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1 Introduction and analysing running time

Before we begin our study of different data structures and their applications, we
need to discuss how we will approach this study. In general, we will follow a
standard approach:

1. Motivate a new abstract data type or data structure with some examples and
reflection of previous knowledge.

2. Introduce a data structure, discussing both its mechanisms for how it stores
data and how it implements operations on this data.

3. Justify why the operations are correct.

4. Analyse the running time performance of these operations.

Given that we all have experience with primitive data structures such as arrays
(or Python lists), one might wonder why we need to study data structures at all:
can’t we just do everything with arrays and pointers, already available in many
languages?

Indeed, it is true that any data we want to store and any operation we want
to perform can be done in a programming language using primitive constructs
such as these. The reason we study data structures at all, spending time in-
venting and refining more complex ones, is largely because of the performance
improvements we can hope to gain over their more primitive counterparts.

This is not to say arrays and pointers
play no role. To the contrary, the study
of data structures can be viewed as
the study of how to organize and
synthesize basic programming language
components in new and sophisticated
ways.

Given the importance of this performance analysis, it is worth reviewing what
you already know about how to analyse the running time of algorithms, and
pointing out some common misconceptions and subtleties you may have missed
along the way.

How do we measure running time?

As we all know, the amount of time a program or single operation takes to run
depends on a host of external factors — computing hardware, other running
processes — over which the programmer has no control.

So, in our analysis, we focus on just one central measure of performance: the re-
lationship between an algorithm’s input size and the number of basic operations the
algorithm performs. But because even what is meant by “basic operation” can
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differ from machine to machine or programming language to programming lan-
guage, we do not try to precisely quantify the exact number of such operations,
but instead categorize how the number grows relative to the size of the algorithm’s
input.

This is our motivation for Big-Oh notation, which is used to bring to the fore-
ground the type of long-term growth of a function, hiding all the numeric con-
stants and smaller terms that do not affect this growth. For example, the func-
tions n + 1, 3n− 10, and 0.001n + log n all have the same growth behaviour as
n gets large: they all grow roughly linearly with n. Even though these “lines”
all have different slopes, we ignore these constants and simply say that these
functions are O(n), “Big-Oh of n.”

We will not give the formal definition
of Big-Oh here. For that, please consult
the CSC165 course notes.We call this type of analysis asymptotic analysis, since it deals with the long-term

behaviour of a function. It is important to remember two important facts about
asymptotic analysis:

• The target of the analysis is always a relationship between the size of the input
and number of basic operations performed.

What we mean by “size of the input” depends on the context, and we’ll always
be very careful when defining input size throughout this course. What we
mean by “basic operation” is any operation whose running time does not
depend on the size of the algorithm’s input.

This is deliberately a very liberal
definition of “basic operation.” We
don’t want you to get hung up on step
counting, because that’s completely
hidden by Big-Oh expressions.

• The result of the analysis is a qualitative rate of growth, not an exact number
or even an exact function. We will not say “by our asymptotic analysis, we
find that this algorithm runs in 5 steps” or even “...in 10n + 3 steps.” Rather,
expect to read (and write) statements like “we find that this algorithm runs
in O(n) time.”

Three different symbols

In practice, programmers (and even theoreticians) tend to use the Big-Oh sym-
bol O liberally, even when the precise definition of O is not exactly what we
intended. However, in this course it will be important to be precise, and we will
actually use three symbols to convey different pieces of information, so you will
be expected to know which one means what. Here is a recap:

• Big-Oh. f = O(g) means that the function f (x) grows slower or at the same
rate as g(x). So we can write x2 + x = O(x2), but it is also correct to write

Or, “g is an upper bound on the rate of
growth of f .”x2 + x = O(x100) or even x2 + x = O(2x).

• Omega. f = Ω(g) means that the function f (x) grows faster or at the same
rate as g(x). So we can write x2 + x = Ω(x2), but it is also correct to write

Or, “g is a lower bound on the rate of
growth of f .”x2 + x = Ω(x) or even x2 + x = Ω(log log x).

• Theta. f = Θ(g) means that the function f (x) grows at the same rate as g(x).
Or, “g has the same rate of growth as
f .”So we can write x2 + x = Θ(x2), but not x2 + x = Θ(2x) or x2 + x = Θ(x).

Note: saying f = Θ(g) is equivalent to saying that f = O(g) and f = Ω(g),
i.e., Theta is really an AND of Big-Oh and Omega.
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Through unfortunate systemic abuse of notation, most of the time when a com-
puter scientist says an algorithm runs in “Big-Oh of f time,” she really means
“Theta of f time.” In other words, that the function f is not just an upper bound
on the rate of growth of the running time of the algorithm, but is in fact the
rate of growth. The reason we get away with doing so is that in practice, the
“obvious” upper bound is in fact the rate of growth, and so it is (accidentally)
correct to mean Theta even if one has only thought about Big-Oh.

However, the devil is in the details: it is not the case in this course that the
“obvious” upper bound will always be the actual rate of growth, and so we will
say Big-Oh when we mean an upper bound, and treat Theta with the reverence
it deserves. Let us think a bit more carefully about why we need this distinction.

Worst-case analysis

The procedure of asymptotic analysis seems simple enough: look at a piece of
code; count the number of basic operations performed in terms of the input size,

remember, a basic operation is any
operation whose runtime doesn’t
depend on the input size

taking into account loops, helper functions, and recursive calls; then convert that
expression into the appropriate Theta form.

Given any exact mathematical function, it is always possible to determine its
qualitative rate of growth, i.e., its corresponding Theta expression. For example,
the function f (x) = 300x5 − 4x3 + x + 10 is Θ(x5), and that is not hard to figure
out.

So then why do we need Big-Oh and Omega at all? Why can’t we always just go
directly from the f (x) expression to the Theta?

It’s because we cannot always take a piece of code an come up with an exact
expression for the number of basic operations performed. Even if we take the
input size as a variable (e.g., n) and use it in our counting, we cannot always
determine which basic operations will be performed. This is because input size
alone is not the only determinant of an algorithm’s running time: often the value
of the input matters as well.

Consider, for example, a function that takes a list and returns whether this list
contains the number 263. If this function loops through the list starting at the
front, and stops immediately if it finds an occurrence of 263, then in fact the run-
ning time of this function depends not just on how long the list is, but whether
and where it has any 263 entries.

Asymptotic notations alone cannot help solve this problem: they help us clar-
ify how we are counting, but we have here a problem of what exactly we are
counting.

This problem is why asymptotic analysis is typically specialized to worst-case
analysis. Whereas asymptotic analysis studies the relationship between input
size and running time, worst-case analysis studies only the relationship between
input size of maximum possible running time. In other words, rather than an-
swering the question “what is the running time of this algorithm for an input
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size n?” we instead aim to answer the question “what is the maximum possible
running time of this algorithm for an input size n?” The first question’s answer
might be a whole range of values; the second question’s answer can only be a
single number, and that’s how we get a function involving n.

Some notation: we typically use the name T(n) to represent the maximum pos-
sible running time as a function of n, the input size. The result of our analysis
could be something like T(n) = Θ(n), meaning that the worst-case running time
of our algorithm grows linearly with the input size.

Bounding the worst case

But we still haven’t answered the question: where do O and Ω come in? The
answer is basically the same as before: even with our restricted focus on worst-
case running time, it is not always possible to calculate an exact expression for
this function. What is usually easy to do, however, is calculate an upper bound
on the maximum number of operations. One such example is the likely familiar
line of reasoning, “the loop will run at most n times” when searching for 263 in
a list of length n. Such analysis, which gives a pessimistic outlook on the most
number of operations that could theoretically happen, results in an exact count
— e.g., n + 1 — which is an upper bound on the maximum number of operations.
From this analysis, we can conclude that T(n), the worst-case running time, is
O(n).

What we can’t conclude is that T(n) = Ω(n). There is a subtle implication
here of the English phrase “at most.” When we say “you can have at most
10 chocolates,” it is generally understood that you can indeed have exactly 10

chocolates; whatever number is associated with “at most” is achievable.

In our analysis, however, we have no way of knowing that the upper bound
we obtain by being pessimistic in our operation counting is actually achievable.
This is made more obvious if we explicitly mention the fact that we’re studying
the maximum possible number of operations: “the maximum running time is
less than or equal to n + 1” surely says something different than “the maximum
running time is equal to n + 1.”

So how do we show that whatever upper bound we get on the maximum is
actually achievable? In practice, we rarely try to show that the exact upper
bound is achievable, since that doesn’t actually matter. Instead, we try to show
that an asymptotic lower bound — an Omega — is achievable. For example, we
might want to show that the maximum running time is Ω(n), i.e., grows at least
as quickly as n.

To show that the maximum running time grows at least as quickly as some func-
tion f , we need to find a family of inputs, one for each input size n, whose run-
ning time has a lower bound of f (n). For example, for our problem of searching
for 263 in a list, we could say that the family of inputs is “lists that contain only
0’s.” Running the search algorithm on such a list of length n certainly requires
checking each element, and so the algorithm takes at least n basic operations.
From this we can conclude that the maximum possible running time is Ω(n).

Remember, the constants don’t matter.
The family of inputs that contain only
1’s for the first half, and only 263’s for
the second half, would also have given
us the desired lower bound.
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To summarize: to perform a complete worst-case analysis and get a tight, Theta
bound on the worst-case running time, we need to do the following two things:

(i) Give a pessimistic upper bound on the number of basic operations that could
occur for any input of a fixed size n. Obtain the corresponding Big-Oh expres-
sion (i.e., T(n) = O( f )).

Observe that (i) is proving something
about all possible inputs, while (ii) is
proving something about just one family
of inputs.

(ii) Give a family of inputs (one for each input size), and give a lower bound on the
number of basic operations that occurs for this particular family of inputs.
Obtain the corresponding Omega expression (i.e., T(n) = Ω( f )).

If you have performed a careful analysis in (i) and chosen a good family in
(ii), then you’ll find that the Big-Oh and Omega expressions involve the same
function f , and which point you can conclude that the worst-case running time
is T(n) = Θ( f ).

Average-case analysis

So far in your career as computer scientists, you have been primarily concerned
with worst-case algorithm analysis. However, in practice this type of analysis
often ends up being misleading, with a variety of algorithms and data structures
having a poor worst-case performance still performing well on the majority of
possible inputs.

Some reflection makes this not too surprising: focusing on the maximum of a
set of numbers (like running times) says very little about the “typical” number
in that set, or, more precisely, the distribution of numbers within that set. In this
section, we will learn a powerful new technique that enables us to analyse some
notion of “typical” running time for an algorithm.

Warmup

Consider the following algorithm, which operates on a non-empty array of inte-
gers:

1 def evens_are_bad(lst):

2 if every number in lst is even:

3 repeat lst.length times:

4 calculate and print the sum of lst

5 return 1

6 else:

7 return 0

Let n represent the length of the input list lst. Suppose that lst contains only
even numbers. Then the initial check on line 2 takes Ω(n) time, while the com-
putation in the if branch takes Ω(n2) time. This means that the worst-case

We leave it as an exercise to justify why
the if branch takes Ω(n2) time.
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running time of this algorithm is Ω(n2). It is not too hard to prove the matching
upper bound, and so the worst-case running time is Θ(n2).

However, the loop only executes when every number in lst is even; when just
one number is odd, the running time is O(n), the maximum possible running
time of executing the all-even check. Intuitively, it seems much more likely that

Because executing the check might
abort quickly if it finds an odd number
early in the list, we used the pessimistic
upper bound of O(n) rather than Θ(n).

not every number in lst is even, so we expect the more “typical case” for this
algorithm is to have a running time bounded above by O(n), and only very
rarely to have a running time of Θ(n2).

Our goal now is to define precisely what we mean by the “typical case” for an
algorithm’s running time when considering a set of inputs. As is often the case
when dealing with the distribution of a quantity (like running time) over a set
of possible values, we will use our tools from probability theory to help achieve
this goal.

We define the average-case running time of an algorithm to be the function
Tavg(n) which takes a number n and returns the (weighted) average of the algo-
rithm’s running time for all inputs of size n.

For now, let’s ignore the “weighted” part, and just think of Tavg(n) as computing
the average of a set of numbers. What can we say about the average-case for the
function evens_are_bad? First, we fix some input size n. We want to compute
the average of all running times over all input lists of length n.

At this point you might be thinking, “well, each number is even with probability
one-half, so...” This is a nice thought, but a little premature – the first step
when doing an average-case analysis is to define the possible set of inputs.
For this example, we’ll start with a particularly simple set of inputs: the lists
whose elements are between 1 and 5, inclusive. The reason for choosing such a
restricted set is to simplify the calculations we need to perform when computing
an average.

As the calculation requires precise numbers, we will need to be precise about
what “basic operations” we’re counting. For this example, we’ll count only the
number of times a list element is accessed, either to check whether it is even,
or when computing the sum of the list. So a “step” will be synonymous with
“list access.”

It is actually fairly realistic to focus
solely on operations of a particular
type in a runtime analysis. We typically
choose the operation that happens the
most frequently (as in this case), or
the one which is the most expensive.
Of course, the latter requires that we
are intimately knowledgeable about
the low-level details of our computing
environment.

The preceding paragraphs are the work of setting up the context of our analysis:
what inputs we’re considering, and how we’re measuring runtime. The final
step is what we had initially talked about: compute the average running time
over inputs of length n. This often requires some calculation, so let’s get to it.
To simplify our calculations even further, we’ll assume that the all-evens check
on line 2 always accesses all n elements. In the loop, there are n2 steps (each

You’ll explore the “return early” variant
in an exercise.number is accessed n times, once per time the sum is computed).

There are really only two possibilities: the lists that have all even numbers will
run in n2 + n steps, while all the other lists will run in just n steps. How many
of each type of list are there? For each position, there are two possible even
numbers (2 and 4), so the number of lists of length n with every element being
even is 2n. That sounds like a lot, but consider that there are five possible values

In the language of counting: make
n independent decisions, with each
decision having two choices.
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per element, and hence 5n possible inputs in all. So 2n inputs have all even
numbers and take n2 + n steps, while the remaining 5n − 2n inputs take n steps.

Number Steps
all even 2n n2 + n
the rest 5n − 2n n

The average running time is:

Tavg(n) =
2n(n2 + n) + (5n − 2n)n

5n (5n inputs total)

=
2nn2

5n + n

=

(
2
5

)n
n2 + n

= Θ(n) Remember that any exponential grows
faster than any polynomial, so the first
term goes to 0 as n goes to infinity.

This analysis tells us that the average-case running time of this algorithm is
Θ(n), as our intuition originally told us. Because we computed an exact expres-
sion for the average number of steps, we could convert this directly into a Theta
expression.

As is the case with worst-case analysis,
it won’t always be so easy to compute
an exact expression for the average,
and in those cases the usual upper and
lower bounding must be done.

The probabilistic view

The analysis we performed in the previous section was done through the lens
of counting the different kinds of inputs and then computing the average of
their running times. However, there is a more powerful technique: treating the
algorithm’s running time as a random variable T, defined over the set of possible
inputs of size n. We can then redo the above analysis in this probabilistic context,
performing these steps:

1. Define the set of possible inputs and a probability distribution over this set. In
this case, our set is all lists of length n that contain only elements in the
range 1-5, and the probability distribution is the uniform distribution.

Recall that the uniform distribution
assigns equal probability to each
element in the set.

2. Define how we are measuring runtime. (This is unchanged from the previous
analysis.)

3. Define the random variable T over this probability space to represent the
running time of the algorithm.

Recall that a random variable is a
function whose domain is the set of
inputs.

In this case, we have the nice definition

T =

n2 + n, input contains only even numbers

n, otherwise

4. Compute the expected value of T, using the chosen probability distribution
and formula for T. Recall that the expected value of a variable is determined
by taking the sum of the possible values of T, each weighted by the probability
of obtaining that value.

E[T] = ∑
t

t · Pr[T = t]
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In this case, there are only two possible values for T:

E[T] = (n2 + n) · Pr[the list contains only even numbers]

+ n · Pr[the list contains at least one odd number]

= (n2 + n) ·
(

2
5

)n
+ n ·

(
1−

(
2
5

)n)
= n2 ·

(
2
5

)n
+ n

= Θ(n)

Of course, the calculation ended up being the same, even if we approached it
a little differently. The point to shifting to using probabilities is in unlocking
the ability to change the probability distribution. Remember that our first step,
defining the set of inputs and probability distribution, is a great responsibility
of the ones performing the runtime analysis. How in the world can we choose
a “reasonable” distribution? There is a tendency for us to choose distributions

What does it mean for a distribution to
be “reasonable,” anyway?that are easy to analyse, but of course this is not necessarily a good criterion for

evaluating an algorithm.

By allowing ourselves to choose not only what inputs are allowed, but also give
relative probabilities of those inputs, we can use the exact same technique to
analyse an algorithm under several different possible scenarios. This is both the
reason we use “weighted average” rather than simply “average” in our above
definition of average-case, and also how we are able to calculate it.

Exercise Break!

1.1 Prove that the evens_are_bad algorithm on page 11 has a worst-case running
time of O(n2), where n is the length of the input list.

1.2 Consider this alternate input space for evens_are_bad: each element in the
list is even with probability 99

100 , independent of all other elements. Prove that
under this distribution, the average-case running time is still Θ(n).

1.3 Suppose we allow the “all-evens” check on line 2 of evens_are_bad to stop
immediately after it finds an odd element. Perform a new average-case anal-
ysis for this mildly-optimized version of the algorithm using the same input
distribution as in the notes.

Hint: part of the running time T now can take on any value between 1 and n;
first compute the probability of getting each of these values, and then use the
expected value formula.

Quicksort is fast on average

The previous example may have been a little underwhelming, since it was “ob-
vious” that the worst-case was quite rare, and so not surprising that the average-
case running time is asymptotically faster than the worst-case. However, this is
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not a fact you should take for granted. Indeed, it is often the case that algorithms
are asymptotically no better “on average” than they are in the worst-case. Some-

Keep in mind that because asymptotic
notation hides the constants, saying two
functions are different asymptotically is
much more significant than saying that
one function is “bigger” than another.

times, though, an algorithm can have a significantly better average case than
worst case, but it is not nearly as obvious; we’ll finish off this chapter by study-
ing one particularly well-known example.

Recall the quicksort algorithm, which takes a list and sorts it by choosing one
element to be the pivot (say, the first element); partitioning the remaining ele-
ments into two parts, those less than the pivot, and those greater than the pivot;
recursively sorting each part; and then combining the results.

1 def quicksort(array):

2 if array.length < 2:

3 return

4 else:

5 pivot = array[0]

6 smaller, bigger = partition(array[1:], pivot)

7 quicksort(smaller)

8 quicksort(bigger)

9 array = smaller + [pivot] + bigger # array concatenation

10

11 def partition(array, pivot):

12 smaller = []

13 bigger = []

14 for item in array:

15 if item <= pivot:

16 smaller.append(item)

17 else:

18 bigger.append(item)

19 return smaller, bigger

This version of quicksort uses linear-
size auxiliary storage; we chose this
because it is a little simpler to write
and analyse. The more standard “in-
place” version of quicksort has the
same running time behaviour, it just
uses less space.

You have seen in previous courses that the choice of pivot is crucial, as it de-
termines the size of each of the two partitions. In the best case, the pivot is the
median, and the remaining elements are split into partitions of roughly equal
size, leading to a running time of Θ(n log n), where n is the size of the list.
However, if the pivot is always chosen to be the maximum element, then the
algorithm must recurse on a partition that is only one element smaller than the
original, leading to a running time of Θ(n2).

So, given that there is a difference between the best- and worst-case running
times of quicksort, the next natural question to ask is: What is the average-case
running time? This is what we’ll answer in this section.

First, let n be the length of the list. Our set of inputs is all possible permutations
of the numbers 1 to n (inclusive). We’ll assume any of these n! permutations

Our analysis will therefore assume the
lists have no duplicates.are equally likely; in other words, we’ll use the uniform distribution over all

possible permutations of {1, . . . , n}. We will measure runtime by counting the
number of comparisons between elements in the list in the partition function.
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Let T be the random variable counting the number of comparisons made. Before
starting the computation of E[T], we define additional random variables: for
each i, j ∈ {1, . . . , n} with i < j, let Xij be the indicator random variable defined
as:

Xij =

1, if i and j are compared

0, otherwise

Because each pair is compared at most once, we obtain the total number of
Remember, this is all in the context of
choosing a random permutation.

comparisons simply by adding these up:

T =
n

∑
i=1

n

∑
j=i+1

Xij.

The purpose of decomposing T into a sum of simpler random variables is that
we can now apply the linearity of expectation (see margin note).

If X, Y, and Z are random variables and
X = Y + Z, then E[X] = E[Y] + E[Z],
even if Y and Z are dependent.

E[T] =
n

∑
i=1

n

∑
j=i+1

E[Xij]

=
n

∑
i=1

n

∑
j=i+1

Pr[i and j are compared] Recall that for an indicator random
variable, its expected value is simply
the probability that it takes on the value
1.

To make use of this “simpler” form, we need to investigate the probability that
i and j are compared when we run quicksort on a random array.

Proposition 1.1. Let 1 ≤ i < j ≤ n. The probability that i and j are compared
when running quicksort on a random permutation of {1, . . . , n} is 2/(j− i + 1).

Proof. First, let us think about precisely when elements are compared with each
other in quicksort. Quicksort works by selecting a pivot element, then comparing
the pivot to every other item to create two partitions, and then recursing on each
partition separately. So we can make the following observations:

(i) Every comparison must involve the “current” pivot.

(ii) The pivot is only compared to the items that have always been placed into the
same partition as it by all previous pivots.

Or, once two items have been put into
different partitions, they will never be
compared.So in order for i and j to be compared, one of them must be chosen as the

pivot while the other is in the same partition. What could cause i and j to be
in different partitions? This only happens if one of the numbers between i and
j (exclusive) is chosen as a pivot before i or j is chosen. So then i and j are
compared by quicksort if and only if one of them is selected to be pivot first out
of the set of numbers {i, i + 1, . . . , j}.

Because we’ve given an implementation of quicksort that always chooses the first
item to be the pivot, the item that is chosen first as pivot must be the one that
appears first in the random input permutation. Since we choose the permutation

Of course, the input list contains other
numbers, but because our partition
algorithm preserves relative order
within a partition, if a appears before
b in the original list, then a will still
appear before b in every subsequent
partition that contains them both.
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uniformly at random, each item in the set {i, . . . , j} is equally likely to appear
first, and thus be chosen first as pivot.

Finally, because there are j− i + 1 numbers in this set, the probability that either
i or j is chosen first is 2/(j− i + 1), and this is the probability that i and j are
compared. �

Now that we have this probability computed, we can return to our expected
value calculation to complete our average-case analysis.

Theorem 1.2 (Quicksort average-case runtime). The average number of com-
parisons made by quicksort on a uniformly chosen random permutation of
{1, . . . , n} is Θ(n log n).

Proof. As before, let T be the random variable representing the running time of
quicksort. Our previous calculations together show that

E[T] =
n

∑
i=1

n

∑
j=i+1

Pr[i and j are compared]

=
n

∑
i=1

n

∑
j=i+1

2
j− i + 1

=
n

∑
i=1

n−i

∑
j′=1

2
j′ + 1

(change of index j′ = j− i)

= 2
n

∑
i=1

n−i

∑
j′=1

1
j′ + 1 i j′ values

1 1, 2, 3, . . . , n− 2, n− 1
2 1, 2, 3, . . . , n− 2
...

...
n− 3 1, 2, 3
n− 2 1, 2
n− 1 1

n

Now, note that the individual terms of the inner summation don’t depend on i;
only the bound does. The first term, when j′ = 1, occurs when 1 ≤ i ≤ n− 1,
or n− 1 times in total; the second (j′ = 2) occurs when i ≤ n− 2, and in general
the j′ = k term appears n− k times.

So we can simplify the counting to eliminate the summation over i:

E[T] = 2
n−1

∑
j′=1

n− j′

j′ + 1

= 2
n−1

∑
j′=1

(
n + 1
j′ + 1

− 1
)

= 2(n + 1)
n−1

∑
j′=1

1
j′ + 1

− 2(n− 1)

We will use the fact from mathematics that the function ∑n−1
i=1

1
i+1 is Θ(log n),

Actually, we even know the exact
constant hidden in the Θ: Look up the
Harmonic series if you’re interested in
learning more!

and so we get that E[T] = Θ(n log n). �
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Exercise Break!

1.4 Review the insertion sort algorithm, which builds up a sorted list by repeat-
edly inserting new elements into a sorted sublist (usually at the front). We
know that its worst-case running time is Θ(n2), but its best case is Θ(n), even
better than quicksort. So, does it beat quicksort on average?

Suppose we run insertion sort on a random permutation of the numbers
{1, . . . , n}, and consider counting the number of swaps as the running time.
Let T be the random variable representing the total number of swaps.

(a) For each 1 ≤ i ≤ n, define the random variable Si to be the number of
swaps made when i is inserted into the sorted sublist.

Express T in terms of Si.

(b) For each 1 ≤ i, j ≤ n, define the random indicator variables Xij that is 1 if i
and j are swapped during insertion sort.

Express Si in terms of the Xij.

(c) Prove that E[Xij] = 1/2.

(d) Show that the average-case running time of insertion sort is Θ(n2).



2 Priority Queues and Heaps

In this chapter, we will study our first major data structure: the heap. As this
is our first extended analysis of a new data structure, it is important to pay
attention to the four components of this study outlined at the previous chapter:

1. Motivate a new abstract data type or data structure with some examples and
reflection of previous knowledge.

2. Introduce a data structure, discussing both its mechanisms for how it stores
data and how it implements operations on this data.

3. Justify why the operations are correct.

4. Analyse the running time performance of these operations.

Abstract data type vs. data structure

The study of data structures involves two principal, connected pieces: a speci-
fication of what data we want to store and operations we want to support, and
an implementation of this data type. We tend to blur the line between these
two components, but the difference between them is fundamental, and we often
speak of one independently of the other. So before we jump into our first major
data structure, let us remind ourselves of the difference between these two.

Definition 2.1 (abstract data type, data structure). An abstract data type (ADT)
is a theoretical model of an entity and the set of operations that can be performed
on that entity.

The key term is abstract: an ADT is a
definition that can be understood and
communicated without any code at all.A data structure is a value in a program which can be used to store and operate

on data.

For example, contrast the difference between the List ADT and an array data
structure.

List ADT

• Length(L): Return the number of items in L.

• Get(L, i): Return the item stored at index i in L.

• Store(L, i, x): Store the item x at index i in L.
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There may be other operations you
think are fundamental to lists; we’ve
given as bare-bones a definition as
possible.

This definition of the List ADT is clearly abstract: it specifies what the possible
operations are for this data type, but says nothing at all about how the data is
stored, or how the operations are performed.

It may be tempting to think of ADTs as the definition of interfaces or abstract
classes in a programming language – something that specifies a collection of
methods that must be implemented – but keep in mind that it is not necessary
to represent an ADT in code. A written description of the ADT, such as the one
we gave above, is perfectly acceptable.

On the other hand, a data structure is tied fundamentally to code. It exists as
an entity in a program; when we talk about data structures, we talk about how
we write the code to implement them. We are aware of not just what these data
structures do, but how they do them.

When we discuss arrays, for example, we can say that they implement the List
ADT; i.e., they support the operations defined in the List ADT. However, we can
say much more than this:

• Arrays store elements in consecutive locations in memory

• They perform Get and Store in constant time with respect to the length of
the array.

• How Length is supported is itself an implementation detail specific to a
particular language. In C, arrays must be wrapped in a struct to manually
store their length; in Java, arrays have a special immutable attribute called
length; in Python, native lists are implemented using arrays an a member to

At least, the standard CPython imple-
mentation of Python.store length.

The main implementation-level detail that we’ll care about this in course is the
running time of an operation. This is not a quantity that can be specified in the
definition of an ADT, but is certainly something we can study if we know how
an operation is implemented in a particular data structure.

The Priority Queue ADT

The first abstract data type we will study is the Priority Queue, which is similar
in spirit to the stacks and queues that you have previously studied. Like those
data types, the priority queue supports adding and removing an item from a
collection. Unlike those data types, the order in which items are removed does
not depend on the order in which they are added, but rather depends on a
priority which is specified when each item is added.

A classic example of priority queues in practice is a hospital waiting room: more
severe injuries and illnesses are generally treated before minor ones, regardless
of when the patients arrived at the hospital.

Priority Queue ADT
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• Insert(PQ, x, priority): Add x to the priority queue PQ with the given prior-
ity.

• FindMax(PQ): Return the item in PQ with the highest priority.

• ExtractMax(PQ): Remove and return the item from PQ with the highest
priority.

As we have already discussed, one of the biggest themes of this course is the dis-
tinction between the definition of an abstract data type, and the implementation
of that data type using a particular data structure. To emphasize that these are

One can view most hospital waiting
rooms as a physical, buggy implemen-
tation of a priority queue.

separate, we will first give a naïve implementation of the Priority Queue ADT
that is perfectly correct, but inefficient. Then, we will contrast this approach
with one that uses the heap data structure.

A basic implementation

Let us consider using an unsorted linked list to implement a priority queue. In
this case, adding a new item to the priority queue can be done in constant time:
simply add the item and corresponding priority to the front of the linked list.
However, in order to find or remove the item with the lowest priority, we must
search through the entire list, which is a linear-time operation.

Given a new ADT, it is often helpful to come up with a “naïve” or “brute force”
implementation using familiar primitive data structures like arrays and linked
lists. Such implementations are usually quick to come up with, and analysing
the running time of the operations is also usually straight-forward. Doing this
analysis gives us targets to beat: given that we can code up an implementation
of priority queue which supports Insert in Θ(1) time and FindMax and Ex-
tractMax in Θ(n) time, can we do better using a more complex data structure?
The rest of this chapter is devoted to answering this question.

26 def Insert(PQ, x, priority):

27 n = Node(x, priority)

28 oldHead = PQ.head

29 n.next = old_head

30 PQ.head = n

31

32

33 def FindMax(PQ):

34 n = PQ.head

35 maxNode = None

36 while n is not None:

37 if maxNode is None or n.priority > maxNode.priority:

38 maxNode = n

39 n = n.next

40 return maxNode.item

41

42

43 def ExtractMax(PQ):
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44 n = PQ.head

45 prev = None

46 maxNode = None

47 prevMaxNode = None

48 while n is not None:

49 if maxNode is None or n.priority > maxNode.priority:

50 maxNode, prevMaxNode = n, prevNode

51 prev, n = n, n.next

52

53 if prevMaxNode is None:

54 self.head = maxNode.next

55 else:

56 prevMaxNode.next = maxNode.next

57

58 return maxNode.item

Heaps

Recall that a binary tree is a tree in which every node has at most two children,
which we distinguish by calling the left and right. You probably remember
studying binary search trees, a particular application of a binary tree that can
support fast insertion, deletion, and search.

We’ll look at a more advanced form of
binary search trees in the next chapter.

Unfortunately, this particular variant of binary trees does not exactly suit our
purposes, since the item with the highest priority will generally be at or near
the bottom of a BST. Instead, we will focus on a variation of binary trees that
uses the following property:

Definition 2.2 (heap property). A tree satisfies the heap property if and only if
for each node in the tree, the value of that node is greater than or equal to the
value of all of its descendants.

Alternatively, for any pair of nodes a, b in the tree, if a is an ancestor of b, then
the value of a is greater than or equal to the value of b.

This property is actually less stringent than the BST property: given a node
which satisfies the heap property, we cannot conclude anything about the rela-
tionships between its left and right subtrees. This means that it is actually much
easier to get a compact, balanced binary tree that satisfies the heap property
than one that satisfies the BST property. In fact, we can get away with enforcing
as strong a balancing as possible for our data structure.

Definition 2.3 (complete binary tree). A binary tree is complete if and only if it
satisfies the following two properties:

• All of its levels are full, except possibly the bottom one.
Every leaf must be in one of the two
bottommost levels.
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• All of the nodes in the bottom level are as far to the left as possible.

A

B C

D E F

Complete trees are essentially the trees which are most “compact.” A complete
tree with n nodes has dlog ne height, which is the smallest possible height for a
tree with this number of nodes.

Moreover, because we also specify that the nodes in the bottom layer must be as
far left as possible, there is never any ambiguity about where the “empty” spots
in a complete tree are. There is only one complete tree shape for each number of nodes.

Because of this, we do not need to use up space to store references between
nodes, as we do in a standard binary tree implementation. Instead, we fix a
conventional ordering of the nodes in the heap, and then simply write down the
items in the heap according to that order. The order we use is called level order,
because it orders the elements based on their depth in the tree: the first node is
the root of the tree, then its children (at depth 1) in left-to-right order, then all
nodes at depth 2 in left-to-right order, etc.

The array representation of the above
complete binary tree.

A B C D E F
With these two definitions in mind, we can now define a heap.

Definition 2.4 (heap). A heap is a binary tree that satisfies the heap property and
is complete.

We implement a heap in a program as an array, where the items in the array
correspond to the level order of the actual binary tree.

This is a nice example of how we use
primitive data structures to build
more complex ones. Indeed, a heap is
nothing sophisticated from a technical
standpoint; it is merely an array whose
values are ordered in a particular way.

A note about array indices

In addition to being a more compact representation of a complete binary tree,
this array representation has a beautiful relationship between the indices of a
node in the tree and those of its children.

We assume the items are stored starting at index 1 rather than 0, which leads to
the following indices for the nodes in the tree.

1

2 3

4 5 6 7

8 9 10 11 12

We are showing the indices where each
node would be stored in the array.

A pattern quickly emerges. For a node corresponding to index i, its left child is
stored at index 2i, and its right child is stored at index 2i + 1. Going backwards,
we can also deduce that the parent of index i (when i > 1) is stored at index
bi/2c. This relationship between indices will prove very useful in the following
section when we start performing more complex operations on heaps.

Heap implementation of a priority queue

Now that we have defined the heap data structure, let us see how to use it to
implement the three operations of a priority queue.

FindMax becomes very simple to both implement and analyse, because the root
of the heap is always the item with the maximum priority, and in turn is always
stored at the front of the array.

Remember that indexing starts at 1

rather than 0.
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1 def FindMax(PQ):

2 return PQ[1]

Remove is a little more challenging. Obviously we need to remove the root of
the tree, but how do we decide what to replace it with? One key observation is
that because the resulting heap must still be complete, we know how its structure
must change: the very last (rightmost) leaf must no longer appear.
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Rightmost leaf 17 is moved to the root.

50

30 45

28 20 16 2

8 19 17

17 is swapped with 45 (since 45 is
greater than 30).

17

30 45

28 20 16 2

8 19

So our first step is to save the root of the tree, and then replace it with the last
leaf. (Note that we can access the leaf in constant time because we know the size
of the heap, and the last leaf is always at the end of the list of items.)

No more swaps occur; 17 is greater
than both 16 and 2.

45

30 17

28 20 16 2

8 19

But the last leaf priority is smaller than many other priorities, and so if we
leave the heap like this, the heap property will be violated. Our last step is to
repeatedly swap the moved value with one of its children until the heap property
is satisfied once more. On each swap, we choose the larger of the two children
to ensure that the heap property is preserved.

The repeated swapping is colloquially
called the “bubble down” step, refer-
ring to how the last leaf starts at the
top of the heap and makes its way back
down in the loop.

29 def ExtractMax(PQ):

30 temp = PQ[1]

31 PQ[1] = PQ[PQ.size] # Replace the root with the last leaf

32 PQ.size = PQ.size - 1

33

34 # Bubble down

35 i = 1

36 while i < PQ.size:

37 curr_p = PQ[i].priority

38 left_p = PQ[2*i].priority

39 right_p = PQ[2*i + 1].priority

40

41 # heap property is satisfied

42 if curr_p >= left_p and curr_p >= right_p:

43 break

44 # left child has higher priority

45 else if left_p >= right_p:

46 PQ[i], PQ[2*i] = PQ[2*i], PQ[i]

47 i = 2*i

48 # right child has higher priority

49 else:

50 PQ[i], PQ[2*i + 1] = PQ[2*i + 1], PQ[i]

51 i = 2*i + 1

52

53 return temp

What is the running time of this algorithm? All individual lines of code take
constant time, meaning the runtime is determined by the number of loop itera-
tions.

At each iteration, either the loop stops immediately, or i increases by at least a
factor of 2. This means that the total number of iterations is at most log n, where
n is the number of items in the heap. The worst-case running time of Remove

is therefore O(log n).

The implementation of Insert is similar. We again use the fact that the number
of items in the heap completely determines its structure: in this case, because a



26 david liu

new item is being added, there will be a new leaf immediately to the right of
the current final leaf, and this corresponds to the next open position in the array
after the last item.

So our algorithm simply puts the new item there, and then performs an inverse
of the swapping from last time, comparing the new item with its parent, and
swapping if it has a larger priority. The margin diagrams show the result of
adding 35 to the given heap.

A “bubble up” instead of “bubble
down”

45

30 17

28 20 16 2

8 19 35

45

30 17

28 35 16 2

8 19 20

45

35 17

28 30 16 2

8 19 20

35 is swapped twice with its parent (20,
then 30), but does not get swapped with
45.

56 def Insert(PQ, x, priority):

57 PQ.size = PQ.size + 1

58 PQ[PQ.size].item = x

59 PQ[PQ.size].priority = priority

60

61 i = PQ.size

62 while i > 1:

63 curr_p = PQ[i].priority

64 parent_p = PQ[i // 2].priority

65

66 if curr_p <= parent_p: # heap property satisfied, break

67 break

68 else:

69 PQ[i], PQ[i // 2] = PQ[i // 2], PQ[i]

70 i = i // 2

Again, this loop runs at most log n iterations, where n is the number of items in
the heap. The worst-case running time of this algorithm is therefore O(log n).

Runtime summary

Let us compare the worst-case running times for the three operations for the two
different implementations we discussed in this chapter. In this table, n refers to
the number of elements in the priority queue.

Operation Linked list Heap
Insert Θ(1) Θ(log n)

FindMax Θ(n) Θ(1)
ExtractMax Θ(n) Θ(log n)

This table nicely illustrates the tradeoffs generally found in data structure design
and implementation. We can see that heaps beat unsorted linked lists in two of
the three priority queue operations, but are asymptotically slower than unsorted
linked lists when adding a new element. Now, this particular case is not much
of a choice: that the slowest operation for heaps runs in Θ(log n) time in the
worst case is substantially better than the corresponding Θ(n) time for unsorted
linked lists, and in practice heaps are indeed widely used.

The reason for the speed of the heap operations is the two properties – the
heap property and completeness – that are enforced by the heap data structures.
These properties impose a structure on the data that allows us to more quickly
extract the desired information. The cost of these properties is that they must
be maintained whenever the data structure is mutated. It is not enough to take
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a new item and add it to the end of the heap array; it must be “bubbled up” to
its correct position to maintain the heap property, and this is what causes the
Insert operation to take longer.

Heapsort and building heaps

In our final section of this chapter, we will look at one interesting application
of heaps to a fundamental task in computer science: sorting. Given a heap, we
can extract a sorted list of the elements in the heap simply by repeatedly calling
Remove and adding the items to a list.

Of course, this technically sorts by
priority of the items. In general, given
a list of values to sort, we would treat
these values as priorities for the pur-
pose of priority queue operations.

However, to turn this into a true sorting algorithm, we need a way of converting
an input unsorted list into a heap. To do this, we interpret the list as the level
order of a complete binary tree, same as with heaps. The difference is that this
binary tree does not necessarily satisfy the heap property, and it is our job to fix
it.

We can do this by performing the “bubble down” operation on each node in the
tree, starting at the bottom node and working our way up.

9 def BuildHeap(items):

10 i = items.size

11 while i > 0:

12 BubbleDown(items, i)

13 i = i - 1

14

15 def BubbleDown(heap, i):

16 while i < heap.size:

17 curr_p = heap[i].priority

18 left_p = heap[2*i].priority

19 right_p = heap[2*i + 1].priority

20

21 # heap property is satisfied

22 if curr_p >= left_p and curr_p >= right_p:

23 break

24 # left child has higher priority

25 else if left_p >= right_p:

26 PQ[i], PQ[2*i] = PQ[2*i], PQ[i]

27 i = 2*i

28 # right child has higher priority

29 else:

30 PQ[i], PQ[2*i + 1] = PQ[2*i + 1], PQ[i]

31 i = 2*i + 1

What is the running time of this algorithm? Let n be the length of items. Then
the loop in BubbleDown iterates at most log n times; since BubbleDown is
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called n times, this means that the worst-case running time is O(n log n).

However, this is a rather loose analysis: after all, the larger i is, the fewer itera-
tions the loop runs. And in fact, this is a perfect example of a situation where
the “obvious” upper bound on the worst-case is actually not tight, as we shall
soon see.

To be more precise, we require a better understanding of how long Bubble-
Down takes to run as a function of i, and not just the length of items. Let
T(n, i) be the maximum number of loop iterations of BubbleDown for input i
and a list of length n. Then the total number of iterations in all n calls to Bub-

Note that T, a runtime function, has
two inputs, reflecting our desire to
incorporate both i and n in our analysis.

bleDown from BuildHeap is ∑n
i=1 T(n, i). So how do we compute T(n, i)? The

maximum number of iterations is simply the height h of node i in the complete
binary tree with n nodes.

Each iteration goes down one level in
the tree.

So we can partition the nodes based on their height:

n

∑
i=1

T(i, n) =
k

∑
h=1

h · # nodes at height h

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

The final question is, how many nodes are at height h in the tree? To make the
analysis simpler, suppose the tree has height k and n = 2k − 1 nodes; this causes
the binary tree to have a full last level. Consider the complete binary tree shown
at the right (k = 4). There are 8 nodes at height 1 (the leaves), 4 nodes at height
2, 2 nodes at height 3, and 1 node at height 4 (the root). In general, the number
of nodes at height h when the tree has height k is 2k−h. Plugging this into the
previous expression for the total number of iterations yields:

n

∑
i=1

T(n, i) =
k

∑
h=1

h · # nodes at height h

=
k

∑
h=1

h · 2k−h

= 2k
k

∑
h=1

h
2h (2k doesn’t depend on h)

= (n + 1)
k

∑
h=1

h
2h (n = 2k − 1)

< (n + 1)
∞

∑
h=1

h
2h

It turns out quite remarkably that ∑∞
h=1

h
2h = 2, and so the total number of

iterations is less than 2(n + 1).

Bringing this back to our original problem, this means that the total cost of
all the calls to BubbleDown is O(n), which leads to a total running time of
BuildHeap of O(n), i.e., linear in the size of the list.

Note that the final running time de-
pends only on the size of the list:
there’s no “i” input to BuildHeap,
after all. So what we did was a more
careful analysis of the helper function
BubbleDown, which did involve i,
which we then used in a summation
over all possible values for i.
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The Heapsort algorithm

Now let us put our work together with the heapsort algorithm. Our first step
is to take the list and convert it into a heap. Then, we repeatedly extract the
maximum element from the heap, with a bit of a twist to keep this sort in-place:
rather than return it and build a new list, we simply swap it with the current last
leaf, making sure to decrement the heap size so that the max is never touched
again for the remainder of the algorithm.

34 def Heapsort(items):

35 BuildHeap(items)

36

37 # Repeated build up a sorted list from the back of the list, in place.

38 # sorted\_index is the index immediately before the sorted part.

39 sorted_index = items.size

40 while sorted_index > 1:

41 swap items[sorted_index], items[1]

42 sorted_index = sorted_index - 1

43

44 # BubbleDown uses items.size, and so won't touch the sorted part.

45 items.size = sorted_index

46 BubbleDown(items, 1)

Let n represent the number of elements in items. The loop maintains the in-
variant that all the elements in positions sorted_index + 1 to n, inclusive, are
in sorted order, and are bigger than any other items remaining in the “heap”
portion of the list, the items in positions 1 to sorted_index.

Unfortunately, it turns out that even though BuildHeap takes linear time, the
repeated removals of the max element and subsequent BubbleDown operations
in the loop in total take Ω(n log n) time in the worst-case, and so heapsort also
has a worst-case running time of Ω(n log n).

This may be somewhat surprising, given that the repeated BubbleDown oper-
ations operate on smaller and smaller heaps, so it seems like the analysis should
be similar to the analysis of BuildHeap. But of course the devil is in the details
– we’ll let you explore this in the exercises.

Exercise Break!

2.1 Consider the following variation of BuildHeap, which starts bubbling down
from the top rather than the bottom:

1 def BuildHeap(items):

2 i = 1

3 while i < items.size:
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4 BubbleDown(items, i)

5 i = i + 1

(a) Give a good upper bound on the running time of this algorithm.

(b) Is this algorithm also correct? If so, justify why it is correct. Otherwise,
give a counterexample: an input where this algorithm fails to produce a
true heap.

2.2 Analyse the running time of the loop in Heapsort. In particular, show that
its worst-case running time is Ω(n log n), where n is the number of items in
the heap.



3 Dictionaries, Round One: AVL Trees

In this chapter and the next, we will look at two data structures that take very
different approaches to implementing the same abstract data type: the dictio-
nary. A dictionary is a collection of key-value pairs that supports the following
operations:

Dictionary ADT

• Search(D, key): return the value corresponding to a given key in the dictio-
nary.

• Insert(D, key, value): insert a new key-value pair into the dictionary.

• Delete(D, key): remove the key-value pair with the given key from the dic-
tionary.

You have probably seen some basic uses of dictionaries in your prior program-
ming experience; Python dicts and Java Maps are realizations of this ADT in
these two languages. We use dictionaries as a simple and efficient tool in our
applications for storing associative data with unique key identifiers, such as map-
ping student IDs to a list of courses each student is enrolled in. Dictionaries
are also fundamental in the behind-the-scenes implementation of programming
languages themselves, from supporting identifier lookup during programming
compilation or execution, to implementing dynamic dispatch for method lookup
during runtime.

One might wonder why we devote two chapters to data structures implement-
ing dictionaries at all, given that we can implement this functionality using the
various list data structures at our disposal. Of course, the answer is efficiency:
it is not obvious how to use either a linked list or array to support all three of
these operations in better than Θ(n) worst-case time. In these two chapters, we

or even on average
will examine some new data structures that do better both in the worst case and
on average.

Naïve Binary Search Trees

Recall the definition of a binary search tree (BST), which is a binary tree that
satisfies the binary search tree property: for every node, its key is ≥ every key in its
left subtree, and ≤ every key in its right subtree. An example of a binary search
tree is shown in the figure on the right, with each key displayed.

40

20 55

5 31 47 70

0 10 27 37 41
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We can use binary search trees to implement the Dictionary ADT, assuming the
keys can be ordered. Here is one naïve implementation of the three functions
Search, Insert, and Delete for a binary search tree – you have seen some-
thing similar before, so we won’t go into too much detail here.

The Search algorithm is the simple recursive approach, using the BST property
to decide which side of the BST to recurse on. The Insert algorithm basically
performs a search, stopping only when it reaches an empty spot in the tree,
and inserts a new node. The Delete algorithm searches for the given key,
then replaces the node with either its predecessor (the maximum key in the left
subtree) or its successor (the minimum key in the right subtree).

7 def Search(D, key):

8 # Return the value in <D> corresponding to <key>, or None if key doesn't appear

9 if D is empty:

10 return None

11 else if D.root.key == key:

12 return D.root.value

13 else if D.root.key > key:

14 return Search(D.left, key)

15 else:

16 return Search(D.right, key)

17

18

19 def Insert(D, key, value):

20 if D is empty:

21 D.root.key = key

22 D.root.value = value

23 else if D.root.key >= key:

24 Insert(D.left, key, value)

25 else:

26 Insert(D.right, key, value)

27

28

29 def Delete(D, key):

30 if D is empty:

31 pass # do nothing

32 else if D.root.key == key:

33 D.root = ExtractMax(D.left) or ExtractMin(D.right)

34 else if D.root.key > key:

35 Delete(D.left, key)

36 else:

37 Delete(D.right, key)

We omit the implementations of Ex-
tractMax and ExtractMin. These
functions remove and return the key-
value pair with the highest and lowest
keys from a BST, respectively.

All three of these algorithms are recursive; in each one the cost of the non-
recursive part is Θ(1) (simply some comparisons, attribute access/modification),
and so each has running time proportional to the number of recursive calls
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made. Since each recursive call is made on a tree of height one less than its
parent call, in the worst-case the number of recursive calls is h, the height of the
BST. This means that an upper bound on the worst-case running time of each of
these algorithms is O(h).

We leave it as an exercise to show that
this bound is in fact tight in all three
cases.However, this bound of O(h) does not tell the full story, as we measure the size

of a dictionary by the number of key-value pairs it contains and not the height
of some underlying tree. A binary tree of height h can have anywhere from h to
2h − 1 nodes, and so in the worst case, a tree of n nodes can have height n. This
leads to a worst-case running time of O(n) for all three of these algorithms (and
again, you can show that this bound is tight).

But given that the best case for the height of a tree of n nodes is log n, it seems
as though a tree of n nodes having height anywhere close to n is quite extreme
– perhaps we would be very “unlucky” to get such trees. As you’ll show in the
exercises, the deficiency is not in the BST property itself, but how we implement
insertion and deletion. The simple algorithms we presented above make no
effort to keep the height of the tree small when adding or removing values,
leaving it quite possible to end up with a very linear-looking tree after repeatedly
running these operations. So the question is: can we implement BST insertion and
deletion to not only insert/remove a key, but also keep the tree’s height (relatively) small?

Exercise Break!

3.1 Prove that the worst-case running time of the naïve Search, Insert, and
Delete algorithms given in the previous section run in time Ω(h), where h
is the height of the tree.

3.2 Consider a BST with n nodes and height n, structured as follows (keys shown):

1

2

. . .

n

Suppose we pick a random key between 1 and n, inclusive. Compute the
expected number of key comparisons made by the search algorithm for this
BST and chosen key.

3.3 Repeat the previous question, except now n = 2h − 1 for some h, and the BST
is complete (so it has height exactly h).

3.4 Suppose we start with an empty BST, and want to insert the keys 1 through n
into the BST.

(a) What is an order we could insert the keys so that the resulting tree has
height n? (Note: there’s more than one right answer.)
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(b) Assume n = 2h − 1 for some h. Describe an order we could insert the keys
so that the resulting tree has height h.

(c) Given a random permutation of the keys 1 through n, what is the probability
that if the keys are inserted in this order, the resulting tree has height n?

(d) (Harder) Assume n = 2h − 1 for some h. Given a random permutation of
the keys 1 through n, what is the probability that if the keys are inserted in
this order, the resulting tree has height h?

AVL Trees

Well, of course we can improve on the naïve Search and Delete – otherwise
we wouldn’t talk about binary trees in CS courses nearly as much as we do.
Let’s focus on insertion first for some intuition. The problem with the insertion
algorithm above is that it always inserts a new key as a leaf of the BST, without
changing the position of any other nodes. This renders the structure of the

Note that for inserting a new key, there
is only one leaf position it could go into
which satisfies the BST property.

BST completely at the mercy of the order in which items are inserted, as you
investigated in the previous set of exercises.

Suppose we took the following “just-in-time” approach. After each insertion, we
compute the size and height of the BST. If its height is too large (e.g., >

√
n),

then we do a complete restructuring of the tree to reduce the height to dlog ne.
This has the nice property that it enforces some maximum limit on the height
of the tree, with the downside that rebalancing an entire tree does not seem so
efficient.

You can think of this approach as attempting to maintain an invariant on the data
structure – the BST height is roughly log n – but only enforcing this invariant
when it is extremely violated. Sometimes, this does in fact lead to efficient data
structures, as we’ll study in Chapter 8. However, it turns out that in the present
case, being stricter with an invariant – enforcing it at every operation – leads to
a faster implementation, and this is what we will focus on for this chapter.

More concretely, we will modify the Insert and Delete algorithms so that they
always perform a check for a particular “balanced” invariant. If this invariant is
violated, they perform some minor local restructuring of the tree to restore the
invariant. Our goal is to make both the check and restructuring as simple as
possible, to not increase the asymptotic worst-case running times of O(h).

The implementation details for such an approach turn solely on the choice of
invariant we want to preserve. This may sound strange: can’t we just use the
invariant “the height of the tree is ≤ dlog ne”? It turns out that even though this
invariant is the optimal in terms of possible height, it requires too much work
to maintain every time we mutate the tree. Instead, several weaker invariants

Data structures that do this work
include red-black trees and 2-3-4 trees.

have been proposed and used in the decades that BSTs have been studied, and
corresponding names coined for the different data structures. In this course, we
will look at one of the simpler invariants, used in the data structure known as
the AVL tree.
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The AVL tree invariant

In a full binary tree (2h − 1 nodes stored in a binary tree of height h), every node
has the property that the height of its left subtree is equal to the height of its
right subtree. Even when the binary tree is complete, the heights of the left and
right subtrees of any node differ by at most 1. Our next definitions describe a
slightly looser version of this property.

Definition 3.1 (balance factor). The balance factor of a node in a binary tree is
the height of its right subtree minus the height of its left subtree.

0

2 -1

-1 -1 0

0 0

Each node is labelled by its balance
factor.

Definition 3.2 (AVL invariant, AVL tree). A node satisfies the AVL invariant if
its balance factor is between -1 and 1. A binary tree is AVL-balanced if all of its
nodes satisfy the AVL invariant.

An AVL tree is a binary search tree that is AVL-balanced.

The balance factor of a node lends itself very well to our style of recursive al-
gorithms because it is a local property: it can be checked for a given node just
by looking at the subtree rooted at that node, without knowing about the rest of
the tree. Moreover, if we modify the implementation of the binary tree node so
that each node maintains its height as an attribute, then we can check whether a
node satisfies the AVL invariant in constant time!

There are two important questions that come out of this invariant:

These can be reframed as, “how much
complexity does this invariant add?”
and “what does this invariant buy us?”

• How do we preserve this invariant when inserting and deleting nodes?

• How does this invariant affect the height of an AVL tree?

For the second question, the intuition is that if each node’s subtrees are almost
the same height, then the whole tree is pretty close to being complete, and so
should have small height. We’ll make this more precise a bit later in this chapter.
But first, we turn our attention to the more algorithmic challenge of modifying
the naïve BST insertion and deletion algorithms to preserve the AVL invariant.

Exercise Break!

3.5 Give an O(n log n) algorithm for taking an arbitrary BST of size n and modi-
fying it so that its height becomes dlog ne.

3.6 Investigate the balance factors for nodes in a complete binary tree. How many
nodes have a balance factor of 0? -1? 1?

Rotations

As we discussed earlier, our high-level approach is the following:
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(i) Perform an insertion/deletion using the old BST algorithm.

(ii) If any nodes have the balance factor invariant violated, restore the AVL in-
variant.

How do we restore the AVL invariant? Before we get into the nitty-gritty details,
we first make the following global observation: inserting or deleting a node can
only change the balance factors of its ancestors. This is because inserting/deleting
a node can only change the height of the subtrees that contain this node, and
these subtrees are exactly the ones whose roots are ancestors of the node. For
simplicity, we’ll spend the remainder of this section focused on insertion; AVL
deletion can be performed in almost exactly the same way.

Even better, the naïve algorithms already traverse exactly the nodes that are
ancestors of the modified node. So it is extremely straightforward to check and
restore the AVL invariant for these nodes; we can simply do so after the recursive
Insert, Delete, ExtractMax, or ExtractMin call. So we go down the tree
to search for the correct spot to insert the node, and then go back up the tree
to restore the AVL invariant. Our code looks like the following (only Insert is
shown; Delete is similar):

6 def Insert(D, key, value):

7 # Insert the key-value pair into <D>

8 # Same code as before, omitted

9 ...

10

11 D.balance_factor = D.right.height - D.left.height

12 if D.balance_factor < -1 or D.balance_factor > 1:

13 # Fix the imbalance for the root node.

14 fix_imbalance(D)

15

16 # Update the height attribute

17 D.height = max(D.left.height, D.right.height) + 1

Let us spell out what fix_imbalance must do. It gets as input a BST where the
root’s balance factor is less than −1 or greater than 1. However, because of the
recursive calls to Insert, we can assume that all the non-root nodes in D satisfy the
AVL invariant, which is a big help: all we need to do is fix the root.

Reminder here about the power of
recursion: we can assume that the
recursive Insert calls worked properly
on the subtree of D, and in particular
made sure that the subtree containing
the new node is an AVL tree.

One other observation is a big help. We can assume that at the beginning of
every insertion, the tree is already an AVL tree – that it is balanced. Since
inserting a node can cause a subtree’s height to increase by at most 1, each
node’s balance factor can change by at most 1 as well. Thus if the root does not
satisfy the AVL invariant after an insertion, its balance factor can only be -2 or 2.

These observations together severely limit the “bad cases” that we are responsi-
ble for fixing. In fact, these restrictions make it quite straightforward to define
a small set of simple, constant-time procedures to restructure the tree to restore
the balance factor in these cases. These procedures are called rotations.
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Right rotation

Rotations are best explained through pictures. In the top diagram, variables x
and y are keys, while the triangles A, B, and C represent arbitrary subtrees (that
could consist of many nodes). We assume that all the nodes except y satisfy the
AVL invariant, and that the balance factor of y is -2.

This means that ys left subtree must have height 2 greater than its right subtree,
and so A.height = C.height + 1 or B.height = C.height + 1. We will first consider
the case A.height = C.height + 1.

y

x C

A B

x

A y

B C
In this case, we can perform a right rotation to make x the new root, moving
around the three subtrees and y as in the second diagram to preserve the BST
property. It is worth checking carefully that this rotation does indeed restore the
invariant.

Lemma 3.1 (Correctness of right rotation). Let x, y, A, B, and C be defined as in
the margin figure. Assume that this tree is a binary search tree, and that x and
every node in A, B, and C satisfy the balance factor invariant. Also assume that
A.height = C.height + 1, and y has a balance factor of -2.

Then applying a right rotation to the tree results in an AVL tree, and in particu-
lar, x and y satisfy the AVL invariant.

Proof. First, observe that whether or not a node satisfies the balance factor in-
variant only depends on its descendants. Then, since the right rotation doesn’t
change the internal structure of A, B, and C, all the nodes in these subtrees still
satisfy the AVL invariant after the rotation. So we only need to show that both

This is the power of having a local
property like the balance factor invari-
ant. Even though A, B, and C move
around, their contents don’t change.

x and y satisfy the invariant.

• Node y. The new balance factor of y is C.height − B.height. Since x origi-
nally satisfied the balance factor, we know that B.height ≥ A.height − 1 =

C.height. Moreover, since y originally had a balance factor of −2, we know
that B.height ≤ C.height + 1. So B.height = C.height or B.height = C.height +
1, and the balance factor is either -1 or 0.

• Node x. The new balance factor of x is (1+max(B.height, C.height))−A.height.
Our assumption tells us that A.height = C.height+ 1, and as we just observed,
either B.height = C.height or B.height = C.height + 1, so the balance factor of
x is 0 or 1.

�

Left-right rotation

What about the case when B.height = C.height + 1 and A.height = C.height?
Well, before we get ahead of ourselves, let’s think about what would happen if
we just applied the same right rotation as before.
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The diagram looks exactly the same, and in fact the AVL invariant for y still
holds. The problem is now the relationship between A.height and B.height: be-
cause A.height = C.height = B.height − 1, this rotation would leave x with a
balance factor of 2. Not good.

Since in this case B is “too tall,” we will break it down further and move its
subtrees separately. Keep in mind that we’re still assuming the AVL invariant is
satisfied for every node except the root y.

y

x C

A z

D E

y

z C

x E

A D

z

x y

A D E C

By our assumption, A.height = B.height− 1, and so both D and E’s heights are
either A.height or A.height− 1. Now we can first perform a left rotation rooted
at x, which is symmetric to the right rotation we saw above, except the root’s
right child becomes the new root.

This brings us to the situation we had in the first case, where the left subtree of z
is at least as tall as the right subtree of z. So we do the same thing and perform
a right rotation rooted at y. Note that we’re treating the entire subtree rooted at
x as one component here.

Given that we now have two rotations to reason about instead of one, a formal
proof of correctness is quite helpful.

Lemma 3.2. Let A, C, D, E, x, y, and z be defined as in the diagram. Assume
that x, z, and every node in A, C, D, E satisfy the AVL invariant. Furthermore,
assume the following restrictions on heights, which cause the balance factor of
y to be -2, and for the D− z− E subtree (“B”) to have height C.height + 1.

(i) A.height = C.height

(ii) D.height ≤ C.height and E.height ≤ C.height, and one of them is equal to
C.height.

Then after performing a left rotation at x, then a right rotation at y, the resulting
tree is an AVL tree. This combined operation is sometimes called a left-right
double rotation.

Proof. As before, because the subtrees A, C, D, and E don’t change their internal
composition, all their nodes still satisfy the AVL invariant after the transforma-
tion. We need to check the balance factor for x, y, and z:

• Node x: by assumption (ii) and the fact that z originally satisfied the AVL
invariant, D.height = C.height or D.height = C.height− 1. So then the balance
factor of x is D.height− A.height, which is either 0 or -1. (By (i), A.height =
C.height.)

• Node y: as in the above argument, either E.height = C.height or E.height =

C.height − 1. Then the balance factor of y is C.height − E.height, which is
either 0 or 1.

• Node z: since D.height ≤ A.height and E.height ≤ C.height, the balance factor
of z is equal to (C.height + 1)− (A.height + 1). By assumption (i), A.height =
C.height, so the balance factor of z is 0.
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�

We leave it as an exercise to think about the cases where the right subtree’s height
is 2 more than the left subtree’s. The arguments are symmetric; the two relevant
rotations are “left” and “right-left” rotations.

AVL tree implementation

We now have a strong lemma telling us that we can rearrange the tree in constant
time to restore the balanced property. This is great for our insertion and deletion
algorithms, which only ever change one node. Here is our full AVL tree Insert

algorithm:

You’ll notice that we’ve deliberately
left some details to the exercises. In
particular, we want you to think about
the symmetric actions for detecting and
fixing an imbalance.

6 def Insert(D, key, value):

7 # Insert the key-value pair into <D>

8 # Same code as before, omitted

9 ...

10

11 D.balance_factor = D.right.height - D.left.height

12 if D.balance_factor < -1 or D.balance_factor > 1:

13 # Fix the imbalance for the root node.

14 fix_imbalance(D)

15

16 # Update the height attribute

17 D.height = max(D.left.height, D.right.height) + 1

18

19

20 def fix_imbalance(D):

21 # Check balance factor and perform rotations

22 if D.balance_factor == -2:

23 if D.left.left.height == D.right.height + 1:

24 right_rotate(D)

25 else: # D.left.right.height == D.right.height + 1

26 left_rotate(D.left)

27 right_rotate(D)

28 elif D.balance_factor == 2:

29 # left as an exercise; symmetric to above case

30 ...

31

32

33 def right_rotate(D):

34 # Using some temporary variables to match up with the diagram

35 y = D.root

36 x = D.left.root

37 A = D.left.left

38 B = D.left.right

39 C = D.right
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40

41 D.root = x

42 D.left = A

43 # Assume access to constructor AVLTree(root, left, right)

44 D.right = AVLTree(y, B, C)

45

46

47 def left_rotate(D):

48 # Left as an exercise

Theorem 3.3 (AVL Tree Correctness). The above AVL Tree insertion algorithm
is correct. That is, it results in a binary tree that satisfies the binary search tree
property and is balanced, with one extra node added, and with the height and
balance_factor attributes set properly.

Proof. Since insertion starts with the naïve algorithm, we know that it correctly
changes the contents of the tree. We need only to check that fix_imbalance

results in a balanced BST.

Right before fix_imbalance is called in either function, we know that D still
satisfies the BST property, and that its subtrees are AVL trees (since we assume
that the recursive calls correctly restore this property). Moreover, because at
most one node has changed in the BST, the balance factor of the root is between
-2 and 2.

The correctness of fix_imbalance when the root’s balance factor is -2 is directly
implied by the previous two lemmas. The other case is symmetric, and was left
as an exercise. Then we are done, since after fix_imbalance returns, the tree is
an AVL tree – all its nodes satisfy the AVL invariant. �

Analysis of AVL Algorithms

In the preceding sections, we put in quite a bit of effort in ensuring that the AVL
invariant is preserved for every node in the tree. Now, it is time to reap the
benefits of this additional restriction on the structure of the tree in our running
time analysis of the modified Insert and Delete algorithms.

First, a simple lemma that should look familiar, as it is the basis of most recursive
tree algorithm analyses.

Lemma 3.4. The worst-case running time of AVL tree insertion and deletion is
O(h), the same as for the naïve insertion and deletion algorithms.

Don’t forget that we’ve only proved
a O(h) upper bound in these notes –
you’re responsible for proving a lower
bound yourself!Proof. We simply observe that the new implementation consists of the old one,

plus the new updates of height and balance_factor attributes, and at most two
rotations. This adds a constant-time overhead per recursive call, and as before,
there are O(h) recursive calls made. So the total running time is still O(h). �
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So far, the analysis is exactly the same as for naïve BSTs. Here is where we
diverge to success. As we observed at the beginning of this section, BSTs can be
extremely imbalanced, and have height equal to the number of nodes in the tree.
This is obviously not true for AVL trees, which cannot have all their nodes on
(say) the left subtree. But AVL trees are not perfectly balanced, either, since each
node’s two subtree heights can differ by 1. So the question is, is restricting the
balance factor for each node to the range {−1, 0, 1} good enough to get a strong
bound on the height of the AVL tree? The answer is a satisfying yes.

Lemma 3.5 (AVL Tree Height). An AVL tree with n nodes has height at most
1.441 log n (for large enough n).

Proof. It turns out to be easier to answer a question that is inverse to the state-
ment in the theorem: what is N(h), the minimum number of nodes in an AVL tree
of height h? Our goal is to get a tight bound (or exact formula) for N(h). Some
playing around quickly yields the following small values: N(0) = 0, N(1) = 1,
N(2) = 2, N(3) = 4, N(4) = 7.

Not much of a pattern so far, though drawing pictures is suggestive: an AVL
tree of height h with minimum size must have a subtree that is an AVL tree of
height h− 1, and another subtree that is an AVL tree of height h− 2, and both of
its subtrees must have minimum size. Here we’re implicitly using the fact that
being balanced, and hence an AVL tree, is a recursive property: the subtrees of
an AVL tree are themselves AVL trees. This gives the following recurrence:

N(h) =


0, h = 0

1, h = 1

N(h− 1) + N(h− 2) + 1, h ≥ 2

This looks almost, but not quite, the same as the Fibonacci sequence. A bit of
trial-and-error or more sophisticated techniques for solving recurrences (beyond
the scope of this course) reveal that N(h) = fh+2 − 1, where fi is the i-th Fi-
bonacci number. Since we do have a closed form expression for the Fibonacci
numbers in terms of the golden ratio ϕ = 1+

√
5

2 , we get the following bound on
N(h):

N(h) > fh

>
1√
5

ϕh − 1

Recall now the definition of N(h): the minimum number of nodes in an AVL
tree of height h. So then if we have n nodes in an AVL tree of height h, we know
that
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N(h) ≤ n
1√
5

ϕh − 1 ≤ n

1√
5

ϕh ≤ n + 1

logϕ

(
1√
5

ϕh
)
≤ logϕ(n + 1)

logϕ

(
1√
5

)
+ h ≤ logϕ(n + 1)

h ≤ logϕ(n + 1)− logϕ

(
1√
5

)
h ≤ 1.4405 log(n + 1)− logϕ

(
1√
5

)
h ≤ 1.4405 log(n + 1) + 1.68

�

Putting the previous two lemmas together, we can conclude that AVL insertion,
deletion, and search all have logarithmic running time in the worst-case.

Theorem 3.6 (AVL Tree Runtime). AVL tree insertion, deletion, and search have
worst-case running time Θ(log n), where n is the number of nodes in the tree.

Exercise Break!

3.7 Show that you can use an AVL tree to implement a priority queue. What is
an upper bound on the worst-case running time of the three priority queue
operations in this case?



4 Dictionaries, Round Two: Hash Tables

We now look at a completely different approach for implementing dictionaries.
To get warmed up, consider the following scenario: all of the key-value pairs
we wish to store have keys that are numbers 0 through K − 1. In this case,
we can store these pairs inside an array of length K, and achieve constant time
search, insertion, and deletion simply by storing each value at the array index
corresponding to its key!

This technique is known as direct addressing, and works well when the number
of possible keys (and hence total number of pairs) is small. However, array
addressing is only constant time if the entire array has been allocated in memory.
Thus as K grows larger, even if the running time of the dictionary operations
stays constant, the space required grows linearly in K. In this chapter, we will

This size constraint is infeasible in
many real-world applications of dictio-
naries.

study a generalized version of direct addressing known as hashing, which allows
us to store key-value pairs when the keys aren’t necessarily numbers, and using
much less space than the number of all possible keys.

Hash functions

Let U represent the set of all possible keys we would like to store. In general, we
do not restrict ourselves to just numeric keys, and so U might be a set of strings,
floating-point numbers, or other custom data types that we define based on our
application. Like direct addressing, we wish to store these keys in an array, but
here we’ll let the size of the array be a separate variable m. We won’t assume
anything about the relationship between m and |U| right now, though you might
already have some ideas about that.

Definition 4.1 (hash function, hash table). A hash function is a function h :
U → {0, 1, . . . , m− 1}. You should think of this as a function that takes a key
and computes the array slot where the key is to be placed.

A hash table is a data structure containing an array of length m and a hash
function.

6 def Search(hash_table, key):

7 hash = h(key)

8 return hash_table[hash]

9
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10 def Insert(hash_table, key, value):

11 hash = h(key)

12 hash_table[hash] = value

13

14 def Delete(hash_table, key):

15 hash = h(key)

16 hash_table[hash] = None

Of course, this is not the end of the story. Even though this implementation
is certainly efficient – all three operations run in Θ(1) time – it actually is not
guaranteed to be correct.

Remember that we have not made any assumptions about the relationship be-
tween m, the size of the hash table, and |U|, the total possible number of keys;
nor have we said anything about what h actually does. Our current implemen-
tation makes the assumption that there are no collisions in the hash function; i.e.,
that each key gets mapped to a unique array slot. Consider what happens when
you try to use the above algorithm to insert two key-value pairs whose hashed
keys are the same index i: the first value is stored at index i, but then the second
value overwrites it.

Now, if m ≥ |U|, i.e, there are at least as many array slots as possible keys, then
there always exists a hash function h which has no collisions. Such hash func-
tions are called perfect hash functions, earning the superlative name because
they enable the above naive hash table implementation to be correct. However,

Of course, even when we know that a
perfect hash function exists for a given
U and m, it is sometimes non-trivial to
find and compute it. Consider the case
when U is a set of 10 000 names – can
you efficiently implement a perfect hash
function without storing a sorted list of
the names?

this assumption is often not realistic, as we typically expect the number of pos-
sible keys to be extremely large, and the array to not take up too much space.
More concretely, if m < |U|, then at least one collision is guaranteed to occur,
causing the above implementation to fail. The remainder of this chapter will be
devoted to discussing two strategies for handling collisions.

Closed addressing (“chaining”)

With closed addressing, each array element no longer stores a value associated
this approach is also called “chaining”

with a particular key, but rather a pointer to a linked list of key-value pairs. Thus,
collisions are sidestepped completely by simply inserting both the key and value
into the linked list at the appropriate array index. Search and deletion are just

Why is it necessary to store both the
key and the value?slightly more complex, requiring a traversal of the linked list to find the correct

key-value pair.

5 def Search(hash_table, key):

6 hash = h(key)

7 linked_list = hash_table[hash]

8 if linked_list contains key:

9 return corresponding value from linked_list

10 else:
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11 return None

12

13 def Insert(hash_table, key, value):

14 hash = h(key)

15 linked_list = hash_table[hash]

16 insert key, value at the head of linked_list

17

18 def Delete(hash_table, key):

19 hash = h(key)

20 linked_list = hash_table[hash]

21 delete key from linked_list

This implementation maintains the invariant that for every key k stored in the
table, it must appear in the linked list at position h(k). From this observation,
we can see that these algorithms are correct. In addition, these algorithms only
consider the linked list at one particular array index, saving lots of time.

Or perhaps not. What if all of the keys get mapped to the same index? In this
case, the worst case of search and deletion reduces to the worst-case search and
deletion from a linked list, which is Θ(n), where n is the number of pairs stored
in the hash table. Can we simply pick a hash function that guarantees that this
extreme case won’t happen? Not if we allow the set of keys to be much larger
than the size of the array: for any hash function h, there exists an index i such
that at least |U|/m keys get mapped to i by h.

This type of counting argument is ex-
tremely common in algorithm analysis.
If you have a set of numbers whose
average is x, then one of the numbers
must have value ≥ x.

So while the worst-case running time for Insert is Θ(1),, the worst case per-

Insertions happen at the front of the
linked list

formance for Search and Delete seems very bad: no better than simply using
a linked list, and much worse than the AVL trees we saw in the previous sec-
tion. However, it turns out that if we pick good hash functions, hash tables with
closed addressing are much better than both of these data structures on average.

Average-case analysis for closed addressing

We will focus on analysing the Search algorithm, whose running time of course
depends on the lengths of the linked lists in the hash table. Remember that

Delete is basically the same.
whenever we want to talk about average case, we need to define a distribution
of inputs for the operation. We’ll assume here that all possible keys are equally
likely to be searched for; in other words, we’ll use the uniform distribution on
U, and assume n random keys are already contained in the hash table.

However, because the lengths of the linked lists depend on the number of col-
lisions in our hash function, just knowing the key distribution isn’t enough –
for all we know, our hash function could map all keys to the same index! So
we will make an additional assumption known as the simple uniform hashing
assumption, which is that our hash function h satisfies the property that for all
0 ≤ i < m, the probability that h(k) = i is 1

m , when k is chosen uniformly at
random from U. That is, choosing a random key doesn’t favour one particu-
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lar index over any other. We will measure running time here as the number of
keys compared against the search input, plus the time for computing the hash
function.

First, assume that the key k being searched for is not in the hash table. In this
case, the algorithm first computes h(k), and then must traverse the entire linked
list stored at index h(k). We’ll assume that the first step takes constant time,

More on this later
and we know that the second step takes time proportional to the length of the
linked list at index h(k). Let T be the running time of Search on input key
k. Then T = 1+ the length of the linked list stored at h(k), which is equal
to the number of the n keys that hash to that particular index. We let L be a
random variable representing the number of keys hashed to h(k). So, T = 1+ L,
and E[T] = 1 + E[L]. But, by the simple uniform hashing assumption, the
probability that each of the n randomly chosen keys already in the hash table
have a hash value of h(k) is 1

m , and so E[L] = n
m .

This is the well-known expected value
for a hypergeometric distribution.

The average number of keys checked by Search when the key is not in the
hash table is therefore 1 + n

m . The average-case running time is then Θ(1 + n
m ).

Remember what these variables mean: n is the number of keys already stored
in the hash table, and m is the number of spots in the array. This running time
tells us that if the number of keys in the hash table is any constant multiple of
the size of the array, then doing a search when the key is not in the hash table is
a constant-time operation on average.

What about when the search is successful, i.e., when we search for a key that is
already in the hash table? Consider searching for ki, the i-th key inserted into
the hash table. How many keys are checked during this search? Since items
are inserted at the front of the linked list, the number of keys searched is equal
to the number of keys inserted after ki into the same index as ki, plus one for
examining ki itself. Since n− i keys are inserted after ki, by the simple uniform
hashing assumption the expected number of keys inserted into h(ki) after ki is
n−i
m . So then to compute the average running time, we add the cost of computing

the hash function (just 1 step) plus the average of searching for each ki:

E[T] = 1 +
1
n

n

∑
i=1

expected number of keys visited by search for ki

= 1 +
1
n

n

∑
i=1

(
1 +

n− i
m

)
= 2 +

1
n

n

∑
i=1

n
m
− 1

n

n

∑
i=1

i
m

= 2 +
n
m
− 1

n
· n(n + 1)

2m

= 2 +
n
m
− n + 1

2m

= 2 +
n

2m
− 1

2m

= Θ
(

1 +
n
m

)
The average-case running time for Delete is the same, since once a key has
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been found in an array, it is only a constant-time step to remove that node from
the linked list.

Because the ratio n
m between the number of keys stored and the number of spots

in the array comes up frequently in hashing analysis, we give it a special name.

Definition 4.2 (load factor). The load factor of a hash table is the ratio of the
number of keys stored to the size of the table. We use the notation α = n

m , where
n is the number of keys, and m the number of slots.

So we can say that the average-case running time of Search and Delete are
Θ(1 + α).

Exercise Break!

4.1 Suppose that we use an AVL tree instead of a linked list to store the key-value
pairs that are hashed to the same index.

(a) What is the worst-case running time of a search when the hash table has n
key-value pairs?

(b) What is the average-case running time of an unsuccessful search when the
hash table has n key-value pairs?

Open addressing

The other strategy used to resolve collisions is to require each array element to
contain only one key, but to allow keys to be mapped to alternate indices when
their original spot is already occupied. This saves the space overhead required
for storing extra references in the linked lists of closed addressing, but the cost is
that the load factor α must always be less than 1, i.e., the number of keys stored
in the hash table cannot exceed the length of the array.

In this type of hashing, we have a parameterized hash function h that takes two
arguments, a key and a positive integer. The “first” hash value for a key k is

h : U ×N→ {0, . . . , m− 1}
h(k, 0), and if this spot is occupied, the next index chosen is h(k, 1), and then
h(k, 2), etc.

For simplicity, we have omitted a
bounds check i < m. This would be
necessary in practice to ensure that
this code does not enter into an infinite
loop.

5 def Insert(hash_table, key, value):

6 i = 0

7 while hash_table[h(key, i)] is not None:

8 i = i + 1

9

10 hash_table[h(key, i)].key = key

11 hash_table[h(key, i)].value = value
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Searching for an item requires examining not just one spot, but many spots.
Essentially, when searching for a key k, we visit the same sequence of indices
h(k, 0), h(k, 1), etc. until either we find the key, or reach a None value.

14 def Search(hash_table, key):

15 i = 0

16 while hash_table[h(key, i)] is not None and hash_table[h(key, i)].key != key:

17 i = i + 1

18

19 if hash_table[h(key, i)].key == key:

20 return hash_table[h(key, i)].value

21 else:

22 return None

Deletion seems straightforward – simply search for the given key, then replace
the item stored in the array with None, right? Not exactly. Suppose we insert
a key k into the hash table, but the spot h(k, 0) is occupied, and so this key is
stored at index h(k, 1) instead. Then suppose we delete the pair that was stored
at h(k, 0). Any subsequent search for k will start at h(k, 0), find it empty, and so
return None, not bothering to continue checking h(k, 1).

So instead, after we delete an item, we replace it with a special value Deleted,
rather than simply None. This way, the Search algorithm will not halt when it
reaches an index that belonged to a deleted key.

We leave it as an exercise to modify the
Insert algorithm so that it stores keys
in Deleted positions as well.25 def Delete(hash_table, key):

26 i = 0

27 while hash_table[h(key, i)] is not None and hash_table[h(key, i)].key != key:

28 i = i + 1

29

30 if hash_table[h(key, i)].key == key:

31 hash_table[h(key, i)] = Deleted

It remains to discuss how to implement different parameterized hash functions
and to study the properties of the probe sequences [h(k, 0), h(k, 1), . . . ] generated
by these different strategies. After all, since all three dictionary operations re-
quire traversing one of these probe sequences until reaching an empty spot, a
natural question to ask is how the probe sequences for different keys overlap
with each other, and how these overlaps affect the efficiency of open addressing.

Linear probing

The simplest implementation of open addressing is to start at a given hash value,
and then keep adding some fixed offset to the index until an empty spot is found.
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Definition 4.3 (Linear probing). Given a hash function hash : U → {0, . . . ,
m− 1} and number b ∈ {1, . . . , m− 1}, we can define the parameterized hash
function h for linear probing as follows:

Recall that (mod m) takes the remain-
der when divided by m.h(k, i) = hash(k) + bi (mod m).

The corresponding linear probing sequence for key k is hash(k, 0), hash(k, 1),
hash(k, 2), . . .

When d = 1, the probe sequence is simply hash(k), hash(k) + 1, . . .

Unfortunately, this strategy suffers from a fundamental problem of clustering,
in which contiguous blocks of occupied locations are created, causing further
insertions of keys into any of these locations to take a long time. For example,
suppose d = 1, and that three keys are inserted, all with the hash value 10.
These will occupy indices 10, 11, and 12 in the hash table. But now any new key
with hash value 11 will require 2 spots to be checked and rejected because they
are full. The collision-handling for 10 has now ensured that hash values 11 and
12 will also have collisions, increasing the runtime for any operation that visits
these indices. Moreover, the effect is cumulative: a collision with any index in a
cluster causes an extra element to be added at the end of the cluster, growing it
in size by one. You’ll study the effects of clustering more precisely in an exercise.

Quadratic probing

The main problem with linear probing is that the hash values in the middle of a
cluster will follow the exact same search pattern as a hash value at the beginning
of the cluster. As such, more and more keys are absorbed into this long search
pattern as clusters grow. We can solve this problem using quadratic probing,
which causes the offset between consecutive indices in the probe sequence to
increase as the probe sequence is visited.

Definition 4.4 (Quadratic probing). Given a hash function hash : U → {0, . . . , m−
1} and numbers b, c ∈ {0, . . . , m − 1}, we can define the parameterized hash
function h for quadratic probing as follows:

h(k, i) = hash(k) + bi + ci2 (mod m).

Even if a key’s hash value is in the middle of a cluster, it is able to “escape”
the cluster much more quickly than using linear probing. However, a form of
clustering still occurs: if many items have the same initial hash value, they still
follow the exact same probe sequence. For example, if four keys are hashed
to the same index, the fourth key inserted must examine (and pass) the three
indices occupied by the first three keys.

Double hashing

To resolve this problem – a collision in the original hash function causing identi-
cal probe sequences – we change how the offset is calculated so that it depends
on the key being hashed in a particularly clever way.
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Definition 4.5 (Double hashing). Given two hash functions hash1, hash2 : U →
{0, . . . , m− 1}, we can define the parameterized hash function for double hash-
ing h as follows:

h(k, i) = hash1(k) + i · hash2(k) (mod m).

While both linear and quadratic probing have at most m different probe se-
quences (one for each distinct starting index), double hashing has at most m2

different probe sequences, one for each pair of values (hash1(k), hash2(k)). Un-
der such a scheme, it is far less likely for large clusters to form: not only would
keys have to have the same initial hash value (using hash1), but they would also
have to have the same offset (using hash2).

Running time of open addressing

To round out this chapter, we’ll briefly discuss some of the performance charac-
teristics of open addressing. First, we observe that there are m! possible probe
sequences (i.e., the order in which hash table indices are visited). A typical sim-
plifying assumption is that the probability of getting any one of these sequences
is 1/m!, which is not true for any of the probe sequences studied here – even
double hashing has only m2 possible sequences – but can be a useful approxi-
mation.

However, under this assumption, the average number of indices searched of all
three dictionary operations is at most 1

1−α . So for example, if the table is 90%
full (so α = 0.9), the average number of indices searched would be just 10, which
isn’t bad at all!

Exercise Break!

4.2 Suppose we use linear probing with d = 1, and our hash table has n keys
stored in the array indices 0 through n− 1.

(a) What is the maximum number of array indices checked when a new key
(distinct from the ones already stored) is searched for in this hash table?

(b) What is the probability that this maximum number of array indices occurs?
Use the simple uniform hashing assumption.

(c) What is the average running time of Search for this array?



5 Randomized Algorithms

So far, when we have used probability theory to help analyse our algorithms we
have always done so in the context of average-case analysis: define a probability
distribution over the set of possible inputs of a fixed size, and then calculate the
expected running time of the algorithm over this set of inputs.

This type of analysis is a way of refining our understanding of how quickly an
algorithm runs, beyond simply the worst and best possible inputs, we look at
the spread (or distribution) of running times across all different inputs. It allows
us to say things like “Quicksort may have a worst-case running time of Θ(n2),
but on average its performance is Θ(n log n), which is the same as mergesort.”

However, average-case analysis has one important limitation: the importance of
the asymptotic bound is directly correlated with the “plausibility” of the prob-
ability distribution used to perform the analysis. We can say, for example, that
the average running time of quicksort is Θ(n log n) when the input is a random,
uniformly-chosen permutation of n items; but if the input is instead randomly
chosen among only the permutations which have almost all items sorted, the
“average” running time might be Θ(n2). We might assume that the keys in-

This assumes naïve quicksort, which
chooses the first element as the pivot.serted into a hash table are equally likely to be hashed to any of the m array

spots, but if they’re all hashed to the same spot, searching for keys not already
in the hash table will always take Θ(n) time.

In practice, an algorithm can have an adversarial relationship with the entity
feeding it inputs. Not only is there no guarantee that the inputs will have a
distribution close to the one we used in our analysis; a malicious user could con-
ceivably hand-pick a series of inputs designed to realize the worst-case running
time. That the algorithm has good average-case performance means nothing in
the face of an onslaught of particularly bad inputs.

In this chapter, we will discuss one particularly powerful algorithm design tech-
nique which can (sometimes) be used to defend against this problem. Rather
than assume the randomness exists external to the algorithm in the choice of
inputs, this technique makes no assumptions about the input whatsoever, but
instead moves the randomness to be inside the algorithm itself. The key idea
is to allow our algorithms to make random choices, a departure from the deter-
ministic algorithms — ones that must follow a fixed sequence of steps — that
we have studied so far. Such algorithms, which make random choices as part of
their natural execution, are known as randomized algorithms.
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Randomized quicksort

Let us return to quicksort from our first chapter, which we know has poor
worst-case performance on pre-sorted lists. Because our implementation always
chooses the first list element as the pivot, a pre-sorted list always results in
maximally uneven partition sizes. We were able to “fix” this problem in our
average-case analysis with the insight that in a random permutation, any of the
n input numbers is equally likely to be chosen as a pivot in any of the recursive
calls to quicksort.

You’ll recall our argument was a tad
more subtle and relied on indicator
variables, but this idea that the pivot
was equally likely to be any number
did play a central role.

So if we allow our algorithm to make random choices, we can turn any input
into a “random” input simply by preprocessing it, and then applying the regular
quicksort function:

1 def randomized_quicksort(A):

2 randomly permute A

3 quicksort(A)

Huh, this is so simple it almost feels like cheating. The only difference is the
application of a random permutation to the input. The correctness of this al-
gorithm is clear: because permuting a list doesn’t change its contents, the exact
same items will be sorted, so the output will be the same. What is more inter-

This isn’t entirely true if the list con-
tains duplicates, but there are ways of
fixing this if we need to.

esting is talking about the running time of this algorithm.

One important point to note is that for randomized algorithms, the behaviour
of the algorithm depends not only on its input, but also the random choices it makes.
Thus running a randomized algorithm multiple times on the same input can
lead to different behaviours on each run. In the case of randomized quicksort,
we know that the result — A is sorted — is always the same. What can change
is its running time; after all, it is possible to get as input a “good” input for the
original quicksort (sorts in Θ(n log n) time), but then after applying the random
permutation the list becomes sorted, which is the worst input for quicksort.

In other words, randomly applying a permutation to the input list can cause the
running time to increase, decrease, or stay roughly the same. So how do we
draw conclusions about the running time of randomized quicksort if we can’t
even be certain how long it takes on a single input? Probability, of course!

More precisely, for a fixed input A to randomized quicksort with length n, we
can define the random variable TA to be the running time of the algorithm.
The main difference between this random variable and the T we used in the
average-case analysis of Chapter 1 is that now we are considering the proba-
bility distribution that the algorithm uses to make its random choices, and not
a probability distribution over inputs. In the case of randomized quicksort, we
would say that the TA random variable has as its probability space the set of ran-
dom permutations of {1, . . . , n} that the randomized_quicksort algorithm could
pick from in its first step.

With this random variable defined, we can now talk about the expected running
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time of randomized quicksort on the input A, E[TA]. First, while we won’t
prove it here, it is possible to randomly permute A in O(n) time. Applying

See Section 5.3 of CLRS for details.
a random permutation on A results in the standard quicksort running on a
random permutation of {1, . . . , n} as its input, and so the analysis from Chapter
1 applies, and E[TA] = Θ(n log n).

Warning: students often confuse this type of analysis with the average-case anal-
ysis we did earlier in the course. For average-case analysis, we have a completely
deterministic algorithm and a probability distribution over a set of inputs, and
are calculating the expected running time across this set of inputs. For the anal-
ysis in the present chapter, we have a randomized algorithm and a single in-
put, and are calculating the expected running time across the possible random
choices made by the algorithm itself.

You can think about average-case
analysis as putting the randomness
external to the algorithm, and random-
ized algorithm analysis as keeping the
randomness internal to the algorithm.

The work we have done so far is just for one particular input. Let us extend this
now to be able to say something about the overall running time of the algorithm.
We define the worst-case expected running time of a randomized algorithm to
be a function

ET(n) = max{E[Tx] | x is an input of size n}.

For randomized quicksort, all lists of size n have the same asymptotic expected
running time, and so we conclude that randomized quicksort has a worst-case
expected running time of Θ(n log n).

You might hear the phrase “worst-case expected” and think this is a bit vague:
it’s not the “absolute” maximum running time, or even an “average” maximum.
So what is this really telling us? The right way to think about worst-case ex-
pected running time is from the perspective of a malicious user who is trying
to feed our algorithm bad inputs. With regular quicksort, it is possible to give
the algorithm an input for which the running time is guaranteed to be Θ(n2).
However, this is not the case for randomized quicksort. Here, no matter what
input the user picks, if the algorithm is run many times on this input, the aver-
age running time will be Θ(n log n). Individual runs of randomized quicksort
might take longer, but in the long run our adversary can’t make our algorithm
take more than Θ(n log n) per execution.

Universal Hashing

Now, let us turn to a well-known example of a randomized algorithm: universal
hashing. Recall that the simple uniform hashing assumption from the previous
chapter says that for any array index 0 ≤ i < m, the probability of choosing a
key that hashes to i is 1

m . This assumption made the analysis tractable for us,
and in particular ensured a Θ(1 + α) average-case running time for the hash
table operations. But as we observed, for any hash function we choose, a simple
counting argument tells us that at least |U|/m keys must be hashed to the same
index. So if any subset of size n of these keys is inserted, any search for a
different key that hashes to this same index will take Θ(n) time.

To cause this worst-case behaviour in practice, a malicious user would study the
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hash function used and determine such a set of colliding keys. You might be
tempted, then, to keep your hash function a secret so that no one can figure out
these collisions. But a reliance on such an approach only goes so far as how able
you (and your colleagues) are in keeping this secret.

But let us take from this the insight that a malicious user needs to know which
hash function is being used in order to purposefully generate large numbers of
collisions. Rather than keep the hash function a secret, we simply use a set of
hash functions, and allow our algorithm to pick randomly which one to actually
use, without making its choice public. To “normal” users, the hash table behaves
exactly as expected, regardless of which hash function is used. In other words,
the interface of the hash table has not changed. But even if a malicious user
knows the whole set of hash functions, she does not know which one is actually
being used by the hash table, and in principle cannot determine how to generate
collisions.

Of course, if we picked a poor set of hash functions, it might be possible that
each one has a huge number of collisions, or that the same keys collide for all
or most of the functions. So we certainly need some restriction on the hash
functions that can go into this set; we make this idea precise in the following
definition.

Definition 5.1 (Universal hash family). Let U be a set of keys, and m ∈ Z+ be
the size of the hash table. Let H be a set of hash functions, where each h ∈ H
is a function h : U → {0, . . . , m− 1}. We call H a universal hash family if and
only if for all pairs of distinct keys k1, k2 ∈ U,

Note that the probability space is now
the choice of hash functions, and not
choice of keys. This inequality must be
true for every pair of keys!

Prh∈H[h(k1) = h(k2)] ≤
1
m

.

Our algorithm is now quite simple. When a new hash table is created, it picks a
hash function uniformly at random from a universal hash family, and uses this
to do its hashing. This type of hashing is called universal hashing, and is a
randomized implementation of hashing commonly used in practice.

Analysis of universal hashing

Consider a universal hashing scheme that uses closed addressing (chaining). We
will consider the worst-case expected running time of an unsuccessful search for a
key k in a hash table storing n keys. Note that this analysis is related to, but
distinct from, the analysis we did in the previous chapter. Both are probabilistic,
of course, but their probability spaces are different (choosing keys vs. choosing
hash functions), and the probability assumptions we are allowed to make are
also different, albeit quite similar.

Let h ∈ H be the hash function used by the hash table (chosen uniformly at
random). We want to consider how many of the n keys already in the hash table
were inserted into the index h(k), since these keys are the ones that must be
examined in a search for k.

For each inserted key ki, let Xi be the indicator random variable that is 1 if
h(ki) = h(k), and 0 otherwise. We want to compute the expected sum of these
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random variables, which we can do nicely using the techniques that we’ve seen
before. Again, keep in mind that expected values and probabilities are over
choice of hash function h, not over choice of keys.

E

[
n

∑
i=1

Xi

]
=

n

∑
i=1

E[Xi]

=
n

∑
i=1

Pr[h(ki) = h(k)]

≤
n

∑
i=1

1
m

(universal hash family)

=
n
m

Note that we have made no assumptions about the keys in the hash table, nor
about k itself: the only property we used was the universal hash family property,
which gave us the upper bound on the probability that the two hash values h(ki)

and h(k) were equal. Because this analysis is true for all possible inputs, we
conclude that the worst-case expected running time of an unsuccessful search
with universal hashing is O(1+ α), where the 1 comes from computing the hash

Why didn’t we immediately conclude
Θ(1 + α)?value of k, as before. A similar analysis reaches the same asymptotic bound for

a successful search.

Constructing a universal hash family

Let us round off our two-chapter discussion of hashing by looking at one partic-
ular construction of a universal hash family.

We assume that U = {0, 1, . . . , 2w − 1} is the set of natural numbers that can be
stored in a machine word (so typically w = 32 or w = 64), and that m = 2M is a
power of two. For every odd number a, 0 < a < 2w, and number (not necessarily
odd) b, 0 ≤ b < 2w−M, we define the following hash function:

ha,b(k) = (ak + b mod 2w) // 2w−M.

Note that these functions are very easy to implement; the first computation
ak + b mod 2w is simply unsigned integer arithmetic, and the second operation
is a bit shift, taking the M most significant bits.

While we won’t go into the proof here, it turns out that the set of functions
{ha,b}, for the defined ranges on a and b, is a universal hash family.

Exercise Break!

5.1 Prove that the number of hash functions in a universal hash family must be
≥ m.
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5.2 Consider the hash function

h1,0(k) = (k mod 2w) // 2w−M.

Find a set of inputs of size 2w−M that all have the same hash value.
This question underlines the fact
that an individual hash function in
a universal family still has a lot of
collisions.



6 Graphs

In this chapter, we will study the graph abstract data type, which is one of the
most versatile and fundamental in computer science. You have already studied
trees, which can be used to model hierarchical data like members of a family
or a classification of living things. Graphs are a generalization of trees that
can represent arbitrary (binary) relationships between various objects. Some

There are generalizations of graphs that
model relationships between more than
two objects at a time, but we won’t go
into that here.

common examples of graphs in practice are modelling geographic and spatial
relationships; activity between members of a social network; requirements and
dependencies in a complex system like the development of a space shuttle. By
the end of this chapter, you will be able to define the graph ADT and compare
different implementations of this data type; and perform and analyse algorithms
which traverse graphs.

If you go on to take CSC373, you
will build on this knowledge to write
and analyse more complex graph
algorithms.

Fundamental graph definitions

As we hinted at in the introduction, a graph is an abstraction of the concept of
a set of objects and the relationships between them. In the simplest case, we
define a vertex (also called node) v to be a single object, and an edge to be a
tuple e = (v1, v2). This is deliberately abstract to be able

to account for a variety of contexts. For
example, in a social network, you can
think of vertices as people, and edges as
“friendships” or “connections.”

Definition 6.1 (graph, undirected/directed). A graph is a tuple of two sets G =

(V, E), where V is a set of vertices, and E is a set of edges on those vertices.

An undirected graph is a graph where order does not matter in the edge tuples:
(v1, v2) is equal to (v2, v1). A directed graph is a graph where the tuple order

We think of an edge in an undirected
graph as being between two vertices, and
an edge in a directed graph as being
from a source vertex to a target vertex.

does matter; (v1, v2) and (v2, v1) represent different edges. In this chapter, if
neither type of graph is specified, our default will be an undirected graph.

There are two obvious measures of a graph’s size: the number of vertices and
the number of edges. When analysing the running time of graph algorithms
later in this chapter, it will be important to keep in mind how we are defining
“size.”

Before moving on, let’s see some pictures to illustrate some simple graphs. In
each diagram, the vertices are the circles, and the edges are the lines connecting
pairs of circles. Vertices can be labelled or unlabelled, depending on the graph
context.
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It is clear that there can be a large variation in the characteristics of graphs: the
number of edges, how many vertices are connected to each other, how many
edges each vertex has, etc. For our purposes, we will need only a few more

Graph theory is a fascinating branch of
mathematics that studies properties of
graphs such as these, and ones which
are far more complex.

definitions to describe some simple graph properties.

Definition 6.2 (adjacent, neighbour). Two vertices are adjacent if there is an edge
between them. In this case, we also say that the two vertices are neighbours.

Definition 6.3 (path, length, distance). A path between vertices u and w is a
sequence of edges (v0, v1), (v1, v2), . . . , (vk−1, vk), where u = v0 and w = vk, and
all the vi are distinct.This follows the English meaning of the term “path,” where
you start at vertex u, take an edge to get to a new vertex v1, take another edge
to get to another new vertex v2, and keep following edges until arriving at vk.

The length of the path is the number of edges in the path. For example, two ad-
jacent vertices are connected by a path of length one, and the previous notation
describes a path of length k. The distance between two vertices is the length of
the shortest path between the two vertices. The distance between a vertex and
itself is always 0.

Paths are fundamental to graphs because they allow us to take basic relation-
ships (edges) and derive more complex ones. Suppose, for example, we are
representing all the people of the world, with edges representing “A and B per-
sonally know each other.” The famous example from social networks is the idea
of Six Degrees of Separation, which says that on this graph, any two people have
a path of length at most 6 between them. Given an arbitrary graph, one might
wonder what the maximum path length is between any two vertices – or even
whether there is a path at all!

Definition 6.4 (connected). We say that a graph is connected if for every pair of
vertices in the graph, there is a path between them. Otherwise, we say the graph
is unconnected.

Implementing graphs

So far, we have discussed graphs as a mathematical abstraction. Our next step is
to decide how to represent graphs in a program. To be a bit more concrete, we
define a Graph ADT with two simple operations: obtaining a list of all vertices
in the graph, and checking whether two given vertices are adjacent.

Graph ADT
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• Vertices(G): Return a list of all the vertices of G.

• CheckAdjacent(G, u, v): Return whether vertices u and v are adjacent in G.

In this section, we’ll consider two implementations of this ADT: adjacency lists,
which generalize our reference-based tree implementations, and an array-based
implementation known as an adjacency matrix.

Adjacency lists

The first approach is one that should be familiar, because it is essentially what
we do to implement trees. We use a vertex data type that has a label attribute to
identify the vertex, and a list of references to its neighbours. This latter attribute
is known as an adjacency list, from which this implementation gets its name.

In our default undirected case, this
means that two adjacent vertices each
store a reference to the other in their
respective adjacency lists.

Since the vertices keep track of the edge data, a second graph data type stores
only a collection the vertices in the graph. To illustrate this approach, we show

A common implementation stores the
vertices in an array, and labels each
vertex with its array index. If we need
to support arbitrary unique identifiers,
any dictionary implementation (e.g., a
hash table) can be used as well.

how one could implement a function that checks whether two vertices in a graph
are adjacent. Note that this operation takes labels, and must use them to look up
the corresponding vertices in the graph.

7 def CheckAdjacent(G, i, j):

8 # Access the vertices attribute and perform lookup by labels

9 u = G.vertices[i]

10 v = G.vertices[j]

11 for vertex in u.neighbours:

12 # Note: this assumes labels are unique

13 if vertex.label == v.label:

14 return True

15

16 return False

What is the running time of this algorithm? We assume that looking up the two
vertices in graph.vertices takes constant time, so the running time is deter-

This is true if an array is used; we’ll
leave it as an exercise to think about
other implementations of this attribute.

mined by the number of loop iterations (since the body of the loop always takes
constant time). What is an upper bound on the number of iterations? Well, if
there are n vertices in the graph, then u can have at most n− 1 neighbours (if
it has edges going to every other vertex). It might be tempting to say O(n) at
this point. But remember that there are two measures of the size of the graph. If
the graph has m edges in total, then m is also an upper bound on the number of
neighbours that u can have. So the number of loop iterations is O(min(m, n)).

For a lower bound, suppose we consider a vertex u that is adjacent to min(m, n−
2) vertices, and let v be a vertex that is not adjacent to u. Then performing this
algorithm will cause all min(m, n− 2) iterations of the loop to occur, resulting
in a running time of Ω(min(m, n)).
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Adjacency matrices

The previous approach was vertex-focused: each vertex is represented as a sep-
arate entity in the program, with edges stored implicitly as the references in the
adjacency lists. It is also possible to represent the edges directly in what we call
an adjacency matrix. Suppose there are n vertices in some graph, each with a
label between 0 and n − 1. We use an n-by-n two-dimensional boolean array,
where the ij-entry of the array is true if there is an edge between vertex i and
vertex j.

In the undirected case this matrix is
symmetric across its diagonal, while in
the directed case that’s not guaranteed.Using this approach, determining adjacency in a graph runs in constant time,

since it is just an array lookup:

19 def CheckAdjacent(G, i, j):

20 return G.adjacency[i][j]

Implementation space usage

The adjacency matrix approach seems conceptually simpler and easier to imple-
ment than the adjacency list approach. However, it does have a relatively high
space cost, since it must use computer memory to store not only the edges, but
also the “non-edges.” This representation must store a full |V|-by-|V| matrix,
with a space cost of Θ(|V|2).

In the adjacency list implementation, the graph itself stores an array of size
Θ(|V|), and each vertex stores its label and references to its neighbours. We
cannot count the number of references for an individual vertex because that can
vary dramatically among vertices in an individual graph. But we do have a nice
way of calculating the total number of references stored across all vertices.

Definition 6.5 (degree). The degree of a vertex is the number of its neighbours.
For a vertex v, we will usually denote its degree by dv.

Lemma 6.1 (handshake lemma). The sum of the degrees of all vertices is equal
to twice the number of edges. Or,

∑
v∈V

dv = 2|E|.

This lemma gets its name from the
real-life example of meeting people at a
party. Suppose a bunch of people are at
a party always shake hands when they
meet someone new. After greetings are
done, if you ask each person how many
new people they met and add them up,
the sum is equal to twice the number of
handshakes that occurred.

Proof. Each edge e = (u, v) is counted twice in the degree sum: once for u, and
once for v. �

So this means the total cost of storing the references in our adjacency list data
structure is Θ(|E|), for a total space cost of Θ(|V|+ |E|) (adding a |V| term for
storing the labels). Note that this is the cost for storing all the vertices, not just a
single vertex. Adding up the cost for the graph data structure and all the vertices
gives a total space cost of Θ(|V|+ |E|).
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At first glance, it may seem that |V|2 and |V|+ |E| are incomparable. However,
observe that the maximum number of possible edges is Θ(|V|2), which arises in
the case when every vertex is adjacent to every other vertex. So in asymptotic
terms, |V| + |E| = O(|V|2), but this bound is not tight: if there are very few
(e.g., O(|V|)) edges then adjacency lists will be much more space efficient than
the adjacency matrix.

Graph traversals: breadth-first search

We are now ready to do our first real algorithm on graphs. Consider the central
problem of exploring a graph by traversing its edges (rather than relying on
direct access of references or array indices). For example, we might want to take
a social network, and print out the names of everyone who is connected to a
particular person. We would like to be able to start from a given vertex in a
graph, and then visit its neighbours, the neighbours of its neighbours, etc. until
we have visited every vertex that is connected to it. Moreover, we’d like to do so

If we assume that the graph is con-
nected, then such an exploration visits
every vertex in the graph.

efficiently.

For the next two sections, we will study two approaches for performing such an
exploration in a principled way. The first approach is called breadth-first search
(BFS). The basic idea is to take a starting vertex s, visit its neighbours, then visit
the neighbours of its neighbours, then the neighbours of its neighbours of its
neighbours, proceeding until all of the vertices have been explored. The trick
is doing so without repeatedly visiting the same vertex. To formalize this in
an algorithm, we need a way to keep track of which vertices have already been
visited, and which vertex should be visited next.

To do this, we use a queue as an auxiliary container of pending vertices to be
visited. A enqueued attribute is used to keep track of which vertices have been
visited already. This algorithm enqueues the starting vertex, and then repeatedly
dequeues a vertex and enqueues its neighbours that haven’t yet been enqueued.

5 def BFS(graph, s):

6 queue = new empty queue

7 initialize all vertices in the graph to not enqueued

8

9 queue.enqueue(s)

10 s.enqueued = True

11 while queue is not empty:

12 v = queue.dequeue()

13 Visit(v) # do something with v, like print out its label

14

15 for each neighbour u of v:

16 if not u.enqueued:

17 queue.enqueue(u)

18 u.enqueued = True
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To illustrate this algorithm, suppose we run it on the graph to the right starting
at vertex A. We’ll also assume the neighbours are always accessed in alphabetical
order. We mark in black when the vertices are visited (i.e., dequeued and passed
to the Visit function).

1. First, A is enqueued. We show this by marking it gray in the diagram.

2. A is dequeued, and its neighbours B and D are stored in the queue.

3. B is visited next, causing its neighbours C and E to be stored in the queue.
Note that A is also B’s neighbour, but it has already been enqueued, and so
is not added again.

4. The next vertex to be dequeued is D — remember that we’re storing vertices
in a queue, and D was added before C and E. Since D doesn’t have any
unvisited neighbours, nothing is added to the queue.

5. The remaining vertices are removed from the queue in the order C then E.

So the order in which these vertices are visited is A, B, D, C, E.

Correctness of BFS

Now that we have the algorithm in place, we need to do the two standard things:
show that this algorithm is correct, and analyse its running time.

But what does it mean for breadth-first search to be correct? The introductory
remarks in this section give some idea, but we need to make this a little more
precise. Remember that we had two goals: to visit every vertex in the graph,
and to visit all the neighbours of the starting vertex, then all of the neighbours of
the neighbours, then all of the neighbours of the neighbours of the neighbours,
etc. We can capture this latter idea by recalling our definition of distance be-
tween vertices. We can then rephrase the “breadth-first” part of the search to
say that we want to visit all vertices at distance 1 from the starting vertex, then
the vertices at distance 2, then distance 3, etc.

Theorem 6.2 (Correctness of BFS). Let v be the starting vertex chosen by the
BFS algorithm. Then for every vertex w connected to v, the following statements
hold:

(1) w is visited.
By “visit” here we mean that the
function Visit is called on the vertex.(2) Let d be the distance between v and w. Then w is visited after every vertex at

distance at most d− 1 from v.

Proof. We will proceed by induction on the distance between a vertex and v.
More formally, let P(n) be the statement that (1) and (2) are true for all vertices
with distance n from v.

Base case (P(0)). The only vertex at distance 0 from v is v itself. Then (1) is true
because v is certainly visited — it is added to the queue at the beginning of the
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algorithm. (2) is vacuously true because there aren’t even two distinct vertices
to consider.

Inductive step. Let k ≥ 0, and assume P(k) holds. That is, assume all vertices
at distance k from v are visited, and visited after all vertices at distance at most
k− 1. If there are no vertices at distance k + 1 from v, then P(k + 1) is vacuously
true and we are done.

v

w′

w

...

distance k from v

distance k + 1 from v

Otherwise, let w be a vertex that is at distance k + 1 from v. Then by the def-
inition of distance, w must have a neighbour w′ at distance k from v (w′ is the
vertex immediately before w on the path of length k between v and w). By the
induction hypothesis, w′ is visited. When a vertex is visited, all of its neighbours
are enqueued into the queue unless they have already been enqueued. So w is
enqueued. Because the loop does not terminate until the queue is empty, this
ensures that w at some point becomes the current vertex, and hence is visited.
This proves that statement (1) holds for w.

What about (2)? We need to show that w is visited after every vertex at distance
at most k from v. Let u be a vertex at distance d from v, where d ≤ k. Note that
d = 0 or d ≥ 1. We’ll only do the d ≥ 1 case here, and leave the other case as an
exercise.

By the induction hypothesis, we know that every vertex at distance < d is visited
before u. In particular, u has a neighbour u′ at distance d − 1 from v that is
visited before u. Also, w must have a neighbour w′ at distance k from v. Now,
u′ is visited before w′, since w′ is at distance k from v, and u′ is at distance
d − 1 ≤ k − 1 from v. Then the neighbours of u′, which include u, must be

This claim uses the induction hypothe-
sis as well.enqueued before the neighbours of w′, which include w. So u is added to the

queue before w, and hence is dequeued and visited before w. �
If you read through the proof carefully,
it is only in the last sentence that we
use the fact that we’re storing the
vertices in a queue and not some other
collection data type!

Analysis of BFS

Now let us analyse the running time of this algorithm. The creation of the new
queue takes constant time, but the initialization of all vertices to “not enqueued”
takes Θ(|V|) time.

The analysis of the loops is a little tricky because it is not immediately obvious
how many times each loop runs. Let us start with the outer loop, which only
terminates when queue is empty. We will do this a bit formally to illustrate
the extremely powerful idea that determining the runtime of an algorithm often
involves understanding the subtleties of what the algorithm really does.

Proposition 6.3. No vertex is added to the queue more than once.

Proof. Every time a vertex is added to the queue, it is always marked as ‘en-
queued.’ Only vertices that are not enqueued are ever added to the queue —
the starting vertex is initially unvisited, and there is an explicit check inside the
inner loop before enqueuing new vertices. So every vertex is added to the queue
at most once. �

Proposition 6.4. The outer loop runs at most |V| times.
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Proof. This follows immediately from the previous proposition, and the fact that
at each iteration, only one item is dequeued. �

Unfortunately, having an upper bound on the number of loop iterations does
not immediately give us an upper bound on the program runtime, even if we
assume that Visit runs in constant time. The running time of each loop iteration
depends on the number of times the inner loop runs, which in turn depends on
the current vertex.

To tackle the inner loop, you might notice that this is essentially the same as
the space cost analysis for adjacency lists — the inner loop iterates once per
neighbour of the current vertex. Because we know that v takes on the value
of each vertex at most once, the total number of iterations of the inner loop
across all vertices is bounded above by the total number of “neighbours” for
each vertex. By the Handshake Lemma, this is exactly 2 · |E|.

Putting this together yields an upper bound on the worst-case running time
of O(|V| + |E|). Is this bound tight? You may think it’s “obvious,” but keep
in mind that actually the lower bound doesn’t follow from the arguments we’ve
made in this section. The initialization of the vertex enqueued attributes certainly
takes Ω(|V|) time, but how do we get a better lower bound involving |E| using
the loops? After all, the first proposition says that each vertex is added at most
once. It is conceivable that no vertices other than the start are added at all,
meaning the loop would only run just once.

This is where our careful analysis of the correctness of the algorithm saves us. It
tells us that every vertex that is connected to the starting vertex is added to the
queue and visited. For a lower bound on the worst-case running time, we need
a family of inputs (one for each size) that run in time Ω(|V|+ |E|). Note that the
size measure here includes both the number of vertices and the number of edges.
So what kind of input should we pick? Well, consider a graph G in which all
edges are part of the same connected component of the graph, and then doing a

By “connected component” we mean a
group of vertices that are all connected
to each other.

breadth-first search starting at one of the vertices in this component.

Then by Theorem 6.2, we know that all vertices in this component are visited,
and the inner loop runs a total of 2 · |E| times (since all edges are between ver-
tices in this component). This, combined with the Ω(|V|) time for initialization,
results in an Ω(|V|+ |E|) running time for this family, and hence a lower bound
on the worst-case running time of BFS.

Exercise Break!

6.1 Build on our BFS algorithm to visit every vertex in a graph, even if the graph
is not connected. Hint: you’ll need to use a breadth-first search more than
once.

6.2 Our analysis of BFS assumed that Visit runs in constant time. Let’s try to
make this a bit more general: suppose that Visit runs in time Θ( f (|V|)),
where f : N→ R+ is some cost function. What is the running time of BFS in
this case?
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Graph traversals: depth-first search

We have just finished studying breadth-first search, a graph traversal algorithm
that prioritizes visiting vertices that are close to the starting vertex. A dual ap-
proach is called depth-first search (DFS), which prioritizes visiting as many
vertices as possible before backtracking to “choose a different neighbour.” We
give a recursive implementation of DFS below. The key idea is that a recursive

Because recursive functions make
great use of the function call stack, this
implementation is a natural dual of our
queue-based BFS algorithm.

DFS_helper call on a vertex v fully explores the part of the graph reachable from
v without revisiting any previously-visited vertices.

6 def DFS(graph, s):

7 initialize all vertices in the graph to not started or finished

8 DFS_helper(graph, s)

9

10 def DFS_helper(graph, v):

11 v.started = True

12 Visit(v) # do something with v, like print out its label

13

14 for each neighbour u of v:

15 if not u.started:

16 DFS_helper(graph, u)

17

18 v.finished = True

The other major change that we make is that now we have two attributes, started
and finished, tracking the status of each vertex throughout the search. You may
notice that the finished attribute is not used by the algorithm itself; however, it
does play a helpful role in analysing the behaviour of DFS. At any point during

The finished attribute will also be
helpful in one of the applications of
depth-first search discussed later in this
chapter.

the run of DFS, each vertex has one of three possible states:

• Not started: has not been visited by the search.

• Started but not finished: has been visited by the search, but some vertices
reachable from this vertex without revisiting other started vertices still need
to be visited.

• Started and finished: it has been visited by the search, and all vertices reach-
able from this vertex without revisiting other started vertices have been vis-
ited.
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Let us trace through this algorithm on the same graph from the previous section,
again starting at vertex A. In the diagram, white vertices have not been started,
gray vertices have been started but not finished, and black vertices have been
started and finished.

1. First, A is visited. It is marked as started, but is not yet finished.

2. Then B is visited (A’s first neighbour). It is marked as started.

3. Then C is visited (B’s first neighbour). It is marked as started. Note that A is
not visited again, since it has already been marked as started.

4. Then E is visited (C’s first neighbour). It is marked as started.

5. Since E has no neighbours that haven’t been started, it is marked as finished,
and the recursive call terminates.

6. Similarly, C and B are marked as finished, and their respective recursive calls
terminate, in that order.

7. Control returns to the original search with start A. D is visited (A’s second
neighbour). It is marked as started.

8. Since D does not have any unvisited neighbours, it is marked as finished.
And finally, A is marked as finished as well.

The order in which DFS visits the vertices is A, B, C, E, D.

A note about DFS correctness and runtime

Using a similar analysis as breadth-first search, we are able to prove the follow-
ing “weak” notion of correctness for depth-first search.

Theorem 6.5 (Weak correctness of DFS). Let v be the starting vertex given as
input to the DFS algorithm. Then for every vertex w that is connected to v, the
following statement holds:

(1) w is visited.

It is harder to capture the intuitive notion of “depth-first” because there isn’t an
obvious notion of distance to measure. We can, however, formalize the proper-
ties of the attributes started and finished we asserted (without proof!) in the
previous section.

Theorem 6.6 (Properties of DFS). Suppose DFS_helper is called on a vertex v,
and let w be any vertex in the graph that satisfies the following two properties
at the beginning of the function call:

1. w is not started.

2. There is a path between v and w consisting of only vertices that have not been
started.
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Then w is both started and finished by the time DFS_helper(v) returns.

Finally, using a very similar analysis as BFS, we can obtain the following tight
bound on the worst-case running time of DFS.

Theorem 6.7 (DFS runtime). The worst-case running time of depth-first search
is Θ(|V|+ |E|).

We will leave the proofs of these last two theorems as exercises.

Exercise Break!

6.1 Prove Theorem 6.6.

6.2 Prove Theorem 6.7.

Applications of graph traversals

In this section, we’ll look at two applications of breadth-first and depth-first
search that have wide-ranging uses in computer science: detecting cycles in a
graph, and determining the shortest path between two vertices.

Detecting cycles (undirected graphs)

Definition 6.6 (cycle). A cycle in a graph is a sequence of distinct edges (v0, v1),
(v1, v2), . . . , (vn−1, vn), (vn, v0) that start and end at the same vertex.

That is, a cycle is a path that starts and
ends at the same vertex.

Cycles encode a natural “redundancy” in a graph: it is possible to remove any
edge in a cycle without disconnecting its vertices (just take the long way around
the cycle), and so it is often useful to know whether a graph has a cycle, or
whether it does not. It turns out that determining whether a graph has a cycle or
not can be done through a simple modification of either breadth-first or depth-
first search, though we will only show the DFS version here.

Recall that depth-first search sets two attributes started and finished for each
vertex, which are used to track the status of the vertex in the search. Intu-
itively, we can use these to detect cycles by checking whether we have reached
an already-visited node when performing a search. Below, we give a modified
version of DFS that reports when it detects a cycle, with two main changes to
the implementation:

• Each vertex other than the starting vertex stores its parent vertex, which is the
neighbour that caused the vertex to be visited

• The inner loop contains a check for started neighbours that are not the parent
of the current vertex; as we’ll show later, this is a valid check for a cycle.
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The caveat for our (quite simple) implementation is that it only works when
the graph is connected; we leave it as an exercise to decide how to modify it to
always report a cycle, even when the graph is not connected.

5 def DetectCycle(graph):

6 initialize all vertices in the graph to not started or finished

7 s = pick starting vertex

8 DFS_helper(graph, s)

9

10 def DFS_helper(graph, v):

11 v.started = True

12

13 for each neighbour u of v:

14 if not u.started:

15 u.parent = v # NEW: store parent attribute

16 DFS_helper(graph, u)

17 else:

18 # NEW: check for cycle and report

19 if u != v.parent:

20 report that there is a cycle

21

22 v.finished = True

Before we prove the correctness of this algorithm, observe that it is an extremely
minor modification of the standard DFS algorithm, and clearly runs in Θ(|V|+
|E|) time. Indeed, one reason cycle detection is a classic application of DFS and
BFS is that the code changes necessary to solve this problem add only a constant
factor running time overhead to the basic search algorithms. You could say that
the search algorithm does all the hard work, and cycle detection is thrown in for
free.

Of course, one should at least be a little skeptical that minor modifications can
be made to an algorithm to solve a different problem. Let us now prove that
this algorithm is indeed correct. You may find it helpful to review Theorem 6.6
before continuing.

Theorem 6.8 (Cycle Detection with DFS correctness). The modified DFS algo-
rithm reports that a cycle exists if and only if the input graph has a cycle.

Proof. Let us do the forward direction: assume that the algorithm reports a cycle.
We want to prove that the input graph has a cycle.

Let u and v represent the values of the variables u and v when the cycle is
reported (on line 16). We will claim that u and v are part of a cycle. Note that u
and v are neighbours, so all we need to do is show that there is a path from u to
v that doesn’t use this edge.

We can “close” the path with the (u, v)
edge to form the cycle.

First, since u is started, it must have been visited before v. Let s be the start-
ing vertex of the DFS. Because both u and v have been visited, they are both
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connected to s.

Moreover, because v is the current vertex, this means that u cannot be finished,
since all of the neighbours of u must finish before u. So then u must be on the
path between v and s. Moreover, because it is not the parent of v, the segment
of this path between u and v contains at least one other vertex, and does not
contain the edge (u, v).

Now the backwards direction: assume the input graph has a cycle. We want to
show that a cycle is reported by this algorithm. Let u be the first vertex in the
cycle that is visited by the DFS, and let w be the next vertex in the cycle that is
visited.

Though there may be other vertices visited by the search between u and w, we
will ignore those, looking only at the vertices on the cycle. When w is visited, it
and u are the only vertices on the cycle that have been visited. In particular, this
means that u has at least one neighbour in the cycle that hasn’t been visited. Let

This is true even if w and u are neigh-
bours, since u has two neighbours on
the cycle.

v be a neighbour of u that has not yet been visited. Then because there is a path
between w and v consisting of vertices that are not started, v must be visited
before the DFS_helper call ends.

Now consider what happens when DFS_helper is called on v. We know that u
is a neighbour of v, that it is started, and that it is not the parent of v (since the
DFS_helper call on w hasn’t ended yet). Then the conditions are all met for the
algorithm to report the cycle. �

Detecting cycles (directed graphs)

Before moving onto our next example, let us take a brief detour into the world
of directed graphs. Recall that a directed graph is one where each edge has
a direction: the tuple (u, v) represents an edge from u to v, and is treated as
different from the edge (v, u) from v to u.

Cycle detection in directed graphs has several applications; here is just one ex-
ample. Consider a directed graph where each vertex is a course offered by the
University of Toronto, and an edge (u, v) represents the relationship “u is a
prerequisite of v.” Then a cycle of three directed edges with vertex sequence
v1, v2, v3, v1 would represent the relationships “v1 is a prerequisite of v2, v2 is a
prerequisite of v3, and v3 is a prerequisite of v1.” But this is nonsensical: none
of the three courses v1, v2, or v3 could ever be taken. Detecting cycles in a
prerequisite graph is a vital step to ensuring the correctness of this graph.

It turns out that essentially the same algorithm works in both the undirected
and directed graph case, with one minor modification in the check for a cycle.
Before we write the algorithm, we note the following changes in terminology in
the directed case:

• A neighbour of v is another vertex u such that there is an edge from v to u.

• A directed cycle can have length 2: if there are two vertices u and v such that
there is an edge from u to v and one from v to u, these two vertices form a
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cycle.
Recall that this was a special case we
had to check for with the “parent”
attribute in the undirected case.

25 def DetectCycleDirected(graph):

26 initialize all vertices in the graph to not started or finished

27 s = pick starting vertex

28 DFS_helper(graph, s)

29

30 def DFS_helper(graph, v):

31 v.started = True

32

33 for each neighbour u of v:

34 if not u.started:

35 DFS_helper(graph, u)

36 else:

37 # NEW: check for directed cycle and report

38 if not u.finished:

39 report that there is a cycle

40

41 v.finished = True

We won’t prove the correctness of this algorithm here, as the proof is quite
similar to that of the undirected case. It truly is a testament to the flexibility of
DFS that such minor modifications can have such interesting consequences.

Shortest Path

Let us now turn our attention to a second application of these searches. Recall
that BFS visits vertices in order of their distance from the starting vertex. From
this information alone, however, we cannot determine precisely how far away a
given vertex is from the start. However, if we adapt the “storing parent” idea
to the breadth-first search algorithm, it turns out that we can not only get the
distance between the starting vertex and an arbitrary vertex visited by the search,
but also the most direct route as well.

More concretely, suppose we are given a graph and two vertices v and u, and
want to find a shortest path between them. Our algorithm is quite straightfor-

Note that there could be multiple paths
of the same minimum length between
u and v, and we’re only looking for one
of them.

ward:

1. Perform a BFS starting at v, storing the parent of each vertex. Here, parent has
the same meaning as DFS: the parent of a vertex w is the vertex which, when
visited by BFS, causes w to be added to the queue.

2. Return the path formed by starting at u, and following the parent vertex
references until v is reached.

What can we conclude if u’s parent
attribute is unset after the BFS?

Let us formally prove that this algorithm is correct.
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Theorem 6.9. Let v be the starting vertex of a BFS on a given graph, and u be
any vertex that is connected to v, and d be the distance between u and v.Let
u0 = u, u1 be the parent of u0, and in general for all 1 ≤ i ≤ d, ui the parent of
ui−1. Then we claim that ud = v, i.e., the path of vertices u0, u1, . . . , ud of length
d does in fact reach v, making this path one of the shortest possible length.

Proof. We prove this by induction on d, the distance from u to v.

Base case: d = 0. In this case, u must equal v. Then, u0 = u = v, and so the
theorem holds in this case. Note that the “shortest path” consists of just the
single vertex v, and has length 0.

Inductive step: suppose the statement holds for some distance d ≥ 0; that is,
for every vertex at distance d from v, the path obtained by starting at that vertex
and following the parent links d times correctly ends at v. Let u be a vertex at
distance d + 1 from v. We want to prove that the same is true for u (following
the parent d + 1 times joins u to v).

Because u is connected to v, it must be visited by the BFS starting at v, and so
has a parent. Let u′ be the parent of u. We claim that u′ must have distance d
from v.

First, u′ cannot be at distance < d from v, because otherwise u would be at
distance < d + 1 from v. But also u′ cannot be at distance ≥ d + 1 from v,
because then it wouldn’t be the parent of u. Why not? u must have a neighbour
of distance d from v, and by the BFS correctness theorem, this neighbour would
be visited before u′ if u′ were at a greater distance than d from v. But the parent
of u is the first of its neighbours to be visited by BFS, so u′ must be visited before
any other of u’s neighbours.

So, u′ is at distance d from v. By the induction hypothesis, the sequence of
parents u0 = u′, u1, . . . , ud is a path of length d that ends at v. But then the
sequence of parents starting at u of length d + 1 is u, u0, u1, . . . , ud, which also
ends at v. �

So with this slight modification to breadth-first search, we are able to compute
the shortest path between any two vertices in a graph. This has many applica-
tions in computer science, including computing efficient routes for transmitting
physical goods and electronic data in a network and the analysis of dependency
graphs of large-scale systems.

Weighted graphs

The story of shortest paths does not end here. Often in real-world applications of
graphs, not all edges — relationships — are made equal. For example, suppose
we have a map of cities and roads between them. When trying to find the
shortest path between two cities, we do not care about the number of roads that
must be taken, but rather the total length across all the roads. But so far, our
graphs can only represent the fact that two cities are connected by a road, and
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not how long each road is. To solve this more general problem, we need to
augment our representation of graphs to add such “metadata” to each edge in a
graph.

Definition 6.7 (weighted graph, edge weight). A weighted graph is a graph
G = (V, E), where each edge now is a triple (v1, v2, w), where v1, v2 ∈ V are
vertices as before, and w ∈ R is a real number called the weight of the edge.
Given an edge e, we will use the notation we to refer to its weight.

We will refer to our previous graphs with no weights as unweighted graphs, and
that is our default (just like undirected graphs are our default).

Fun fact: you can think of an un-
weighted graphs as a weighted graph
where each edge has weight 1.The weighted shortest path problem for a weighted graph does not minimize the

number of edges in a path, but instead minimizes the sum of the weights along
the edges of a path. This is a more complex situation that cannot be solved by
breadth-first search, and beyond the scope of this course. But fear not: you’ll
study algorithms for solving this problem in CSC373.

Minimum spanning trees

Now that we have introduced weighted graphs, we will study one more funda-
mental weighted graph problem in this chapter. Suppose we have a connected
weighted graph, and want to remove some edges from the graph but keep the
graph connected. You can think of this as taking a set of roads connecting cities,
and removing some the roads while still making sure that it is possible to get
from any city to any other city. Essentially, we want to remove “redundant”
edges, the ones whose removal does not disconnect the graph.

How do we know if such redundant edges exist? It turns out (though we will
not prove it here) that if a connected graph has a cycle, then removing any edge
from that cycle keeps the graph connected. Moreover, if the graph has no cycles,
then it does not have any redundant edges. This property – not having any

We won’t prove this here, but please
take a course on graph theory if you
interested in exploring more properties
like this in greater detail.

cycles – is important enough to warrant a definition.

Definition 6.8 (tree). A tree is a connected graph that has no cycles.

Warning: one difference between this
definition of tree and the trees you are
used to seeing as data structures is that
the latter are rooted, meaning we give
one vertex special status as the root of
the tree. This is not the case for trees in
general.

So you can view our goal as taking a connected graph, and identifying a subset
of the edges to keep, which results in a tree on the vertices of the original graph.

It turns out that the unweighted case is not very interesting, because all trees
obey a simple relationship between their number of edges and vertices: every
tree with n vertices has exactly n− 1 edges. So finding such a tree can be done
quite easily by repeatedly finding cycles and choosing to keep all but one of the
edges.

However, the weighted case is more challenging, and is the problem of study in
this section.

Definition 6.9 (minimum spanning tree). The Minimum Spanning Tree Prob-
lem takes as input a connected weighted graph G = (V, E), and outputs a set
of edges E′ such that the graph (V, E′) is a tree, and which minimizes the sum
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of the weights ∑e∈E′ we. We call the resulting tree a minimum spanning tree
(MST) of G.

As with shortest paths, there might be
more than one minimum spanning tree
of G. We just want to find one.

Prim’s algorithm

The first algorithm we will study for solving this problem is known as Prim’s
algorithm. The basic idea of this algorithm is quite straightforward: pick a
starting vertex for the tree, and then repeatedly add new vertices to the tree,
each time selecting an edge with minimum weight that connects the current tree
to a new vertex.
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5 def PrimMST(G):

6 v = pick starting vertex from G.vertices

7 TV = {v} # MST vertices

8 TE = {} # MST edges

9

10 while TV != G.vertices:

11 extensions = { (u, v) in G.edges where exactly one of u, v are in TV }

12 e = edge in extensions having minimum weight

13 TV = TV + endpoints of e

14 TE = TE + {e}

15

16 return TE

This algorithm is quite remarkable for two reasons. The first is that it works
regardless of which starting vertex is chosen; in other words, there is no such
thing as the “best” starting vertex for this algorithm. The second is that it works
without ever backtracking and discarding an already-selected edge to choose a
different one. Let us spend some time studying the algorithm to prove that it is

This algorithm doesn’t “make mistakes”
when choosing edges.indeed correct.

Theorem 6.10 (Correctness of Prim’s algorithm). Let G = (V, E) be a connected,
weighted graph. Then Prim’s algorithm returns a set of edges E′ such that
(V, E′) is a minimum spanning tree for G.

Proof. The proof of correctness of Prim’s algorithm is an interesting one, because
it relies on two loop invariants, one of which is straightforward, but the other of
which is very neat and unexpected if you haven’t seen anything like it before.
Here are our two invariants (remember that these are true at the beginning and
end of every iteration of the loop):

(1) The graph (TV, TE) is a tree.
Remember: trees are connected and
have no cycles.(2) The tree (TV, TE) can be extended by only adding some edges and vertices to a

minimum spanning tree of G.
This is like saying that TE is a subset of
a possible solution to this problem.

Before we prove that these invariants are correct, let’s see why they imply the
correctness of Prim’s algorithm. When the loop terminates, both of these invari-
ants hold, so the graph (TV, TE) is a tree and can be extended to an MST for the
input graph. However, when the loop terminates, its condition is false, and so
TV contains all the vertices in the graph. This means that (TV, TE) must be an MST
for the input graph, since no more vertices/edges can be added to extend it into
one.

We will omit the proof of the first invariant, which is rather straightforward. The
High level: every time a vertex is
added, an edge connecting that ver-
tex to the current tree is also added.
Adding this edge doesn’t create a cycle.

second one is significantly more interesting, and harder to reason about. Fix a
loop iteration. Let (V1, E1) be the tree at the beginning of the loop body, and
(V2, E2) be the tree at the end of the loop body. We assume that (V1, E1) can be
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extended to an MST (V, E′) for the input, where E1 ⊆ E′. Our goal is to show
This assumption is precisely the loop
invariant being true at the beginning of
the loop body.

that (V2, E2) can still be extended to an MST for the input (but not necessarily the
same one).

What the loop body does is add one vertex v to V1 and one edge e = (v, u, we)

to E1, where u is already in V1, and we is the weight of this edge. So we have
V2 = V1 ∪ {v} and E2 = E1 ∪ {e}.

Case 1: e ∈ E′. In this case, E2 ⊆ E′, so the tree (V2, E2) can also be extended to
the same MST as (V1, E1), so the statement holds.

Case 2: e /∈ E′. This is tougher because this means E2 cannot simply be extended
to E′; we need to find a different minimum spanning tree (V, E′′) that contains
E2.

Let us study the minimum spanning tree (V, E′) more carefully. Consider the
partition of vertices V1, V\V1, in this MST. Let u and v be the endpoints of e; then
they must be connected in the MST, and so there is a path between them. Let
e′ ∈ E′ be an edge on this path that connects a vertex from V1 to a vertex from
V\V1. Since e /∈ E′, this means that e′ 6= e.

Now consider what happens in the loop body. Since e′ connects a vertex in V1

to a vertex not in V1, it is put into the set extensions. We also know that e was
selected as the minimum-weight edge from extensions, and so we′ ≥ we. Note that their weights could be equal.

Now define the edge set E′′ to be the same as E′, except with e′ removed and e
added. The resulting graph (V, E′′) is still connected, and doesn’t contain any
cycles – it is a tree. Moreover, the total weight of its edges is less than or equal to
that of E′, since we′ ≥ we. Then the graph (V, E′′) is also a minimum spanning

In fact, because E′ forms a minimum
spanning tree, the total weight of
E′′ can’t be smaller than E′, so their
weights are equal.

tree of the input graph, and E ⊆ E′′. �

The idea of replacing e′ by e in the initial MST to form a new MST is a very nice
one. Intuitively, we argued that at the loop iteration where we “should” have
chosen e′ to go into the MST, choosing e instead was still just as good, and also
leads to a correct solution. It is precisely this argument, “every choice leads to
a correct solution”, that allows Prim’s algorithm to never backtrack, undoing a
choice to make a different one. This has significant efficiency implications, as
we’ll study in the next section.

Analysis of Prim’s algorithm

What is the running time of Prim’s algorithm? Let n be the number of vertices in
the graph, and m be the number of edges. We know that the outer loop always
runs exactly n times. Each iteration adds one new vertex to the set TV; the loop
terminates only when TV contains all n vertices. But what happens inside the
loop body?

This is actually where the choice of data structures is important. Note that we
have two sets here, a set of vertices and a set of edges. We’ll first use an array to
represent these sets, so looking up a particular item or adding a new item takes
constant time.
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How do we compute extensions, the edges that have one endpoint in TV and
one endpoint not in TV? We can loop through all the edges, each time checking
its endpoints; this takes Θ(m) time. What about computing the minimum

Using adjacency lists, this statement
is certainly true, but requires a bit of
thought. We leave this as an exercise.

weight edge? This is linear in the size of extensions, and so in the worst case is
Θ(m).

This leads to a total running time of Θ(mn), which is not great (recall that BFS
and DFS both took time linear in the two quantities, Θ(n + m)). The key in-
efficiency here is that the inner computations of finding “extension” edges and
finding the minimum weight edge both do a lot of repeated work in different it-
erations of the outer loop. After all, from one iteration to the next, the extensions
only change slightly, since the set TV only changes by one vertex.

So rather than recompute extensions at every iteration, we maintain a heap of
edges that extends the current tree (TV, TE), where the “priority” of an edge is
simply its weight. This is quite nice because the operation we want to perform
on extensions, find the edge with the minimum weight, is well-suited to what
heaps can give us.

Suppose that we pre-sort the edges in nondecreasing order. Then, when each
edge is checked, it must have the minimum weight of all the remaining edges.
Since we only care about getting the remaining edge with the minimum weight,
this is a perfect time for a heap:

5 def PrimMST(G):

6 v = pick starting vertex from G.vertices

7 TV = {v} # MST vertices

8 TE = {} # MST edges

9 extensions = new heap # treat weights as priority

10 for each edge on v:

11 Insert(extensions, edge)

12

13 while TV != G.vertices:

14 e = ExtractMin(extensions)

15 if both endpoints of e are in TV:

16 continue # go onto the next iteration

17

18 u = endpoint of e not in TV

19

20 TV = TV + {u}

21 TE = TE + {e}

22 for each edge on u:

23 if other endpoint of edge is not in TV:

24 Insert(extensions, edge)

25

26 return (TV, TE)

We will do an informal running time analysis of this algorithm. First, we note
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that each edge is added to the heap at most once, and so the total number of
Exercise: why is each edge added at
most once?calls to Insert is O(|E|). This means that the cost of all the heap operations

(both Insert and ExtractMax) take O(|E| log |E|) in total.

At each iteration, the endpoints of the extracted edge must be checked for mem-
bership in TV. A naïve implementation of this would search every element of TV,
for a worst-case running time of Θ(|V|). This can be improved by two methods:
store an attribute for each vertex indicating whether it is currently in TV or not,
or use an AVL tree or hash table to store the set to support asymptotically faster
lookup. We will assume that we’re using the first approach, which reduces the
check to a constant-time operation.

Since all the other operations take constant time, the running time isO(|E| log |E|+
|V|) = O(|E| log |E|), since |E| ≥ |V| − 1 for a connected graph. It turns out that
with a bit more effort, we can get this down to O(|V| log |V|) — see CLRS, sec-
tion 23.2 for details.

Kruskal’s algorithm

As a bridge between this chapter and our next major topic of discussion, we will
look at another algorithm for solving the minimum spanning tree problem. You
might wonder why we need another algorithm at all: didn’t we just spend a
lot of time developing an algorithm that seems to work perfectly well? But of
course, there are plenty of reasons to study more than one algorithm for solving
a given problem, much as there is for studying more than one implementation
of a given ADT: generation of new ideas or insights into problem structure; im-
proving running time efficiency; different possible directions of generalization.
In this particular case, we have a pedagogical reason for introducing this algo-
rithm here as well, as motivation for the final abstract data type we will study
in this course.

The second algorithm for solving the minimum spanning tree problem is known
as Kruskal’s algorithm. It is quite similar to Prim’s algorithm, in that it incre-
mentally builds up an MST by selecting “good” edges one at a time. Rather
than build up a single connected component of vertices, however, it simply sorts
edges by weight, and always picks the smallest-weight edge that doesn’t create
a cycle with the edges already selected.

5 def KruskalMST(G):

6 TE = {}

7 sort G.edges in non-decreasing order of weights

8

9 for e in G.edges: # starting with the smallest weight edge

10 if TE + {e} does not have a cycle:

11 TE = TE + {e}

12

13 return TE
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We will omit the proof of correctness of Kruskal’s algorithm, although it is quite
remarkable that this algorithm works correctly given its simplicity.

The running time of this algorithm is more interesting. The sorting of edges
takes Θ(|E| log |E|) in the worst-case and the outer loop runs at most |E| times.
The really interesting part of the algorithm comes from checking whether adding
a new edge e to TE creates a cycle or not. A natural approach is to use what we
learned earlier in this chapter and perform either a depth-first or breadth-first
search starting from one of the endpoints of the chosen edge, using only the
edges in TE + {e}. This is rather inefficient, since the O(|V|+ |E|) running time
of the search is repeated O(|E|) times, for a total running time of O(|E| log |E|+
|E|(|V|+ |E|)) = O(|E| · |V|+ |E|2).

Well, this is at least the obvious upper
bound calculation. We leave it as an
exercise to prove a tight lower bound on
the worst-case running time.

However, there is a much smarter way of checking whether adding a given edge
creates a cycle or not, by keeping track of the connected components of the
vertices defined by the edges in TE. At the beginning of Kruskal’s algorithm, we
can view each vertex as being its own component, since TE is empty. When the
first edge is added, its two endpoints are merged into the same component. As
more and more edges are added, components merge together, until eventually
there is only one component, the minimum spanning tree.

How does this help us check whether adding an edge creates a cycle or not? We
look at the two endpoints of the new edge: if they are in the same connected
component, then adding the edge creates a cycle; otherwise, adding an edge
doesn’t create a cycle, and causes the two components of its endpoints to be
merged.



data structures and analysis 79

16 def KruskalMST(G):

17 TE = {}

18 sort G.edges in non-decreasing order of weights

19 set each vertex to be its own connected component

20

21 for e in G.edges: # starting with the smallest weight edge

22 if the endpoints of e are not in the same connected component:

23 TE = TE + {e}

24 merge the connected components containing the endpoints of e

25

26 return TE

The running time of the algorithm now depends on how quickly we can main-
tain these components while performing these three operations:

• create a new component for each vertex

• determine whether two vertices are in the same component

• merge two components together

As we will see in the following two chapters, the answer is: “we can support all
three of these operations very efficiently, if we consider the operations in bulk
rather than one at a time.” But before we formalize the abstract data type to
support these operations and study some implementations of this data type, we
need to really understand what it means to “consider the operations in bulk.”
This is a type of runtime analysis distinct from worst-case, average-case, and
even worst-case expected running times, and is the topic of the next chapter.





7 Amortized Analysis

In this chapter, we will study another form of algorithm analysis that offers a
new type of refinement of worst-case analysis. To set the stage for this technique,
let us return to the context of hash tables from Chapter 4. Recall that in hashing
with open addressing, keys are stored directly in the table itself, with collisions
being resolved by iterating through a probe sequence of possible indices until
an unoccupied spot is found. In our consideration of this technique, we had
an underlying assumption that there would be space for every new key-value
pair inserted (and that you’d find such a space with a sufficiently long probe
sequence). This implied that the array used to store the pairs was bigger than
the number of pairs stored. In general, however, we do not know a priori how
many pairs are going to be stored in the hash table, and so it is impossible to
predict how large an array to use.

One can get around this problem by storing the hash table with a data structure
that uses dynamically-allocated memory like a linked list or AVL tree, but then
we lose the constant-time addressing feature that we get from storing items
in a contiguous block of memory. In this chapter, we will study a variant of
arrays called dynamic arrays, which we use to implement a resizable collection
of items that supports constant-time addressing and “efficient” insertion of new
items. We put efficient in quotation marks here because our standard measures
of efficiency either won’t apply or won’t be impressive. Instead, we will define
and justify a new type of running time analysis known as amortized analysis
under which dynamic arrays are excellent .

Dynamic arrays

The idea of a dynamic array is to keep the fundamental array property of storing
items in a contiguous memory block, but allow the array to expand when the
existing array is full. One might think that this expansion is easy, as we can
always increase the size of an array by giving it ownership of some memory
blocks after its current endpoint. But of course that memory might be already
allocated for a different use, and if it is then the existing array cannot simply be

This “different use” might even be
external to our program altogether!expanded.

Instead, we will do the only thing we can, and allocate a separate and bigger
block of memory for the array, copying over all existing elements, and then
inserting the new element. We show below one basic implementation of this ap-
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proach, where A has three attributes: array, a reference to the actual array itself;
allocated, the total number of spots allocated for array; and size, the number
of filled spots in array. For this implementation, we choose an “expansion fac-
tor” of two, meaning that each time the array is expanded, the memory block
allocated doubles in size.

5 def insert(A, x):

6 # Check whether current array is full

7 if A.size == A.allocated:

8 new_array = new array of length (A.allocated * 2)

9 copy all elements of A.array into new_array

10 A.array = new_array

11 A.allocated = A.allocated * 2

12

13 # insert the new element into the first empty spot

14 A.array[A.size] = x

15 A.size = A.size + 1

Worst-case running time of dynamic arrays

For the purposes of analysing the running time of this data structure, we will
only count the number of array accesses made. This actually allows us to compute
an exact number for the cost, which will be useful in the following sections.

While this does cause us to ignore the
cost of the other operations, all of them
are constant time, and so focusing on
the number of array accesses won’t
affect our asymptotic analysis.

For now, suppose we have a dynamic array where all n allocated spots are full.
We note that the final two steps involve just one array access (inserting the new
item x), while the code executed in the if block has exactly 2n accesses: ac-
cessing each of the n items in the old array and copying each item to the new
array.

So we have a worst-case running time of 2n + 1 = O(n) array accesses. This
upper bound does not seem very impressive: AVL trees were able to support
insertion in worst-case Θ(log n) time, for instance. So why should we bother
with dynamic arrays at all? The intuition is that this linear worst-case insertion
is not a truly representative measure of the efficiency of this algorithm, since it
only occurs when the array is full. Furthermore, if we assume the array length
starts at 1 and doubles each time the array expands, then the array lengths are
always powers of 2. This means that 2n + 1 array accesses can only ever occur
when n is a power of 2; the rest of the time, insertion accesses only a single
element! A bit more formally, if T(n) is the number of array accesses when
inserting into a dynamic array with n items, then

T(n) =

2n + 1, if n is a power of 2

1, otherwise

So while it is true that T(n) = O(n), it is not true that T(n) = Θ(n).
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Are average-case or worst-case expected analyses any better here? Well, remem-
ber that these forms of analysis are only relevant if we treat the input data as
random, or if the algorithm itself has some randomness. This algorithm certainly
doesn’t have any randomness in it, and there isn’t a realistic input distribution
(over a finite set of inputs) we can use here, as the whole point of this applica-
tion is to be able to handle insertion into arrays of any length. So what do we do
instead?

Amortized analysis

Before we give a formal definition of amortized analysis, let us expand on one
important detail from our informal discussion in the previous section. We ob-
served that dynamic array insertion was only very rarely slow (when the number
of items is a power of two, meaning that the array is full), with any other inser-
tion being extremely fast. But even more is true: the only way to reach the “bad”
state of inserting into a full array is by first performing a series of (mostly fast)
insertions.

Consider inserting an item into a full array of allocated length 210 = 1024. Since
1024 is a power of two, we know that this will take 2049 array accesses. However,
to even reach such a state, we must have first taken an array of length 512,
expanded it to an array of length 1024, and then performed 511 insertions to fill
up the expanded array. And these 511 insertions would each have taken just one

Remember that the expansion is caused
when a new item is inserted, so the ex-
panded array starts with 513 elements
in it.

array access each!

So we can contextualize the “inefficient” insertion into the full 1024-length array
by noting that it must have been preceded by 511 extremely efficient insertions,
which doesn’t sound so bad.

More formally, an amortized analysis of a data structure computes the maxi-
mum possible average cost per operation in a sequence of operations, starting from
some initial base state. Unlike both worst- and average-case analyses, we are not

You can ignore the “maximum possi-
ble” for now, since for dynamic arrays
we only have one possible operation
— insertion — and hence one possible
sequence of operations.

concerned here with studying one individual operation, but rather the total cost
of a sequence of operations performed on a data structure, and relating this to
the number of operations performed. There are two different ways of thinking
about the amortized cost of a set of operations:

• The average cost of an operation when multiple operations are performed in a
row. Note that this is a different use of “average” than average-case analysis,
which considers an operation as an isolated event, but allows for considera-
tion of multiple inputs.

• The total cost of a sequence of M operations as a function of M. Note that
a sequence of M constant-time operations must have a total running time of
Θ(M), so expressions that look “linear” aren’t directly referencing the worst-
case running time of a single operation, but rather the rate of growth of the
runtime of the entire sequence.
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Aggregate method

The first method we’ll use to perform an amortized analysis is called the aggre-
gate method, so named because we simply compute the total cost of a sequence
of operations, and then divide by the number of operations to find the average
cost per operation.

Let’s make this a bit more concrete with dynamic arrays. Suppose we start with
an empty dynamic array (size 0, allocated space 1), and then perform a sequence
of M insertion operations on it. What is the total cost of this sequence of op-
erations? We might naively think of the worst-case expression 2n + 1 for the

We’re still counting only array accesses
here.insertion on an array of size n, but as we discussed earlier, this vastly overesti-

mates the cost for most of the insertions. Since each insertion increases the size
of the array by 1, we have a simple expression of the total cost:

M−1

∑
k=0

T(k).

Recall that T(k) is 1 when k isn’t a power of two, and 2k + 1 when it is. Define
T′(k) = T(k)− 1, so that we can write

M−1

∑
k=0

T(k) =
M−1

∑
k=0

(1 + T′(k)) = M +
M−1

∑
k=0

T′(k).

Now, most of the T′(k) terms are 0, and in fact we can simply count the terms
that aren’t 0 by explicitly using the powers of two from 20 to 2blog(M−1)c. So then

M−1

∑
k=0

T(k) = M +
M−1

∑
k=0

T′(k)

= M +
blog(M−1)c

∑
i=0

T′(2i) (substituting k = 2i)

= M +
blog(M−1)c

∑
i=0

2 · 2i

= M + 2 ·
(

2blog(M−1)c+1 − 1
)

(∑d
i=0 2i = 2d+1 − 1)

= M− 2 + 4 · 2blog(M−1)c

The last term there looks a little intimidating, but note that the floor doesn’t
change the value of the exponent much, and that the power and the log roughly
cancel each other out:
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log(M− 1)− 1 ≤ blog(M− 1)c ≤ log(M− 1)

2log(M−1)−1 ≤ 2blog(M−1)c ≤ 2log(M−1)

1
2
(M− 1) ≤ 2blog(M−1)c ≤ M− 1

2(M− 1) + (M− 2) ≤
M−1

∑
k=0

T(k) ≤ 4(M− 1) + M− 2

3m− 4 ≤
M−1

∑
k=0

T(k) ≤ 5m− 6

So the total cost is between roughly 3m and 5m. This might sound linear, but
You may find it strange that the key
variable is the number of operations,
not the size of the data structure like
usual. In amortized analysis, the size
of the data structure is usually tied
implicitly to the number of operations
performed.

remember that we are considering a sequence of M operations, and so the key
point is that the average cost per operation in a sequence is actually between 3 and
5, which is constant! So we conclude that the amortized cost of dynamic array
insertion is Θ(1), formalizing our earlier intuition that the inefficient insertions
are balanced out by the much more frequent fast insertions.

Accounting (banker’s) method

Now let us perform the analysis again through a different technique known as
the accounting method, also known as the banker’s method. As before, our
setup is to consider a sequence of M insertion operations on our dynamic array.
In this approach, we do not try to compute the total cost of these insertions
directly, but instead associate with each operation a charge, which is simply a
positive number, with the property that the total value of the M charges is greater
than or equal to the total cost of the M operations.

You can think of cost vs. charge in terms of a recurring payment system. The
cost is the amount of money you have to pay at a given time, and the charge
is the amount you actually pay. At any point in time the total amount you’ve
paid must be greater than or equal to the total amount you had to pay, but for
an individual payment you can overpay (pay more than is owed) to reduce the
amount you need to pay in the future.

In the simplest case, the charge is chosen to be the same for each operation,
say some value c, in which case the total charge is cM. Let T(M) be the total
cost of the M operations in the sequence. If we assume that T(M) ≤ cM, then
T(M)/M ≤ c, and so the average cost per operation is at most c. In other words,
the chosen charge c is an upper bound on the amortized cost of the operation.

The motivation for this technique is that in some cases it is difficult to compute
the total cost of a sequence of M operations, but more straightforward to com-
pute a charge value and argue that the charges are enough to cover the total
cost of the operations. This style of argument tends to be quite local in nature:
the charges are usually associated with particular elements or components of
the data structure, and they cover the costs associated only with those elements.

Warning: this is just a rule of thumb
when it comes to assigning charges,
and not every accounting argument
follows this style.

Let us make this more concrete by studying one charge assignment for dynamic
array insertion.
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Charging scheme for dynamic array insertion. Each insertion gets a charge of
five, subject to the following rules.

• The i-th insertion associates five “credits” with index i.
Think of a credit as representing one
array access operation.• One credit is immediately used (and removed) to pay for the insertion at

index i.

• Let 2k be the smallest power of two that is ≥ i. When the 2k-th insertion
occurs, the remaining four credits associated with index i are used.

What we want to argue is that the “credits” here represent the difference between
the charge and cost of the insertion sequence. The number of credits for an index

Credits are part of the analysis, not
the actual data structure. There isn’t
anything like a credits attribute in the
program!

never drops below zero: the first rule ensures that for each index 1 ≤ i ≤ M,
five credits are added; and the second and third rules together consume these
five credits (note that each rule is only applied once per index i).

So if we can prove that the total number of credits represents the difference
between the charge and cost of the insertion sequence, then we can conclude
that the total charge is always greater than or equal to the total cost. Because
the charge is 5 per operation, this leads to an amortized cost of O(1), the same
result as we obtained from the aggregate method.

As we hinted at above, we need to argue that each credit represents a single
array access. So for each insertion, we need to argue that the above rules ensure
that the number of credits removed is at least the number of array accesses that
are performed for that insertion. Let’s do it.

Lemma 7.1 (Credit analysis for dynamic array insertion). Let 1 ≤ i ≤ m. Then
the number of credits removed for insertion i is equal to the number of array
accesses at index i.

Proof. There are two cases: when i is not a power of two, and when i is a power
of two.

Case 1: i is not a power of two. Then there’s only one array access, and this is
paid for by removing one credit from index i.

Case 2: i is a power of two. There are 2i + 1 array accesses. There is one credit
removed from index i, leaving 2i accesses to be accounted for.

There are four credits removed for each index j such that i is the smallest power
of two greater than or equal to j. How many such j are there? Let i = 2k. The
next smallest power of two is 2k−1 = i/2. Then the possible values for j are
{i/2 + 1, i/2 + 2, . . . , i}; there are i/2 such choices.

Note that this includes index i itself; so
if i is a power of two, then index i gets
5 credits, and then immediately all of
them are used.

So then there are i/2 · 4 = 2i credits removed, accounting for the remaining array
accesses. �

This method often proves more flexible, but also more challenging, than the
aggregate method. We must not only come up with a charging scheme for
the operation, but also then analyse this scheme to ensure that the total charge
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added is always greater than or equal to the total cost of the operations. As
we saw, this is not the same as arguing that the charge is greater than the cost
for an individual operation; some operations might have a far higher cost than
charge, but have the excess cost be paid for by previous surplus charges. Cre-
ative charging schemes take advantage of this by keeping charges high enough
to cover the cost of any future operation, while still being low enough to obtain
a good bound on the amortized cost of each operation.

Exercise Break!

7.1 Consider a modified implementation of dynamic array Insert that increases
the amount of allocated space by a multiplicative factor of c > 1. That is,
the amount of allocated space after expansion is c times the space before the
expansion. Find the aggregate cost of M operations using this sequence.

7.2 How would you modify the banker’s method argument to analyse this mod-
ified array?

7.3 Consider a modified implementation of dynamic array Insert that increases
the amount of allocated space by an additive factor of c ≥ 1. That is, the
amount of allocated space is c greater than the space before the expansion.
Find the aggregate cost of M operations using this sequence.





8 Disjoint Sets

Our discussion of Kruskal’s algorithm at the end of Chapter 6 led to the desire
for a new data type that essentially represents partitions of a set of objects, and
supports membership tests (which partition has this element?) and merging
partitions. We will formalize this in the Disjoint Set ADT. This ADT consists of
a collection of sets S1, . . . , Sk that are disjoint (every element appears in exactly
one set), and where each set has a fixed representative element (a member of the
set that serves as the set’s identifier).

Disjoint Set ADT

• MakeSet(DS, v): Take a single item v and create a new set {v}. The new item
is the representative element of the new set.

• Find(DS, x): Find the unique set that contains x, and return the representative
element of that set (which may or may not be x).

• Union(DS, x, y): Take two items and merge the sets that contain these items.
The new representative might be one of the two representatives of the original
sets, one of x or y, or something completely different.

The remainder of this chapter will be concerned with how we can efficiently
implement this ADT.

Initial attempts

One obvious approach is to store each set as a linked list, and to pick as the
representative element the last element in the linked list. Let us try to implement
the Disjoint Set ADT using linked lists: the data structure itself will contain an
collection of linked lists, where each individual linked list represents a set. Each
node in the linked list represents an element in a set. Given any element, it is
possible to simply follow the references from that element to the end of its list.
We assume that the inputs to Find and Union are references to the node of
a linked list. This is an implementation-specific detail that is consistent across
all of the implementations we’ll look at in this chapter, but it is not necessarily
intuitive, so please do keep it in mind.

5 def MakeSet(DS, v):

6 node = new Node with value v
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7 DS.add(node) # This registers the node as the head of a new linked list

8 return node

9

10 def Find(DS, x):

11 curr = x

12 # Traverse the linked list starting at node x until reaching the last node.

13 while curr.next is not null:

14 curr = curr.next

15 return curr

16

17 def Union(DS, x, y):

18 # hmmm

Unfortunately, the Union operation is challenging to implement, because you
cannot merge two linked lists together without knowing the head of at least one
of them, and in this case x and y can certainly be nodes in the middle of the list.

While we can solve this problem using more sophisticated variants of linked lists
like doubly-linked lists or circular linked lists, we will do something that is at
once simpler and stranger: attach the end of one list to the end of the other.

x end1

y end2

21 def Union(DS, x, y):

22 end1 = Find(DS, x)

23 end2 = Find(DS, y)

24

25 # end1 and end2 are the last nodes in their respective linked lists

26 if end1 != end2:

27 end1.next = end2

But wait, you say — if you do this, the result is no longer a linked list, since there
are two different nodes pointing to end2. And indeed, the combined structure
is no longer a linked list — it’s a tree! Of course, the links are the reverse of
the tree-based data structures we have seen so far: instead of a node having
references to each of its children, now each node only has one reference, which
is to its parent.

x

end1

y

end2

Below is a complete implementation of the Disjoint Set ADT using a collection
of trees. You’ll quickly find that this is basically the implementation we have
already given, except with some renaming to better reflect the tree-ness of the
implementation. Also, it will be helpful to keep in mind that the representative
elements are now the root of each tree.

30 # Renaming to reflect the fact that we're using trees, not linked lists

31 def MakeSet(DS, v):

32 node = new Node with value v

33 DS.add(node) # This registers the node as the root of a new tree
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34 return node

35

36 def Find(DS, x):

37 curr = x

38 while curr.parent is not null:

39 curr = curr.parent

40 return curr

41

42 def Union(DS, x, y):

43 root1 = Find(DS, x)

44 root2 = Find(DS, y)

45

46 # root1 and root2 are the roots of their respective trees

47 if root2 != root2

48 root1.parent = root2

Runtime analysis

Now, let us briefly analyse the running time of the operations for this tree-based
disjoint set implementation. The MakeSet operation clearly takes Θ(1) time,
while both Find and Union take time proportional to the distance from the
inputs to the root of their respective trees. In the worst case, this is Θ(h), where

Remember that the disjoint set collec-
tion can contain multiple trees, each
with their own height. The running
time of Find and Union depends on
the trees that are involved.

h is the maximum height of any tree in the collection.

Of course, as with general trees, it is possible for the heights to be proportional
to n, the total number of items stored in all of the sets, leading to a worst-case
running time of Θ(n).

Heuristics for tree-based disjoint sets

It is quite discouraging that our initial tree-based implementation of disjoint sets
has worst-case running time that is linear in the total number of items stored.
After all, we could come up with a linear time implementation of disjoint sets
that simply stores pairs (item, set representative) in a list, and loop over the
list for Find and Union.

However, just as we improved our BST implementation of dictionaries by im-
posing more structure on the tree itself, we will now investigate two heuristics
used to reduce the height of the trees for our disjoint set implementation.

Union-by-rank

One idea we borrow from AVL trees is the idea of enforcing some local property
of nodes to try to make the whole tree roughly balanced. While we do not have
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to enforce the binary search tree property here, we are limited in two other ways:

• We do not want to have to traverse a full tree every time we perform a Union.

• Nodes only have references to their parent, but not their children (child ref-
erences turn out to be unnecessary).

Rather than have nodes keep track of their height or balance factor, we will store
an attribute called rank, which has the following definition:

Definition 8.1 (rank (disjoint sets)). The rank of a node in a disjoint set tree is
defined recursively as follows:

• The rank of a leaf is 0.

• The rank of an internal node is one plus the maximum rank of its children.

It is no coincidence that this definition is closely related to the recursive defi-
nition of tree height you may have seen before. You may wonder, then, why
we don’t just use height. Indeed, we could for this section; but for the second
heuristic we’ll study, we want an attribute that never decreases, even when a
tree’s height decreases. And so for consistency, we use the same attribute for
both heuristics.

With this notion of rank in hand, we no longer arbitrarily choose the merged
tree root in a Union; instead, we always use the root with the larger rank.
The intuition is that if we merge a bigger tree and a smaller tree, we can make
the smaller tree a subtree of the bigger tree without changing the bigger tree’s
height. We call this modification of the basic Union algorithm the union-by-
rank heuristic.

14 # Union-by-rank

15 def MakeSet(DS, v):

16 node = new Node with value v

17 DS.add(node) # This registers the node as the root of a new tree

18 node.rank = 0 # set the rank

19 return node

20

21 def Union(DS, x, y):

22 root1 = Find(DS, x)

23 root2 = Find(DS, y)

24

25 if root1 == root2:

26 return

27

28 # root1 and root2 are the roots of their respective trees

29 # Choose the one with the larger rank as the new root.

30 # Only need to increment a rank when the two root ranks are equal.

31 if root1.rank > root2.rank:

32 root2.parent = root1
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33 else if root1.rank < root2.rank:

34 root1.parent = root2

35 else:

36 root1.parent = root2

37 root2.rank = root2.rank + 1

Observe that the rank of a node only
ever increases by 1, and only if it is
merged with a node of the same rank.
In all other cases, Union does not
increase rank.

Let us make our previous intuition about attaching the “smaller” tree to the
“bigger” one more precise in the following two lemmas.

Lemma 8.1 (Rank for disjoint sets). Let T be a tree generated by a series of
MakeSet and Union operations using the union-by-rank heuristic. Let r be
the rank of the root of T, and n be the number of nodes in T. Then 2r ≤ n.

Proof. We will prove that the property 2r ≤ n is an invariant that is preserved by
every MakeSet and Union operation.

For MakeSet, the new tree that is created has one node, and its root has rank
0. The theorem holds in this case, since 20 = 1 ≤ 1.

For Union, suppose we take the union of two trees T1 and T2, with sizes n1 and
n2 and ranks r1 and r2, respectively. We assume that 2r1 ≤ n1 and 2r2 ≤ n2. Let
n = n1 + n2 be the number of nodes in the union tree, and r be the rank of the
root of the union tree. We want to prove that 2r ≤ n.

Case 1: r1 > r2. In this case, r = r1, since the root of T1 is chosen as the root of
the union tree, and its rank doesn’t change. So then 2r = 2r1 ≤ n1 < n, so the
property still holds. The same argument works for the case that r2 < r1 as well,
by switching the 1’s and 2’s.

Case 2: r1 = r2. In this case, the root of T1 is selected to be the new root, and its
rank is increased by one: r = r1 + 1. Then since 2r1 ≤ n1 and 2r2 ≤ n2, we get
2r1 + 2r2 ≤ n1 + n2 = n. Since r1 = r2, 2r1 + 2r2 = 2r1+1 = 2r, and the property
holds. �

We’ll leave it as an exercise to prove the second lemma, which says that the rank
really is a good approximation of the height of the tree.

Lemma 8.2. Let T be a tree generated by a series of MakeSet and Union

operations using the union-by-rank heuristic, and let r be the rank of its root.
Then the height of T is equal to r + 1.

With these two lemmas, we can prove the following much-improved bound on
the worst-case running time of our disjoint set operations when we use the
union-by-rank heuristic.

Theorem 8.3 (Worst-case running time using union-by-rank). The worst-case
running time of Find and Union for the disjoint set implementation using
union-by-rank is Θ(log n), where n is the number of items stored in the sets.
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Proof. Note that the manipulations involving the new rank attribute in the im-
plementation are all constant time, and so don’t affect the asymptotic running
time of these algorithms. So, by our previous argument, the worst-case running
time of these two operations is still Θ(h), where h is the maximum height of a
tree in the disjoint set data structure. Now we show that h = O(log n), where n
is the total number of items stored in the sets.

Let T be a tree in the data structure with height h, r be the rank of the root of
this tree, and n′ be the size of this tree. By our previous two lemmas, we have

Obviously, n′ ≤ n.
the chain of inequalities

h = r + 1 ≤ log n′ + 1 ≤ log n + 1.

It follows immediately that h = O(log n). We leave the lower bound as an
exercise. �
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Exercise Break!

8.1 Prove that the worst-case running time of a Find or Union operation when
using union-by-rank is Ω(log n), where n is the number of items stored in the
sets.

8.2 Suppose we have a disjoint set collection consisting of n items, with each item
in its own disjoint set.

Then, suppose we perform k Union operations using the union-by-rank
heuristic, where k < n, followed by one Find operation. Give a tight asymp-
totic bound on the worst-case running time of this Find operation, in terms
of k (and possibly n).

Path compression

Our previous heuristic involved some optimization on the Union operation
to get a better bound on the height of the trees in the disjoint set collection.
Such mutating operations are a natural place for optimization: given that we
are modifying the structure of the sets, it is natural to think about how to best
do this. In this section, we will investigate a different heuristic, which performs
a mutation operation in a previously read-only operation, Find. This draws
inspiration from the common query optimization of caching, in which the result
of a query are saved to make future repetitions of the same query faster. When

Think of “query” here as a generic term
for any computation that returns a
value, like Find.

we perform a Find operation on a node x, we will explicitly store the resulting
set representative by restructuring the tree so that performing a Find on that
same node in the future is guaranteed to run in constant time.

When a Find operation takes a long time, it is because the input node is quite far
from the root of the tree, and all of the node’s ancestors must be traversed. The
key insight is that unlike most other tree operations we have looked at in this
course, there is no reason to preserve the structure of the tree during a Find operation.
Because each node in a tree only cares about its set representative, there is no
reason a node shouldn’t just point directly to it, other than the fact that set
representatives change during Unions. So the path compression heuristic is
the following: after the set representative is found, all of the nodes traversed

Hopefully it is clear why this is called
“path compression.” The (potentially
long) path traversed from input node to
root is split up, with each node on the
path now “compressed” by becoming a
child of the root.

have their parent attribute set to this set representative. In purely tree terms,
the tree is restructured so that the node and all of its ancestors are made direct
children of the root.
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40 # Path compression

41 def Find(DS, x):

42 root = x

43 # After this loop, root is the root of the tree containing x.

44 while root.parent is not null:

45 root = root.parent

46

47 # Path compression: set all ancestors of x to be children of root.

48 curr = x

49 while curr.parent is not null:

50 next_curr = curr.parent

51 curr.parent = root

52 curr = next_curr

Running time analysis for path compression

Despite all this fanfare about path compression, it is important to realize that
this heuristic does not improve the speed of a Find operation that has a long
path — this operation still takes time proportional to the length of the path, and
the worst-case running time is still Θ(n), where n is the number of items in
the sets. This is true of caching in general: the first time a query is run, there

Keep in mind that we don’t have the
union-by-rank guarantee here, so
the maximum height of a tree is the
number of items in the disjoint sets.

is no speedup due to previous computations, because there are no previous
computations!

What path compression does guarantee is that any subsequent Find operations
on any nodes along the compressed path will take constant time. Whenever
you hear a phrase like “operation makes future operations faster,” you should
think about amortized analysis: even if the initial operation is slow, perhaps its
running time cost can be amortized across multiple (faster) Find operations.
And it turns out that with the path compression heuristic, the amortized running
time of Find operations has a substantial improvement over the worst-case Θ(n)
bound. We will only perform a special case of the full analysis here. You’ll find
that this is sufficient to get the general idea, while being able to ignore some
extra parameters that come with the most generalized version.

One reminder before we go into the proof. This proof uses the notion of node
rank from the previous section, with one important clarification: node rank is
only updated during a merge operation, and only if the node is the new root
of the union tree. This is quite important because path compression can cause
tree height to decrease, so keep in mind that rank is not the same as height, and
does not change for any node during Find. There are four important properties
of node rank to keep in mind (we leave proofs as exercises):

• The rank of a node is always between 0 and n− 1.

• Ranks are strictly increasing as you go up a tree; the rank of a node is always
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less than the rank of its parent.

• The rank of a node only ever increases, and only during a Union operation.

• Let x be a node. The rank of the parent of x only ever increases — not only
when a Union operation causes the parent node of x to increase in rank, but
also when a Find operation causes x to get a different parent node.

Theorem 8.4 (Amortized analysis of path compression (special case)). Suppose
we use a disjoint set implementation that uses the path compression heuristic.
Let n be a power of two, and consider a sequence of n MakeSet operations,
followed by any number of Union operations mixed with n Find operations.

Then the total cost of all n Find operations is O(n log n). Or in other words, the
amortized cost of an individual Find operation is O(log n).

Proof. We will use the aggregate method to perform the amortized analysis here,
but in a more advanced way: rather than computing the cost of each Find

operation separately and adding them up, we will attempt to add up all the
costs at once, without knowing the value of any individual cost.

The key insight is that for any individual Find operation, its running time is
proportional to the number of edges traversed from the input node up to the
root. In this proof, we will call the path traversed by a Find operation a find
path. So we define the collection of edges F in the n find paths, allowing for
duplicates in F because the same edge can belong to multiple find paths. To
analyse this, we consider the collection of edges F that are traversed by any one
of the n Find operations. Then the total cost of the sequence of n Find operations
is simply |F |, and the amortized cost of an individual Find operation is |F |/n.

The second key idea is to partition F based on the differential rank of the end-
points of each edge. For each 1 ≤ i ≤ log n, define the set

Fi = {(x, y) ∈ F | 2i−1 ≤ rank(y)− rank(x) < 2i}.

Note that the final set, Flog n, contains an upper bound on the rank difference
The notation (x, y) indicates an edge
traversed from node x to its parent y.
So rank(y) ≥ rank(x).

of 2log n = n, so each edge belongs to exactly one of these sets. So |F | = ∑ |Fi|,
and our task is now to bound the sizes of each Fi. What can we say about the
size of an Fi? It turns out that we can say quite a bit, if we do some careful
counting.

First, we divide each Fi into two subgroups based on the relative positions of
the edges in their find paths. We say that an edge e ∈ Fi is a last edge if it is the
edge in Fi closest to the set representative of its tree. Otherwise, we say that the
edge e is a middle edge. We let Li and Mi be the set of last and middle edges
from Fi, respectively.

This is a little abstract, so let’s make it more concrete. Suppose we have a find
path that contains three edges e1, e2, e3 from Fi (plus possibly many other edges).
Suppose e3 is closest to the root of the tree. Then e3 is a last edge, and e1 and e2

are middle edges. In general, if multiple edges from Fi appear on the same find
path, exactly one of them will be a last edge, and all the others will be middle
edges.
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Since each edge in Fi is either a last or middle edge, |Fi| = |Li|+ |Mi|. Rather
Don’t worry, we aren’t going to subdi-
vide any further! Geez.than computing the size of Fi, we want to compute the sizes of Li and Mi.

Since there are a total of n Find operations in the sequence, there are n find
paths. Each find path can have at most one last edge for each rank difference, so
|Li| ≤ n.

Now let us count the size of |Mi|. We’ll do this by looking at individual nodes.
Consider a middle edge e ∈ Mi, which goes from node x to its parent y. At the
time of the Find operation that this edge is traversed, we know the following
things:

x

y

z

e

e′

• There is another edge e′ ∈ Fi that is closer than e to the root of the tree (since
e is a middle edge).

• y is not the set representative of the tree (since it can’t be the root).

Let z be the set representative for this tree; so s is distinct from x and y. Since
the nodes visited on the path from y to z have increasing rank, and e′ separates
y and z along this path, we know that rank(z)− rank(y) ≥ 2i−1.

Checkpoint: this inequality only uses
the fact that the edge e′ ∈ Fi is between
w and s. We haven’t yet used the fact
that e is also in Fi .

Furthermore, due to path compression, after this Find operation is complete, z
becomes the new parent of x. Here is the third big idea. The actual node change
itself doesn’t matter to our proof; what does matter is that from the point of
view of x, its parent’s rank has increased by at least 2i−1.

Remember, no node actually changed
its rank. It’s just that the parent of x
changed to one with a bigger rank.Why is this such a big deal? We can use this to prove the following claim.

Proposition 8.5. Let x be a node. There are at most two edges in Mi that start
at x.

Proof. Suppose for a contradiction that there are three edges (x, y1), (x, y2),
(x, y3) ∈ Mi. Also, assume that by the time a Find operation visits the edge
(x, y3), previous Find operations have already visited (x, y1) and (x, y2). The
previous observation tells us that the rank of the parent of x must have increased
by at least 2 · 2i−1 = 2i, i.e., rank(y3) ≥ rank(y1) + 2i.

This is finally where we use the fact that these edges are inMi! This tells us that
rank(y1) ≥ rank(x) + 2i−1, and so we get rank(y3) ≥ rank(x) + 2i + 2i−1. But the
fact that (x, y3) ∈ Mi means that rank(y3) ≤ rank(x) + 2i, a contradiction. �

Since the above claim is true for any node x, this means that each of the n nodes
in the disjoint sets can be the starting point for at most two edges in Mi. This
implies that |Mi| ≤ 2n.

It is actually quite remarkable that the
size of each |Mi | doesn’t depend on i
itself.Putting this all together yields a bound on the size of F :
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|F | =
log n

∑
i=1
|Fi|

=
log n

∑
i=1
|Li|+ |Mi|

≤
log n

∑
i=1

n + 2n

= 3n log n

In other words, the total number of edges visited by the n Find operations is
O(n log n), and this is the aggregate cost of the n Find operations. �

Combining the heuristics: a tale of incremental analyses

We have seen that both union-by-rank and path compression can each be used
to improve the efficiency of the Find operation. We have performed the anal-
ysis on them separately, but what happens when we apply both heuristics at
once? This is not merely an academic matter: we have seen that it is extremely
straightforward to implement each one, and because union-by-rank involves a
change to Union and path compression involves a change to Find, it is very
easy to combine them in a single implementation.

The challenge here is performing the running time analysis on the combined
heuristics. We can make some simple observations:

• The worst-case bound of Θ(log n) for Find from union-by-rank still applies,
since it is possible to do a bunch of Unions, and then a single Find on a leaf
when the tree has height Θ(log n).

• The amortized analysis we did for path compression still holds, since all the
key properties of rank that we used still hold.

In other words, the two analyses that we performed for the two heuristics still
apply when we combine them. The only lingering question is the amortized cost
of a Find operation, for which we only proved an upper bound in the previous
section. Given that our analysis for path compression alone had to accommodate
for a node of rank n, while union-by-rank ensured that a node’s rank is at most
log n, there may be hope for a better amortized cost.

And indeed, there is. What follows is a tour of the major results in the history
of this disjoint set implementation, going from its humble beginnings to the
precise analysis we take for granted today. It is truly a remarkable story of an
algorithm whose ease of implementation belied the full subtlety of its running
time analysis.

The first known appearance of this disjoint set implementation, which combined
both union-by-rank and path compression, was in a paper by Bernard A. Galler
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and Michael J. Fischer in 1964. However, the authors of this paper did not
perform a precise analysis of their algorithm, and in fact the question of how
efficient this was, really, took almost two decades to resolve.

In 1972, Fischer proved that the amortized cost of each Find operation isO(log log n),
already a drastic improvement over the O(log n) bound we proved in the previ-
ous section. The next year, John Hopcroft and Jeffrey Ullman published a further

You should be able to modify our proof
to get an amortized cost of O(log log n)
for the rank bound that union-by-rank
gives us.

improvement, showing the amortized cost of Find to be O(log∗ n), where log∗ n
is the iterated logarithm function, defined recursively as follows:

log∗ n =

0, if n ≤ 1

1 + log∗(log n), otherwise

In English, this function outputs the number of times the logarithm must be
applied to a number to get a result ≤ 1. To give some context about how slow-
growing this function is, we show in a table the largest value of n to get the first
few natural numbers as output.

If m is the largest number such that
log∗ m = k, then n = 2m is the largest
number such that log∗ n = k + 1.

Largest n log∗ n
1 0

2 1

4 2

16 3

65536 4

265536
5

For context, the estimated number of
atoms in the universe is roughly 2272.While this running time is so close to constant that it seems like this should have

been the end of it, investigation of this function did not stop at the Hopcroft-
Ullman result. In 1975, just two years later, Robert Endre Tarjan published his
paper “Efficiency of a Good But Not Linear Set Union Algorithm.” His main
result was that the amortized cost of each Find operation is Θ(α(n)), where
α(n) is the inverse Ackermann function, a function that grows even more slowly
than the iterated logarithm.

For comparison to the iterated loga-

rithm, α(22265536
) = 4.And even more impressive than getting a better upper bound was that Tarjan

was able to show a matching lower bound, i.e., give a sequence of operations so
that the amortized cost of the Find operations when using both union-by-rank
and path compression is Ω(α(n)). This showed that no one else would be able
to come along and give a better upper bound for the amortized cost of these
operations, and the question was settled — almost. At the end of the paper,
Tarjan wrote the following (emphasis added):

This is probably the first and maybe the only existing example of a simple algorithm
with a very complicated running time. The lower bound given in Theorem 16 is
general enough to apply to many variations of the algorithm, although it is an open
problem whether there is a linear-time algorithm for the online set union problem.
On the basis of Theorem 16, I conjecture that there is no linear-time method, and
that the algorithm considered here is optimal to within a constant factor.
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In other words, having completed his analysis of the disjoint set data structure
using both union-by-rank and path compression, Tarjan proposed that no other
heuristics would improve the asymptotic amortized cost of Find, nor would any
other completely different algorithm.

And in 1989 (!), Michael Fredman and Michael Saks proved that this was true:
any implementation of disjoint sets would have an amortized cost for Find of
Ω(α(n)). This is quite a remarkable statement to prove, as it establishes some
kind of universal truth over all possible implementations of disjoint sets — even
ones that haven’t been invented yet! Rather than analyse a single algorithm or
single data structure, they defined a notion of innate hardness for the disjoint set
ADT itself that would constrain any possible implementation. This idea, that
one can talk about all possible implementations of an abstract data type, or all
possible algorithms solving a problem, is truly one of the most fundamental —
and most challenging — pillars of theoretical computer science.

Exercise Break!

8.3 The idea of using an attribute to store the rank of each node is a powerful
one, and can be extended to storing all sorts of metadata about each set.

Use an augmented version of the tree-based disjoint set data structure to sup-
port the following two operations, using only linear additional space:

• Max(DS, x): Return the maximum value in the set containing x

• Min(DS, y): Return the minimum value in the set containing y

What is the running time of these two operations?

8.4 Why is it harder to augment this data structure to store the median value of
each set? More generally, can you characterize the kinds of queries that are
“easy” to support using an augmented disjoint set data structure?

8.5 We have seen in Chapter 6 how to use depth-first search (or breadth-first
search) to detect cycles in a graph.

Consider the following dynamic version of this problem: we are given n ver-
tices, and originally have no edges between them. Then edges are added, one
at a time. Each time an edge is added, we want to report if that edge forms a
cycle in the graph.

(a) Suppose that each time an edge is added, we perform a depth-first search
starting at one of its endpoints. What is the amortized cost per edge addi-
tion in this case?

(b) Give an algorithm to support this cycle detection using disjoint sets, and
analyse the amortized cost per edge addition in this case.
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