any type of the form [a],
and returns a value of type a. Each time we call head, we match the parameter
type [a] against the type of the argument, and use this to instantiate the type
variable a to a concrete type to do the type-checking. For example, here is what
happens when we type-check the expression head [True, False, True]:

1. Haskell determines that the type of the argument list is [Bool].
2. Haskell matches the argument type [Bool] against the parameter type [a],

and instantiates a = Bool in the function type.
3. Haskell takes the return type a, with a instantiated to Bool, to recover the

final concrete type Bool for the return type, and therefore the overall type of
the function call.

Let’s look at a more complicated example: recall the filter function:15

15 Another instance of sectioning: (>=
1) is equivalent to \x -> x >= 1.

1 > filter (>= 1) [10, 0, -5, 3]

2 [10,3]

What is the type of filter? We can think of filter in the usual sense of taking
two arguments (putting currying aside). The second argument could be a list of
any type: [a]. The first argument must be a function mapping each a to a Bool,
i.e., a -> Bool.16 filter returns a list of elements that have the same type as

16 Haskell generally avoids the boolean
coercions of other languages; it doesn’t
have a notion of “truthy” or “falsey”
values.

the original list (since these elements were elements of the original list). Putting
this together we get that the type of filter is

1 filter :: (a -> Bool) -> [a] -> [a]

These are some examples of built-in list functions that have type variables—but
what about the list type itself? How does Haskell know to allow the programmer
to create lists of different types? This is in the very definition of the list type
itself. Before we get to the “real” definition, let’s build some intuition by trying
to define a list type ourselves. Here’s a type that represents a list of integers.
Such a list is either empty, or an integer “cons’d” with another list of integers.

1 data IntList = Empty | Cons Int IntList

What if we wanted a list of strings instead?

principles of programming languages 123

1 data StrList = Empty | Cons String StrList

The only thing that differs in this definition is the type of the first argument to
Cons, as this represents the type of the items actually being stored in the list.
To generalize this definition, we do exactly the same thing as with functions:
introduce a parameter to represent the varying part.

1 data List a = Empty | Cons a (List a)

Here, a is a type variable (same terminology as above), and can be instantiated
with different types (like Int or String) to create different types. Note how this
exactly mimics the syntax for function definitions! We call the List itself a type
constructor, as it is not exactly a type, but rather a function that takes a type a

and creates a new type List a.17

17 So in this context, a type variable is a
parameter of a type constructor.

It should come as no surprise that this is precisely how Haskell defines its built-
in list type, albeit with terser names:18

18 The trickiest part of this definition is
that the symbol [] plays two different
roles: in the type language, [] is a
type constructor that takes a type a and
returns a new type representing a “list
of as”; in the expression language, []
represents an empty list, which is one
of two list constructors. Note that []
a is the expanded form of the more
familiar [a].

1 data [] a = [] | (:) a ([] a)

Now remember, these value constructors are just functions! So the type of the
second constructor (:) shouldn’t be a surprise, but the constructor for the empty
list might be:

1 > :t (:)

2 (:) :: a -> [a] -> [a]

3 > :t []

4 [] :: [a]

The type of [] is [a], which is what allows the empty list value [] to be mixed
with lists of any type, without any additional overhead on the programmer’s
part.

Generic polymorphism (in Haskell and beyond)

In Haskell, lists are an example of generic polymorphism, a form of polymor-
phism in which an entity (e.g., function or class) behaves in the same way regard-
less of the type context. For example, Haskell lists are generically polymorphic
(or just “generic” for short): they can be used to store elements of any type, and
how these lists are constructed ([] and (:)) is the same regardless of what type
of element is being stored. Similarly, almost every built-in list function is generic,

124 david liu

meaning they operate on their input list regardless of what this input list con-
tains. Put more poetically, generic functions operate on the “outer shape” of
their input data (e.g., the fact that the data is a linear ordered sequence) without
care to the “inner shape” of the data’s contents.

In terms of types, there is for now a good approximation to tell whether a given
function is generic: if its type signature contains a type variable, then it’s generic,
and if it contains no type variables, it is not generic—in the latter case, we say
that the type is concrete. Please note that this heuristic is not quite complete, and
we’ll formalize this properly a bit later in this chapter.

As an aside, the concept of generic polymorphism is extremely useful, as it al-
lows for great reductions in code repetition by writing one data structure or
function once and having it work on all sorts of different types. If you’ve pro-
grammed in Java or C++, generics and type variables shouldn’t be novel. For
example, Java’s standard ArrayList follows basically the same principle:19

19 as does Java’s entire Collections
framework

1 class ArrayList<T> {

2 ...

3 }

4

5 public static void main(String[] args) {

6 ArrayList<Integer> ints = new ArrayList<Integer>();

7 }

In the class definition of ArrayList, T is a type variable, and is explicitly instan-
tiated as Integer when ints is created. Of note is the creation of a new empty
list; prior to Java 7, the Integer type annotation was required to make this code
type-check, making it more verbose than the simple [] in Haskell, which is it-
self a generic value. Java 7 updated the language so that programmers would
be able to omit the Integer from the right-hand side, naming the empty <> the
diamond operator.

Templates in C++ play the same role, allowing type variables in both functions
and classes. Here’s an example of a function template, which also illustrates a
more limited form of type inference found in C++.20

20 This example is taken from http:

//en.cppreference.com.
1 #include <iostream>

2 template<typename Type>

3 void f(Type s) {

4 std::cout << s << '\n';

5 }

6

7 int main() {

8 f<double>(1); // instantiates and calls f<double>(double)

9 f<>('a'); // instantiates and calls f<char>(char)

10 f(7); // instantiates and calls f<int>(int)

11 void (*ptr)(std::string) = f; // instantiates f<string>(string)

12 }

http://en.cppreference.com
http://en.cppreference.com

principles of programming languages 125

Polymorphism II: Type classes and ad hoc polymorphism

In the previous section, we looked at generic polymorphism, a useful tool in pro-
moting abstraction by defining types and functions that would operate on not
one but many data types. However, this form of polymorphism isn’t the only
useful one, and indeed isn’t appropriate in a lot of circumstances. In this section,
we’ll look at another form of polymorphism supported by Haskell, starting with
a simple example: how can we inspect Shapes in the Haskell interpreter?

Showing shapes

Recall our Point and Shape types from earlier in this chapter:

1 data Point = Point Float Float

2

3 data Shape

4 = Circle Point Float -- ^ centre and radius

5 | Rectangle Point Point -- ^ top-left and bottom-right corners

Unfortunately, right now we can’t view any instances of our custom types di-
rectly in the interpreter, because GHCi doesn’t know how to display them as
strings. This is where type classes come in.

A type class is a set of types plus a set of functions that must be able to operate
on these types, similar to the notion of an abstract interface in object-oriented
programming. We say that a type is a member of a type class if the type class’
functions have been implemented for that type. Haskell has the built-in type
class Show, containing the function show, which is roughly defined as follows:21

21 This is a simplification of the full type
class definition, but it suffices for our
purposes.1 class Show a where

2 show :: a -> String

This type class definition contains a type variable a, with a slightly different
meaning than before. Here, the a should be interpreted as “a type a belongs to
Show when there is an implementation of a function show that takes a value of
type a and returns a string.”

Most built-in Haskell types like Int and Bool are members of the Show type
class. When GHCi is asked to evaluate an expression, it tries to call show on the
resulting value to display the result back to the user, and this only works if the
expression’s type is a member of the Show type class.

126 david liu

To make our class Point a member of Show, we need to implement the show

function for our type, wrapped in a special syntactic form using the instance

keyword:

1 instance Show Point where

2 show (Point x y) = "(" ++ (show x) ++ ", " ++ (show y) ++ ")"

3

4 > show (Point 1.0 3.0)

5 "(1.0, 3.0)"

Finally, a question: what exactly is show? At first this seems silly, as we’ve
both referred to it and used it as a function. Yet this is a function whose initial
declaration and type signature is decoupled from its implementation, and in fact
has multiple implementations scattered throughout the Haskell standard library
and in our own Point code, which is unlike any function we’ve seen before.

Well, the answer isn’t too complicated, but is worth digging into just a little bit.
show is a single function with multiple implementations, one for each type that
is a member of Show. Its type signature is a little different:

1 > :t show

2 show :: Show a => a -> String

This type signature also has a type variable, but this type variable is modified by
a new piece of type expression syntax, the Show a =>. We call the Show a before
the => a type class constraint: its meaning is that the type variable a can only be
instantiated to a member of the Show type class.22 We say that the type variable

22 A function type can have multiple
type constraints, e.g. Eq a, Ord b =>

....
a is a constrained type variable, because of the presence of this constraint.

So now our polymorphism detection heuristic is a bit more complicated. If
a function’s type signature is concrete (no type variables), it is not polymor-
phic. If a function’s type signature contains an unconstrained type variable, it
is generically-polymorphic (in that variable): the function must behave the same
way for any type instantiation of that variable. But what does it mean when we
see a constrained type variable in a function type signature?

Ad hoc polymorphism

In contrast to generic polymorphism, ad hoc polymorphism is the ability of an
entity to have different behaviours depending on the type context. In Haskell,
this is precisely what type classes give us. By making types an instance of a
type class, we give different implementations of the same function for each type
separately.23 Then, the presence of type class constraints in a function definition

23 The term “ad hoc” in the name
reflects this: each time we write an
implementation for one type, we
are free to make the implementation
as tailored as possible to that type,
without worrying about making it
generic.

signals the ad hoc polymorphic nature of that function: when we see Show a =>,
we expect different behaviours for the function for different instantiations of a.

principles of programming languages 127

A different approach to ad hoc polymorphism is implemented in Java through
method overloading, which allows the programmer to implement the same method
in different ways, giving different parameter signatures for each one.24

24 Note: this type of overloading is not
permitted in Haskell, as it limits the
kinds of type-checking that can be
performed.

1 public int f(int n) {

2 return n + 1;

3 }

4

5 public void f(double n) {

6 System.out.println(n);

7 }

8

9 public String f(int n, int m) {

10 return "Yup, two parameters.";

11 }

One particular limitation of that technique is that the method’s type does not
contain a type class constraint; the only way to determine if a Java method is
ad hoc polymorphic is by scanning all of the function signatures in the source
code (or relying on an IDE that does so). This plays back to this chapter’s
recurring theme of using types to encode information about a value as being a
fundamental purpose of a type system.

Some built-in type classes

In this part, we’ll briefly describe some type classes you’ll likely encounter in
your study of Haskell. First, here are two type classes for comparing values:

• Eq: members of this type class support the (==) and (/=) functions to test
for equality. Only (==) needs to be implemented; (/=) is given a default
implementation in terms of (==).

• Ord: members can be ordered using (<), (<=), (>), and (>=). Members must
also be members of the Eq type class; we say that Ord is a subclass of Eq. Only
(<) (and (==) from Eq) need to be implemented.

And now that we know about type classes, we can finally understand Haskell’s
numeric types. Let’s start with addition.

1 > :t (+)

2 (+) :: Num a => a -> a -> a

You might have come across the Num a class constraint before and had this ex-
plained to you as saying that a is a numeric type, and this is basically correct.
More precisely, Num is a type class that supports numeric behaviours, and which

128 david liu

concrete types like Integer and Float belong to. There are three main numeric
type classes in Haskell:

• Num provides basic arithmetic operations such as (+), (-), and (*). Notably,
it doesn’t provide a division function, as this is handled differently by its
subclasses. It also provides the function fromInteger, which we’ll discuss a
bit further below.

• Integral represents integers, and provides the div (integer division) and mod

functions.

1 > div 15 2

2 7

3 > :t div

4 div :: Integral a => a -> a -> a

• Fractional represents non-integral numbers, and provides the standard di-
vision operator (/), among others.

So that’s it for the numeric functions. It turns out that numeric literals are also
impacted by type classes, which is a pretty idiosyncratic characteristic of Haskell.
Let’s inspect the type of the literal 1:

1 > :t 1

2 1 :: Num a => a

Huh, it’s not Integer? That’s right, 1 (and all other integer literals) is a polymor-
phic value, like []: 1 can take on any numeric type, depending on its context.
This is the purpose of the fromInteger :: Num a => Integer -> a function in
the Num type class, which is called implicitly to convert integer literals into what-
ever numeric type is necessary for the surrounding context.25

25 The Fractional type class has an
analogous function, fromRational, that
handles the conversion from fractional
literals to fractional types.

By the way, this should explain why the expression 1 + 2.3 correctly returns
3.3 in Haskell, even though we previously said Haskell does not have any type
coercion. When Haskell attempts to infer the type of this expression, it doesn’t
automatically assume 1 is an Integer nor 2.3 a Float. Instead, it sees that the
type of 1 must be a member of the Num type class, and the type of 2.3 must be
a member of the Fractional type class, and that these two types must be equal
because (+) takes two arguments of the same type. The Haskell compiler can
correctly instantiate the types to satisfy these constraints, and so the type check
passes.

Higher-order type classes

Let’s now look at one impressive feature of Haskell’s type class implementation,
which goes beyond what you see in most other languages. Consider the fol-
lowing problem: in addition to lists, Haskell has many other “container” types,

principles of programming languages 129

including sets and vectors. One of the particularly useful higher-order transfor-
mations we have seen before is map, which is used to apply some function to
each element in a list, producing a new list as a result:

1 map :: (a -> b) -> [a] -> [b]

While this works for lists, we want such a function for sets and vectors as well:

1 setMap :: (a -> b) -> Set a -> Set b

2 vectorMap :: (a -> b) -> Vector a -> Vector b

In Racket, this is achieved by simply implementing different “mapping” func-
tions for each data type, avoiding name collisions by prefixing by the data type
name, just as we illustrated above. But this approach has the limitation that
we cannot write elegant code that is polymorphic over a container type. For
example, consider defining a function that “maps” an “add 1” function over a
collection of elements, that should work regardless of the container type. In
Racket, we would do something like the following:

1 (define (add1 x) (+ x 1))

2

3 (define (add-1-all items)

4 (cond

5 [(list? items) (map add1 items)]

6 [(set? items) (set-map add1 items)]

7 [(vector? items) (vector-map add1 items)]))

As you are probably thinking, the solution in Haskell seems pretty straightfor-
ward: why don’t we make map part of a type class, so that we can implement it
separately for each container type? And this is indeed what Haskell does, but
there is one subtlety: since this type class would represent “container” types,
its members are type constructors, not types themselves. Let’s take a look at the
definition of the built-in “mappable” type class, which Haskell calls Functor:26

26 Many of the higher-order type classes
have names derived from an abstract
branch of mathematics called category
theory. This isn’t relevant for this
course, but you might be interested
in exploring the deep relationships
between type classes and category
theory on your own time.

1 class Functor f where

2 -- the "f" in fmap stands for "Functor"

3 fmap :: (a -> b) -> f a -> f b

The type variable f represents the member of Functor, but we can tell from the
type signature of fmap that f is not a primitive type like Int or Bool, but instead
a type constructor like the list ([]), Set, or Vector. And because Haskell makes
these different data types instances of Functor, we can implement a “map plus
1” function to work on arbitrary containers:

130 david liu

1 add1All :: Functor f => f Int -> f Int

2 add1All items = fmap (+1) items

3

4 -- Or, using currying:

5 add1All = fmap (+1)

Representing failing computations

Here’s an interesting type that really illustrates the purpose of having multiple
data constructors. Suppose you have an initial value, and want to perform a
series of computations on this value, but each computation has a chance of
failing. We would probably handle this in other programming languages by
using exceptions or by checking each step to see if the returned value indicates
an error. Both of these strategies often introduce extra runtime risk into our
program, because the compiler cannot always determine whether (or what kind
of) an exception will be raised,27 or distinguish between valid and erroneous

27 Though this is mitigated in Java with
checked exceptions.return values, leaving it to the programmer to remember to make the check.

Lest we get too high on our Haskell horse, be reminded that we have seen unsafe
functions in Haskell as well: head, tail, and any incomplete pattern matches,
for example. In this section, we will see how to incorporate this possibility of
error in a statically-checkable way, using Haskell’s type system. That is, we can
indicate in our programs where potentially failing computations might occur,
and make this known to the compiler by defining a data type representing the
result of a computation that may or may not have been successful.

We start by introducing the fundamental type constructor, Maybe, used to repre-
sent such values.28

28 Java 8 introduced the analogous
Optional type.

1 data Maybe a = Nothing | Just a

Intuitively, the type Maybe a represents values that could have two possible
states: either they’re a Nothing, because they were produced by some com-
putation that failed, or they’re an actual a value, because the computation suc-
ceeded. Many programming languages encode this idea implicitly through a
special value like None or null or nil; Haskell goes a step further, using not
just an analogous value Nothing, but also encoding this in the very type of the
expression: Maybe Int is not the same as Int, and the compiler can tell the dif-
ference!

Here are some simple functions that illustrate this data type; note that the
“wrapped” type a can be anything, as Maybe is a generic type.

principles of programming languages 131

1 safeDiv :: Int -> Int -> Maybe Int

2 safeDiv _ 0 = Nothing

3 safeDiv x y = Just (div x y)

4

5 safeHead :: [a] -> Maybe a

6 safeHead [] = Nothing

7 safeHead (x:_) = Just x

8

9 safeTail :: [a] -> Maybe [a]

10 safeTail [] = Nothing

11 safeTail (_:xs) = Just xs

12

13 assertNonNegative :: Int -> Maybe Int

14 assertNonNegative n =

15 if n >= 0

16 then

17 Just n

18 else

19 Nothing

The last example is a bit odd, since we aren’t “doing” anything to the input,
but instead checking some property. The generalized version is perhaps more
suggestive:

1 assert :: (a -> Bool) -> a -> Maybe a

2 assert pred x =

3 if pred x

4 then

5 Just x

6 else

7 Nothing

However, in order to appreciate how to use this assert function in an interesting
way, we need to expand our scope beyond just individual functions that return
Maybes, to thinking about how to use such functions in a larger expression.

Lifting pure functions

Recall that we already have an operator, (.), which composes regular functions:

1 (.) :: (b -> c) -> (a -> b) -> a -> c

2 f . g = \x -> f (g x)

132 david liu

Let’s start with a simple example: defining a function that takes the first element
of a list of numbers, and adds 1 to that number. If we weren’t worried about
runtime errors, we could define this function as follows:29

29 We deliberately write this in a terser
style to emphasize the composition of
the main functions involved. Make sure
you understand this definition before
moving on!

1 add1ToHead :: [Int] -> Int

2 add1ToHead = (+1) . head

It is tempting to make this function “safe” by swapping in our safeHead from
above, and returning a Maybe:

1 safeAdd1ToHead :: [Int] -> Maybe Int

2 safeAdd1ToHead = (+1) . safeHead

Unfortunately, this implementation doesn’t type-check. The problem is that (+1)
expects a “pure” numeric type (like Int), but we’re giving it a Maybe Int instead.
Now, we could define a new function to handle this explicitly using pattern-
matching:

1 add1Maybe :: Maybe Int -> Maybe Int

2 add1Maybe Nothing = Nothing

3 add1Maybe (Just n) = Just (n + 1)

But of course this approach doesn’t scale; we don’t want to have to define “Maybe
versions” of every function we want to use. Instead we define a higher-order func-
tion that will take any pure a -> b function and turn it into one that works on
Maybe as instead. We call this operation lift, taking the term from mathemat-
ics, usually denoting the transformation of some object to move it into a more
abstract or general context.

1 lift :: (a -> b) -> (Maybe a -> Maybe b)

2 lift _ Nothing = Nothing

3 lift f (Just x) = Just (f x)

With this function, we can complete a correct implementation of safeAdd1ToHead:

1 safeAdd1ToHead :: [Int] -> Maybe Int

2 safeAdd1ToHead = (lift (+1)) . safeHead

But hang on: doesn’t the type signature for lift look a little familiar? Keep
in mind that -> is right-associative in type expressions, and so that second pair
aren’t necessary:

principles of programming languages 133

1 lift :: (a -> b) -> Maybe a -> Maybe b

You guessed it! This expression exactly matches the one for fmap, and this isn’t
a coincidence: Maybe is indeed a member of the Functor type class.30

30 Indeed, we can think about Maybe as
a “container” that holds exactly zero or
one value of its contained type.1 safeAdd1ToHead :: [Int] -> Maybe Int

2 safeAdd1ToHead = (fmap (+1)) . safeHead

Composing failing computations

Now let’s consider defining a function that returns the second element of a list:

1 second :: [a] -> a

2 second = head . tail

Our first attempt at making this function safe is to replace the list functions with
the safe variants we defined above:

1 safeSecond :: [a] -> Maybe a

2 safeSecond = safeHead . safeTail

It looks like we have a similar problem as before: safeTail returns a Maybe [a],
while safeHead expects just a [a]. What happens if we try using fmap (or lift)?

1 safeSecond :: [a] -> Maybe a

2 safeSecond = (fmap safeHead) . safeTail

Unfortunately, this doesn’t quite work: the return type is a Maybe (Maybe a),
rather than just a Maybe a! This isn’t what we want, so we’re going to take a
different (presumably also higher-order) approach. But what? Let’s start by
writing a correct, if cumbersome, implementation of safeSecond.31

31 This also introduces case expressions,
which enable pattern-matching in
arbitrary expression contexts.1 safeSecond :: [a] -> Maybe a

2 safeSecond xs =

3 let xs' = safeTail xs

4 in

5 case xs' of

6 Nothing -> Nothing

7 Just xs'' -> safeHead xs''

134 david liu

To see what’s going on, let’s inspect the types:

• xs has type [a], which is the original input to the function
• xs' has type Maybe [a], which is what’s returned by safeTail

• xs'' has type [a]: it is an “unwrapped” version of xs', which is safe to do
inside the case expression because we provide pattern-match rules for both
possibilities for xs'.

Unfortunately, using the case expression does not generalize very elegantly, as
we compose more and more computations. Suppose we wanted to access the
fourth element of a list:

1 safeFourth :: [a] -> Maybe a

2 safeFourth xs =

3 let xs' = safeTail xs

4 in

5 case xs' of

6 Nothing -> Nothing

7 Just xs1 ->

8 let xs1' = safeTail xs1

9 in

10 case xs1' of

11 Nothing -> Nothing

12 Just xs2 ->

13 let xs2' = safeTail xs2

14 case xs2' of

15 Nothing -> Nothing

16 Just xs3 -> safeHead xs3

To remove the code duplication, we move the pattern-matching to a helper:32

32 The name andThen should suggest the
idea of sequencing multiple computa-
tions.1 andThen :: Maybe a -> (a -> Maybe b) -> Maybe b

2 andThen Nothing _ = Nothing

3 andThen (Just x) f = f x

Like lift, the implementation of andThen is very simple. The only difference
is that we do not wrap the second line’s body in a Just (logically, we shouldn’t
assume that calling f will succeed!). Let’s use this helper to see how to simplify
safeSecond:

1 safeSecond :: [a] -> Maybe a

2 safeSecond xs =

3 let xs' = safeTail xs

4 in

5 andThen xs' safeHead

principles of programming languages 135

However, this isn’t that readable. The reason we chose the name andThen only
becomes apparent when we use backticks to call andThen from an infix position:

1 safeSecond :: [a] -> Maybe a

2 safeSecond xs =

3 let xs' = safeTail xs

4 in

5 xs' `andThen` safeHead

6

7 -- Or simply,

8 safeSecond xs = safeTail xs `andThen` safeHead

With this use of andThen, we can entirely remove all of the boilerplate from
safeFourth as well, resulting in a truly beautiful implementation.

1 safeFourth :: [a] -> Maybe a

2 safeFourth xs =

3 safeTail xs `andThen`

4 safeTail `andThen`

5 safeTail `andThen`

6 safeHead

Error reporting

One limitation of using Maybe is that chained computations don’t preserve in-
formation about where or why the computation failed. A Nothing conveys a
failure, but nothing else. In practice, the Either type constructor is often used
instead:

1 data Either a b = Left a | Right b

Either is a versatile type constructor that can be used to represent an alterna-
tive between two different types (e.g., “this function returns either an Int or a
String”), but one of its most common uses is to use the Left constructor to rep-
resent a failure with some error information, and a Right to represent a success,
analogous to Just. For example, a bare-bones approach might store an error
message as a string:

1 safeDiv2 :: Int -> Int -> Either String Int

2 safeDiv2 _ 0 = Left "Division by 0 error"

3 safeDiv2 x y = Right (x `div` y)

136 david liu

More sophisticated systems might use a custom data type to store more elabo-
rate error information as the “left” value.

Modeling mutation in pure functional programming

One of the central tenets of functional programming we’ve had in the course
so far was avoiding the concept of state; that is, writing code without mutation.
Though we hope you have seen the simplicity gained by not having to keep
track of changing variables, it is often the case that mutable state is the most
natural way to model problem domains. So the question we’ll try to answer in
this section is, “How can we simulate changing state in Haskell, which does not
even allow re-binding of identifiers?”

Postorder tree labeling

Consider the following problem: given a binary tree, label each node with its
position in a postorder traversal of that tree. Here is some code in Python to
solve this problem, using a global mutable variable to keep track of the “current”
position in the traversal.

1 i = 0

2

3 def post_order_label(tree):

4 global i

5

6 if tree.is_empty():

7 return

8 else:

9 post_order_label(tree.left)

10 post_order_label(tree.right)

11 tree.root.label = i

12 i += 1

This code is very elegant, but the reason for its elegance is the use of this global
variable i that is mutated through the recursive calls to post_order_label. Our
goal for this section is to implement this same algorithm in Haskell.

principles of programming languages 137

Stateful computations

Believe it or not, we have already seen the basic “mutating state” technique in
this course. Recall the basic loop iteration pattern:

1 acc = init

2 for x in lst:

3 acc = update(x, acc)

We achieved the same affect using foldl, and the key idea was that the update
function passed to foldl was interpreted to “mutate” the accumulator. Con-
cretely, the function took as input the old state of the accumulator, and returned
its new state. By chaining together such functions—each taking the result of the
previous—we can simulate a mutating “accumulated state” over many different
computations.

For any kind of mutable state, the two primitive operations are read and write,
which here we’ll label get and put. We could implement each one as follows:

1 get :: s -> s

2 get state = state

3

4 put :: s -> s -> s

5 put item state = item

This looks a bit strange, so let’s unpack our intentions. - get takes in the current
state and simply returns it; this simulates “reading” from the state. - put takes an
item and the current state, and returns the item, representing the new state (note
that the old state is completely discarded). Right now, it is impossible to tell
from the return types of these two functions that one of them returns a lookup
value (but leaves the state unchanged), and the other actually modifies the stored
state. To resolve this issue, we unify their return types by using a tuple, where
the first element of the tuple represents what value (if any) is “produced” by the
computation, and the second element represents the new state.

1 get :: s -> (s, s)

2 get state = (state, state)

3

4 put :: s -> s -> ((), s)

5 put item state = ((), item)

Now let’s interpret this new code: - get takes the old state and returns its value
as both elements of the tuple. The first element represents what’s being pro-
duced (the value is looked up), while the second represents the new state, which
is actually exactly the same as the old state. - put updates the state, which is

138 david liu

why the second element in the returned tuple is item—the old state has been
replaced. The () in the first position is called unit in Haskell,33 and is used to

33 Somewhat confusingly, () is both a
value and a type, both called “unit”.denote the fact that the put doesn’t produce a value. This is analogous to a void

return type in Java or C.

That’s better, but we’ll go one step further and use Haskell’s built-in State data
type, which essentially wraps around the “updating state” function type:

1 data State s a = State (s -> (a, s))

2

3 get :: State s s

4 get = State (\state -> (state, state))

5

6 put :: s -> State s ()

7 put item = State (\state -> ((), item))

Warning: State is actually a pretty confusing name. In Haskell, this State type
constructor doesn’t refer to the state itself, but rather to a stateful computation that
takes in and returns state, as we described above. This is a pretty unfortunate
historical name, so please pay attention to the name when we use it through this
section!

So using this language, we say that get is a stateful computation that produces
what was stored in the state and leaves the state unchanged, while put is a
stateful computation that takes an item, and replaces the existing state with that
item, but doesn’t produce a value.

Running and combining stateful computations

One of the side effects of using the State type to represent stateful computations
is that the underlying function is now wrapped, and can’t be called directly. For
example, calling get 5 produces an error rather than the expected (5, 5). To
resolve this, Haskell has a built-in function runState whose only purpose is to
return the wrapped function:

1 runState :: State s a -> (s -> (a, s))

2 runState (State op) = op

But in the above code, op is a function; in order to actually “execute” the stateful
computation, we need to pass in a state value, which we think of as representing
the initial state.

1 > runState get 5

2 (5,5)

principles of programming languages 139

With this in mind, we can chain together stateful computations as well. As an
example, let’s translate the following Java code:

1 public String f() {

2 int x;

3 x = 10;

4 x = x * 2;

5 return str(x);

6 }

The idea is pretty simple once we get the hang of it: except for the variable
declaration and initialization, every other line consists of a get, put or pure
computation (like (*2)). Our approach is to perform each of these computations
in turn, using let to bind the intermediate states so that each State computation
gets as input the state from the previous one.34

34 To make the code a little nicer, we use
pattern-matching on the left-hand side
of the let bindings.1 f :: State Int String

2 f = State (\state0 ->

3 let (_, state1) = runState (put 10) state0

4 (x, state2) = runState get state1

5 (_, state3) = runState (put (x * 2)) state2

6 (x', state4) = runState get state3

7 in

8 (show x', state4)

9)

This code is certainly easy to understand, and its size may not even suffer (much)
in comparison to other languages. But hopefully it seems at least somewhat
inelegant to have to manually keep track of this state. This is analogous to
the clumsy use of pattern-matching to distinguish between Nothing and Just

values in the previous section. So, as before we’ll define a higher-order function
to abstract away the composition of two State operations. For reasons that will
become clear shortly, the main function we’ll implement is andThen. Here’s a
preliminary (not final) version:

1 -- Perform two state computations and return the second one's value.

2 andThen :: State s a -> State s b -> State s b

3 andThen op1 op2 = State (\state0 ->

4 let (x1, state1) = runState op1 state0

5 (x2, state2) = runState op2 state1

6 in

7 (x2, state2)

8)

140 david liu

This is a good start, but it is not quite general enough for our purposes. The
problem is that the “produced” value x1 of the first computation is unused
by the second computation. But in general, when we sequence two stateful
computations, we want the second to be able to use the result of the first. So
what we need to do is define a function that will perform two State operations
in sequence, but have the second depend on the result of the first one. On the
face of it, this sounds quite strange—but remember that closures give languages
a way of dynamically creating new functions with behaviours depending on
some other values.

So rather than take two fixed State operations, andThen will take a first State
operation, and then a function that takes the result of the first State operation and
returns a new State operation. Think about this second parameter as an “incom-
plete” State function, which gets completed by taking the value produced by
the first function. This might seem pretty abstract, but should become clearer
when we look at the new type signature and implementation:

1 andThen :: State s a -> (a -> State s b) -> State s b

2 andThen op1 opMaker = State (\state0 ->

3 let (x1, state1) = runState op1 state0

4 op2 = opMaker x1

5 (x2, state2) = runState op2 state1

6 in

7 (x2, state2)

8)

That is, andThen does the following:

1. Run its first State computation (op1).
2. Use the produced result (x1) and its second argument (opMaker) to create a

second State computation.
3. Run the newly-created State computation, and return the result (and up-

dated state).

With this function in hand, we can now greatly simplify our example function:

1 f :: State Int String

2 f = put 10 `andThen` (_ ->

3 get `andThen` (\x ->

4 put (x + 2) `andThen` (_ ->

5 get `andThen` (\x' ->

6 State (\state -> (show x', state))))))

Well, almost. We have used indentation and parentheses to delimit the bodies of
each lambda expression, neither of which are technically necessary. Removing
them and veritcally-aligning the operations cleans up the code dramatically:

principles of programming languages 141

1 f :: State Int String

2 f = put 10 `andThen` _ ->

3 get `andThen` \x ->

4 put (x + 2) `andThen` _ ->

5 get `andThen` \x' ->

6 State (\state -> (show x', state))

Finally, we note that the final State value is special, since it simply “produces”
a value (show x') without any interaction with the underlying state at all. We’ll
call this type of computation a “pure” one, and use a helper function to simplify
the code further:

1 pureValue :: a -> State s a

2 pureValue item = State (\state -> (item, state))

3

4 f :: State Int String

5 f = put 10 `andThen` _ ->

6 get `andThen` \x ->

7 put (x + 2) `andThen` _ ->

8 get `andThen` \x' ->

9 pureValue (show x')

Back to post-order labeling

It turns out that we have everything we need to implement a post-order binary
tree labeling in Haskell. First, recall the mutating Python version:

1 i = 0

2

3 def post_order_label(tree):

4 global i

5

6 if tree.is_empty():

7 return

8 else:

9 post_order_label(tree.left)

10 post_order_label(tree.right)

11 tree.root.label = i

12 i += 1

Here is the corresponding data type we’ll use to represent binary trees in Haskell.35

35 Note the similarity to our recursive
list definition!

142 david liu

1 data BTree a = Empty

2 | Node a (BTree a) (BTree a)

To keep things immutable, we won’t mutate a BTree directly, but rather return a
new BTree with all nodes labelled properly. To accomplish this using the same
algorithm as shown in the Python code, we’ll need one Int of mutable state, and
so our type signature will be:36

36 In the returned tree, each node stores
its original value paired with its post-
order label.

1 postOrderLabel :: BTree a -> State Int (BTree (a, Int))

The base case is pretty easy to implement, and can be done without any state-
fulness at all:

1 postOrderLabel Empty = pureValue Empty

As a first pass for the recursive step, let’s just try translating the two recursive
calls in Python into the equivalent chained Haskell code, using our andThen.37

37 Note that we ignore the original node
label, since the goal here is to set the
label ourselves.

1 postOrderLabel (Node item left right) =

2 postOrderLabel left `andThen` \newLeft ->

3 postOrderLabel right

Not too bad, although these two recursive calls aren’t really doing anything
(other than spawning other useless calls). Let’s first increment our “i”:

1 postOrderLabel (Node item left right) =

2 postOrderLabel left `andThen` \newLeft ->

3 postOrderLabel right `andThen` \newRight ->

4 get `andThen` \i ->

5 put (i + 1)

That version almost compiles, but unfortunately ends with a State value of the
wrong type: State Int () instead of State Int (BTree (a, Int)). To fix this,
let’s actually consider what we want to return: a new BTree with all the nodes
labeled correctly. Through the power of recursion, we can assume that both
newLeft and newRight (produced by the recursive calls) are indeed correctly
labeled. So then to put everything together, we need to create and return a new
root node, containing the original item, an updated label, and new subtrees:

principles of programming languages 143

1 postOrderLabel (Node item left right) =

2 postOrderLabel left `andThen` \newLeft ->

3 postOrderLabel right `andThen` \newRight ->

4 get `andThen` \i ->

5 put (i + 1) `andThen` _ ->

6 pureValue (Node (item, i) newLeft newRight)

And that’s it! Not too shabby indeed—and quite close to what we’d write in
Python if we had to return a new tree rather than mutate the original.

Impure I/O in a pure functional world

In addition to mutating state, another common type of impure function is one
that interacts with some entity external to the program:38 standard input or

38 Functions receiving external input
are impure because their behaviour
changes each time they are run; func-
tions writing to some output are im-
pure because they have a side-effect.

output, a graphical display, the filesystem, or a server thousands of kilometres
away. Even though we’ve been programming without explicit mention of I/O
since the beginning of the term, it’s always been present: any REPL requires
functions that take in user input, and that actually display the output to the user
as well. If Haskell had no I/O capabilities whatsoever, we would never know if
a program actually worked or not, since we would have no way to observe its
output!

In this section, we’ll briefly study how Haskell programs can interact directly
with the standard input and standard output provided by the operating system.
While the primitives we’ll use in this section might look underwhelming, all of
the other I/O operations we mentioned above behave exactly the same. In fact,
even more is true: it turns out that all I/O follows our approach to mutable state
from the previous section. Even though both I/O and mutation are side-effectful
behaviours, they seem quite different at first glance, and so this might come as
a surprise. Let’s take a closer look at what’s going on.

Our State s a values represented computations with two behaviours: a “pure”
part, the computation performed to produce a value, and an impure part, a
“mutation” operation, representing an interaction with the underlying context of
the computation. We can think of pure functions as those that have no context
(e.g., external mutable state) they need to reference, and impure functions as
those that do.

Even though our post-order labeling example used a State Int representing just
one integer’s worth of mutable state, the beauty of the State type constructor
is that it can be parameterized on the type of state s being used, and so in
more complex programs we might have State String or State [Int] or even
State (Map String Expr).39 But even this view is too narrow: there is no need

39 Think back to our previous discus-
sions of the environment. . .to limit our computational context to the program’s heap-allocated memory. By

widening the scope of this context to user interactions, files, and faraway servers,
we can model any type of I/O computation at all.

144 david liu

Standard I/O primitives

Recall that we built complex State computations using two primitives, get and
put. With standard I/O there are two built-in values that we’re going to cover:
putStrLn, which prints a newline-terminated string to standard output, and
getLine, which reads a string from standard input.40 A natural question to ask

40 Look up more I/O functions in the
System.IO module.when in an unfamiliar environment is about the types of the values. Let’s try it:

1 > :t getLine

2 getLine :: IO String

3 > :t putStrLn

4 putStrLn :: String -> IO ()

Here, IO plays an analogous role to State s, except rather than indicating that
the function changes the underlying state context, it indicates that the function
has some sort of interaction with an external entity. IO is a unary type construc-
tor, where the type IO a represents an I/O action that produces a value of type
a.41 So getLine has type IO String because it is an I/O action that produces a

41 We use “produce” in the same sense
as the previous section: it’s the value
that is obtained from performing the
computation.

string, and putStrLn has type String -> IO () because it takes a string, prints
it out, but produces nothing.

We can now define a function which prints something to the screen:42

42 A Hello World program. Finally.

1 greet :: IO ()

2 greet = putStrLn "Hello, world!"

3

4 > greet

5 Hello, world!

Now suppose we want to print out two strings. In almost every other program-
ming language, we would simply call a printing function twice, in sequence. But
in our pure functional programming setting, we work with expressions and not
statements, and so can’t simply write one expression after the other.43

43 This would be interpreted as a func-
tion call in Haskell!

What we want is to chain together two I/O actions, a way to say “do this com-
putation, and then do that one.” This hopefully rings a bell from the previous
section, when we chained together two State computations using two different
versions of andThen. And this is where things get interesting: we actually have
both versions as infix operators for I/O:

1 -- andThen, but discard the result produced by the first

2 -- By convention, called "then"

3 (>>) :: IO a -> IO b -> IO b

4 -- andThen, using the first result to create the second

5 -- By convention, called "bind"

6 (>>=) :: IO a -> (a -> IO b) -> IO b

principles of programming languages 145

It shouldn’t be a big surprise that we can use the former to sequence two or
more I/O actions:

1 greet2 :: IO ()

2 greet2 =

3 putStrLn "Hello, world!" >>

4 putStrLn "Second line time!"

5

6 prompt :: IO ()

7 prompt =

8 putStrLn "What's your name?" >>

9 getLine >>

10 putStrLn "Nice to meet you, ____!"

How do we fill in the blank? We need to take the string produced by the getLine

and use it to define the next I/O action. Again, this should be ringing lots of
bells, because this is exactly what we did with our final version of andThen,
corresponding to the I/O operator (>>=):

1 prompt2 :: IO ()

2 prompt2 =

3 putStrLn "What's your name?" >>

4 getLine >>= \name ->

5 putStrLn "Nice to meet you, " ++ name ++ "!"

6

7 > prompt2

8 What's your name?

9 David -- This line is user input

10 Nice to meet you, David!

Standalone Haskell programs

Though we’ve mainly used GHCi, Haskell programs can also be compiled and
run.44 Such programs require a main function with type IO (), which is executed

44 Say, by using the command
runhaskell myfile.hs.when the program is run. The type of main is very suggestive: the program as

a whole is an IO action that can interact with the outside world, using main as
its entry point. In this course we’ve been mainly using the REPL as our entry
point, but in practice any kind of I/O behaviour would start under main.

Types as constraints

You have now seen two examples of impure values in Haskell: the state-“mutating”
State computations, and the external-world-interacting IO. Despite our prior

146 david liu

insistence that functional programming is truly different, it seems possible to
simulate imperative programs using these functions and others like them. This
is technically correct, but it misses a very important point: unlike other lan-
guages, Haskell’s type system enforces a strict separation between pure and
impure code.

The separation of concerns principle is one of the most well-known in computer
science, and you’ve probably studied this extensively in the context of design-
ing classes, libraries, and larger application architectures like MVC. However,
in most languages, is easy for impure and pure code to be tightly wound to-
gether, because side-effecting behaviour like mutation and I/O is taught to us
from our very beginnings as programmers. But as we’ve discussed earlier, this
coupling makes programs difficult to reason about, and often in our refactoring
we expend great effort understanding and simplifying such side-effects.

In stark contrast, such mixing is explicitly forbidden by Haskell’s type system.
Think back to IO. We only used functions that combine values of IO types (like
(>>=)), or functions that returned a value of these types. But once the IO was
introduced, there was no way to get rid of it: there is no function IO a -> a.45

45 This isn’t strictly true, but the func-
tions that do exist are used rarely and
with great care in Haskell production.

This means that any Haskell function that uses standard I/O must have a IO in its
type.

It might feel restrictive to say that every time you want to print something in a
function, you must change the fundamental type (and hence structure) of that
function. However, as a corollary of this, any function that doesn’t have IO in
its type is guaranteed not to interact with the terminal, and this guarantee is
provided at compile time, just through the use of types! This is perhaps the best
illustration of this chapter’s central principle: a type signature in Haskell tells
us not just how to use a function and what it returns, but what it cannot do as
well.

One last abstraction: monads

When we first started our study of types and Haskell, you might have thought
we would focus on the syntax of creating new types in Haskell. But even though
we did introduce quite a few new keywords for Haskell’s type system, our am-
bitions were far grander than recreating a classical object-oriented system in
Haskell.46 Rather than focusing on types representing concrete models or actors

46 We (basically) already did this in
Racket.in our programs, we have focused on using types to encode generic modes of

computation: failing computations, stateful computations, and I/O computa-
tions.

But defining type constructors like Maybe, State, and IO to represent elements
of these computations was only a small part of what we did. After defining
Maybe and State, we could have performed any computation we wanted to with
these types simply by using let bindings, and called it a day. The novel part
was really our use of higher-order functions to abstract away even how we com-
puted on these types, allowing us to elegantly compose primitive values of these
types to express complex computations. And this, of course, is the true spirit of

principles of programming languages 147

functional programming.

But there is one additional layer of abstraction that we’ve only hinted at by our
choices of names for our operators. Though the contexts we studied were quite
different, we built the same operators to work for each one. To make this explicit,
let’s look at the type signatures for the one function common to all three:

1 andThen :: Maybe a -> (a -> Maybe b) -> Maybe b

2 andThen :: State s a -> (a -> State s b) -> State s b

3 (>>=) :: IO a -> (a -> IO b) -> IO b

And though the implementations differed for each context,47 their spirit of com-
47 We don’t even know how (>>=) is
implemented for IO!posing context-specific computations did not. As always when we see similar-

ities in definitions and behaviour, we look to precisely identify the commonali-
ties, which presents an opportunity for abstraction.

In fact, this is exactly what happens in Haskell: the similarity between Maybe,
State, and IO here is abstracted into a single type class, called Monad. We misled
you earlier in our discussion of I/O: if you query the type of either (>>) or
(>>=), you’ll see a type class constraint that generalizes IO:

1 > :t (>>)

2 (>>) :: Monad m => m a -> m b -> m b

3 > :t (>>=)

4 (>>=) :: Monad m => m a -> (a -> m b) -> m b

It is no coincidence that these functions were the ones we have explored in
great detail; they are two of the three functions which are part of the Monad

definition:48

48 You’ll find that the other function is
also very familiar, especially if you’ve
been keeping up with the exercises.1 class Monad m where

2 return :: a -> m a

3 (>>) :: Monad m => m a -> m b -> m b

4 (>>=) :: Monad m => m a -> (a -> m b) -> m b

You should have some intuition for these functions already based on how we’ve
used them in the various contexts, but here is a brief description of each one:

• return: take some pure value, and “wrap” it in the monadic context.
• (>>): chain together two monadic values; the result cannot depend on the

result of the first one.
• (>>=): chain together two monadic values; the result can depend on the result

of the first one.

Of course, generic terms like “chain” and “contents” change meaning depending

148 david liu

on the context, and this is reflected when we actually make instances of Monad.
For example, we can describe these functions in the IO context as follows:

• return: create an I/O action that does nothing except produces the given
value.

• (>>): combine two I/O actions into a new I/O action that performs the two
in sequence, producing the result of the second.

• (>>=): create a new I/O action that performs the first one, takes the result
and uses it to create a second action, and then performs that second action.

Maybe is also an instance of Monad, with the following definition:

1 instance Monad Maybe where

2 return = Just

3

4 Nothing >> _ = Nothing

5 (Just _) >> x = x

6

7 Nothing >>= _ = Nothing

8 (Just x) >>= f = f x

While the “bind” and “return” should look familiar, the “then” operator is new,
although it makes sense: it returns the second Maybe only when the first one is
a success.

We’ll leave it as an exercise to make State s an instance of Monad, and to describe
precisely what the three operations would mean in that context.

Why monads?

Because these contexts are so different, you might wonder what purpose it serves
to unite them under a single type class at all. It turns out that the common set of
operations—return, (>>), and (>>=)—are powerful enough to serve as building
blocks for much more complex, generic operations. Consider, for example, the
following situations:

• Take a list of results of possibly-failing computations, and return a list of the
success values if they were all successes, otherwise fail.

• Take a list of I/O actions, perform them all, and return the list of the produced
results.

• Take a list of stateful operations, perform them all in sequence on the same
initial state, and return a list of the results.

All of these actions have essentially the same type: [m a] -> m [a], where m is
either Maybe, State s, or IO. Moreover, all of them involve the type of chaining
that is captured in the monadic operations, so this should be a hint that we

principles of programming languages 149

can define a single function to accomplish all three of these. Because operating
with the monadic functions is relatively new to us, let us first try to implement
this—you guessed it—recursively.

1 seqM :: Monad m => [m a] -> m [a]

2 seqM [] = return []

The first thing to note is that we use return here in a very natural way, to put a
base value—the empty list—into a monadic context. For the recursive part, we
consider two parts: the first monadic value in the list (with type m a), and the
result of applying seqM to the rest of the list (with type m [a]).

1 seqM (m1:ms) =

2 let rest = seqM ms

3 in

4 ...

What do we want to do with these two values? Simple: we want to “cons” the
contained a value from the first one with the contained [a] from the second, and
then return the result:

1 seqM :: Monad m => [m a] -> m [a]

2 seqM [] = return []

3 seqM (m1:ms) =

4 let rest = seqM ms

5 in

6 -- extract the first value

7 m1 >>= \x ->

8 -- extract the other values

9 rest >>= \xs ->

10 return (x:xs)

“But wait,” you say. “What happened to all of the context-specific stuff, like
handling Nothing or mutating the state?” The brilliance of this is that all of that
is handled entirely by the implementation of (>>=) and return for the relevant
types, and seqM itself doesn’t need to know any of it!

1 > seqM [Just 10, Just 300, Just 15]

2 Just [10, 300, 15]

3 > (seqM [putStrLn "Hello", putStrLn "Goodbye", putStrLn "CSC324!!!"])

4 Hello

5 Goodbye

6 CSC324!!!

7 [(),(),()]

150 david liu

Now, this one example doesn’t mean that there aren’t times when you want,
say, Maybe-specific code. Abstraction is a powerful concept, but there is a limit
to how far you can abstract while still accomplishing what it is you want to do.
The Monad type class is simply a tool that you can use to design far more generic
code than you probably have in other languages. But what a tool it is.

Exercise Break!

3.1 Implement seqM using foldl.

4 In Which We Say Goodbye

If all you have is a hammer,
everything looks like a nail.

Law of the instrument

When teaching introductory computer science, we often deemphasize the id-
iosyncrasies and minutiae of the programming language(s) we use, focusing
instead on universal theoretical and practical concepts like control flow, data
structures, modularity, and testing. Programming languages are to computer
science what screwdrivers are to carpentry: useful tools, but a means to an end.
If you have a cool idea for the Next Big Thing, there are dozens, if not hundreds,
of programming languages and application frameworks1 to choose from.

1 Large, monolithic frameworks are
essentially specialized languages
themselves.It is easy to get lost in the myriad technical and non-technical details that we

use to compare languages. Though these are very important—and don’t get us
wrong, we covered several in this course—we must not lose sight of the forest
for the trees. At its core, the study of programming languages is the study of
how we communicate to computers: how language constructs and features inform
the properties of the code we can express.

Our first big idea was exploring how first-class functions allow us to write pro-
grams in a pure functional style, achieving greater abstraction through higher-
order functions and writing elegant code without side-effects. We then turned to
using macros to add two new constructs to Racket: class-based objects through
closures, and backtracking through declarative choice expressions using contin-
uations. Finally, we saw how to use a strong static type system in Haskell to
encode common language features like errors, mutation, and I/O in an explicit
and compile-time checkable way.

We hope you got the sense from this course that programming language research
is a truly exciting and fascinating field. If you are interested in learning more,
CSC465 studies a rigorous, mathematical approach for understanding the se-
mantics of (classical imperative) programming languages. CSC410 studies how
to specify and ensure the correctness of programs, using a combination of static
and dynamic analysis techniques. And CSC488, our compilers course, is funda-
mentally the study of translation: taking a human-readable, high-level language
and turning it into the sequence of primitive operations directly understandable
by a computer.

152 david liu

Newer, modern programming languages extend the functional programming
and static analysis ideas in interesting ways. Two languages of note that draw
inspiration from other domains are Elm, which uses the declarative functional
reactive programming paradigm to build web applications, and Rust, which uses
strong static analysis to add powerful compile-time safety guarantees at the low
level of systems programming. And of course, if you would like to talk about
any of the material in this course or beyond, don’t be afraid to ask! That’s what
we’re here for.

	Prelude: The Study of Programming Languages
	Programs and programming languages
	Models of computation
	A paradigm shift in you
	Course overview

	Functional Programming: Theory and Practice
	The baseline: ``universal'' built-ins
	Function expressions
	Function application
	Function purity
	Name bindings
	Lists and structural recursion
	Pattern-matching
	Higher-order functions
	Programming with abstract syntax trees
	Undefined programs and evaluation order
	Lexical closures
	Summary

	Macros, Objects, and Backtracking
	Object-oriented programming: a re-introduction
	Pattern-based macros
	Objects revisited
	The problem of self
	Manipulating control flow I: streams
	Manipulating control flow II: the ambiguous operator -<
	Continuations
	Using continuations in -<
	Using choices as subexpressions
	Branching choices
	Towards declarative programming

	Type systems
	Describing type systems
	The basics of Haskell's type system
	Defining types in Haskell
	Polymorphism I: type variables and generic polymorphism
	Polymorphism II: Type classes and ad hoc polymorphism
	Representing failing computations
	Modeling mutation in pure functional programming
	Impure I/O in a pure functional world
	Types as constraints
	One last abstraction: monads

	In Which We Say Goodbye

