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Abstract—Continuum robots are promising candidates for in-
teractive tasks in medical and industrial applications due to their
unique shape, compliance, and miniaturization capability. Accu-
rate and real-time shape sensing is essential for such tasks yet
remains a challenge. Embedded shape sensing has high hardware
complexity and cost, while vision-based methods require stereo
setup and struggle to achieve real-time performance. This letter
proposes a novel eye-to-hand monocular approach to continuum
robot shape sensing. Utilizing a deep encoder-decoder network,
our method, MoSSNet, eliminates the computation cost of stereo
matching and reduces requirements on sensing hardware. In par-
ticular, MoSSNet comprises an encoder and three parallel decoders
to uncover spatial, length, and contour information from a single
RGB image, and then obtains the 3D shape through curve fitting.
A two-segment tendon-driven continuum robot is used for data
collection and testing, demonstrating accurate (mean shape error
of 0.91 mm, or 0.36% of robot length) and real-time (70 fps) shape
sensing on real-world data. Additionally, the method is optimized
end-to-end and does not require fiducial markers, manual segmen-
tation, or camera calibration.

Index Terms—Modeling, control, and learning for soft robots,
computer vision for medical robotics, data sets for robot learning.

I. INTRODUCTION

CONTINUUM robots are robotic manipulators that do not
contain rigid links or identifiable joints. They have been

studied for interactive applications such as minimally invasive
surgery [1] and non-destructive inspection [2]. To enable con-
tinuum robots to perform these tasks in a flexible and adaptable
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Fig. 1. Our method, MoSSNet, takes a single camera image as input and
outputs an accurate parametric representation of the robot centerline in real-time,
without requiring fiducial markers, manual segmentation or camera calibration.

manner, accurate and real-time 3D shape sensing is crucial—by
tracking the robot’s shape in the environment, controllers can be
applied to reach a desired position, avoid collisions, or follow a
certain path. Additionally, shape sensing allows the monitoring
of the robot’s condition and performance.

Model-based shape reconstruction is proposed to estimate the
3D shape of continuum robots from internal sensors in the drive-
system and actuators, but they have a trade-off between accuracy
and computation cost [3]. Additionally, they are sensitive to
uncertainty in the modeling parameters, unmodelled effects, and
unknown external loads. To address these limitations, sensing-
based approaches have been proposed, which can be broadly
categorized as embedded or vision-based methods.

Embedded sensors, such as fiber-optic sensors, electromag-
netic (EM) sensors, and force/torque sensors, provide indirect
measurements for shape reconstruction, but they require cus-
tomized integration efforts and can be sensitive to external inter-
ference [4]. Vision-based methods, on the other hand, offer high
accuracy at low cost and can be easily adapted to different robots.
However, existing methods require calibrated, multi-view cam-
era systems, and most are not capable of real-time applications,
limiting their application outside a lab environment [5].

This tradeoff between hardware complexity and performance
motivates a data-driven monocular approach that offers accurate
sensing at low cost while mitigating the performance overhead
of markerless stereo matching. Our method, MoSSNet, achieves
this objective utilizing a deep encoder-decoder network as illus-
trated in Fig. 1.

II. RELATED WORK

In this section, we discuss the diverse approaches taken for
3D shape sensing of continuum robots. Based on the sensing
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TABLE I
OVERVIEW OF METHODS FOR CONTINUUM ROBOT SHAPE SENSING

principle, we categorize them into embedded and vision-based
methods and discuss them separately. A brief overview of these
approaches is presented in Table I.

A. Embedded Shape Sensing

Magnetic sensors, typically used in electromagnetic (EM)
tracking systems, can be attached to the robots and localized
by measuring the small current induced by a magnetic field
generated in the workspace. Thus, such methods are sensitive to
EM interference and have limited workspace, which poses con-
straints on the robot material and application environments [4].
Because each sensor only provides pose information at a single
point, determining the number of sensors to use is crucial. A
higher number of sensors can lead to increased accuracy, but
rigid sensors can interfere with the continuum robot’s character-
istics. Conversely, a lower number of sensors are more efficient,
but rely more heavily on kinematic models [7] or shape represen-
tations [6], which can make the process more computationally
expensive and vulnerable to model uncertainties.

Strain sensors, such as optical fibers with fiber Bragg gratings
(FBGs), measure shape by integrating local curvature/strain.
Their small size and bio-compatibility allow embedded shape
sensing in varied environments with real-time capability and
has motivated research and commercialization efforts [8], [9].
However, they require customized sensor setups for different
robots, which leads to high costs [14].

Lower-cost alternatives such as passive strings [15] have been
proposed at the expense of lower accuracy and update rate.
Orekhov et al. [16] formally analyzed the problem of string
routing optimization through sensitivity analysis, and achieved
tip error of 5.9 mm(1.97%) at 4 fps. Moreover, they share the
same drawback of being highly sensitive to the placement and
calibration of the sensors.

In addition to electromagnetic tracking and strain-based shape
sensing, force/torque sensors have been employed to estimate
the shape of elastic rods using the Kirchhoff rod model [17]. This
method is cost-effective and computationally efficient. While at-
tempts have been made to extend it to multi-segment continuum
robots, position errors increase with larger deformation due to
unmodeled effects [10].

Common to all embedded shape sensing approaches is they
do not require line-of-sight, which is valuable for applications in
confined spaces. However, they have a higher level of hardware
complexity because they require customized sensor integration
and calibration efforts. Their accuracy and update rate scale with

the performance of sensing hardware, which also leads to a high
cost of deployment (see Table I).

B. Vision-Based Shape Sensing

Vision-based eye-to-hand shape sensing has gained attention
since they are cost effective and have low hardware complexity.
One of the most straightforward approaches is detecting point
correspondence in stereo setups. Delmas et al. achieved mean
error of 0.46 mm (2.30%) at 6.25 fps in simulated fluoroscopic
image pairs [12]. Such methods can be slow for continuum
robots, because they lack identifiable joints and links as feature
points.

Fiducial markers can be added to speed up point corre-
spondence [18], but integrating markers that meet size, shape,
and visibility constraints is difficult in applications. Another
approach to speed up stereo shape sensing is to apply simplifying
assumptions, such as limiting the shapes to quadratic forms, as
done by Dalvand et al. [19]. However, this approach does not
generalize to robots capable of more complex shapes. Camarillo
et al. [20] proposed 3D shape reconstruction using the shape-
from-silhouette technique with three cameras. Self-organizing
maps algorithm is also investigated by Croom et al. [13] to
fit a 3D curve from point cloud. Although these methods
are accurate, and achieve mean error of 1.14 mm(0.72%) and
1.53 mm(0.64%) respectively, they still require point correspon-
dence and are computationally expensive (≤ 4 fps).

C. Monocular Computer Vision

At its core, vision-based shape sensing requires some depth
information on the robot to reconstruct its 3D shape, which is
traditionally achieved through epipolar geometry with two or
more cameras. More recently, learning-based monocular meth-
ods has gained success in the domain of depth estimation [21]
and 3D object detection [22] for self-driving, as well as 3D
human pose estimation [23]. Most existing methods consist
of encoder-decoder-based or transformer-based architectures,
which emphasize on local and global features respectively. Since
continuum robots are unique in terms of their jointless body, we
focus on encoder-decoder architecture to capture local curvature
information.

Our approach, MoSSNet, achieves accurate (mean shape error
of 0.91 mm(0.36%)) and real-time (70 fps) results on a real-
world dataset. The method takes a single RGB image as input
and outputs a parametric representation of the robot centerline,
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Fig. 2. Overview of our approach, MoSSNet. The network takes as input the captured image of the robot and generates importance for reconstruction, centerline
coordinates, and relative arclength. These flattened outputs are then processed by the weighted curve fitting algorithm to generate a curve that parameterizes the
robot’s centerline. To train the network, we supervise its learning process by penalizing the mean squared error between the predicted and ground truth curves.

without requiring fiducial markers, manual segmentation, or
camera calibration.

III. MOSSNET

In this section, we introduce Monocular Shape Sensing Net-
work (MoSSNet), an efficient and effective approach for contin-
uum robot shape estimation. The problem formulation, network
architecture, and training methodology are introduced in the
following.

A. Problem Formulation

We suppose there is a camera that remains in a fixed pose
relative to the robot’s base. The camera captures an image of the
robot, which we refer to as IRGB ∈ RH×W×3 where H and W
are the height and width of the captured image. The objective
is to determine the 3D centerline of the robot, which is the
widely adopted representation of continuum robots’ shape [5].
Specifically, we identify the coordinates of M equally spaced
points along its centerline, represented as Pr ∈ RM×3.

In this work, we limit the scope to monocular RGB images
with uniform lighting conditions and no occlusions except the
robot’s self-occlusions. We also assume the robot’s geometry
remains constant and its motion generates minimal to no motion
blur on the images captured.

B. Network Architecture

In order to reconstruct the robot, our model uses an image of
the robot to predict the 3D coordinates along its centerline. Sub-
sequently, a weighted linear least squares algorithm is employed
to derive a 3D curve that parametrizes the center of the robot.
As shown in Fig. 2, we design a network with a shared encoder
and three decoders that are composed of four stages each. These
stages consist of a residual block [24] with two convolutional
layers that are connected through BatchNorm [25] and Leaky
ReLU activations [26]. The encoder block uses a maxpooling
layer between every two stages to decrease the feature map’s size
by a factor of two. In contrast, the decoder block incorporates

a pixel shuffle layer [27] between every two stages to increase
the feature map’s size by a factor of two. Next, we explain each
component in more detail.

a) Encoder: To incorporate location information, we add the
2D image indices to IRGB . This results in a 5-channel image,
represented as Iin ∈ RH×W×5. The encoder then extracts multi-
scale features from the input image, which are subsequently
passed through three decoders for further processing.

b) Decoders: Given that the image includes background, not
every pixel is relevant in determining the robot’s shape. To
address this, the importance decoder learns the significance of
each pixel in shape reconstruction. The output of the importance
decoder is a per-pixel importance score denoted asPw ∈ RHW ,
which is normalized between 0 and 1 using a Sigmoid function.
A higher value of this score indicates that the pixel is more
relevant for shape sensing, whereas a lower value suggests that it
belongs to the background. These scores will be used to perform
weighted curve fitting in later stages.

Subsequently, we use another decoder to generate an estimate
of the robot’s shape by predicting its xyz coordinates along
its centerline, denoted as Pc ∈ RHW×3. It is worth noting that
only regions that cover the robot’s shape, i.e., regions with high
importance scores, will have useful values. Further, the last
decoder learns a per-pixel relative arclength that ranges from
0 to 1, where 0 represents the robot’s base and 1 represents its
tip, denoted by Ps ∈ RHW .

c) Weighted Curve Fitting: We model the robot centerline as
three independent n-th order polynomials on x, y, and z axes
with curve parameters being w = [wx wy wz] ∈ R(n+1)×3.
Formally, we have

⎡
⎢⎣

| | | |
(Ps)

0 (Ps)
1 . . . (Ps)

n

| | | |

⎤
⎥⎦

︸ ︷︷ ︸
A∈RHW×(n+1)

⎡
⎢⎣

| | |
wx wy wz

| | |

⎤
⎥⎦

︸ ︷︷ ︸
w∈R(n+1)×3

= Pc︸︷︷︸
B∈RHW×3

. (1)
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To obtain a curve of best fit, we compute the weighted least
squares solution of the curve parameter w as follows,

w =
(
ATΣA

)−1
ATΣB, (2)

where Σ = diag(Pw) ∈ RHW×HW is the learned per-pixel
weighting for the curve fitting. Finally, we obtain the coordinates
of the M evenly-spaced points along the robot centerline by
querying M relative locations.

⎡
⎢⎢⎢⎢⎣

(1/M)0 (1/M)1 . . . (1/M)n

(2/M)0 (2/M)1 . . . (2/M)n

...

(M/M)0 (M/M)1 . . . (M/M)n

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Pq∈RM×(n+1)

w =

⎡
⎢⎣

| | |
p̂x p̂y p̂z

| | |

⎤
⎥⎦

︸ ︷︷ ︸
P̂r∈RM×3

. (3)

C. SUPERVISION

We use the weighted mean squared error of the M predicted
coordinates and the ground truth as the loss function to supervise
the network. The loss function is depicted as follows,

L =
1

M

M∑
j=1

βj‖P̂r,j −Pr,j‖22, (4)

whereβj is the weight applied on each of theM points. Given the
inherent difficulty in accurately reconstructing the tip location
of the robot, we assign a larger weight on βM to penalize the tip
error.

IV. DATA COLLECTION AND BENCHMARK

The monocular shape sensing method proposed is evaluated
both in simulation and on a robot prototype. While the method
can be applied to all types of continuum robots, we focus
on tendon-driven continuum robots (TDCRs), which represent
one of the most extensively utilized and studied varieties of
continuum robots.

First, we describe the hardware and simulation setup for data
collection. Afterward, we provide an overview of our dataset
and define the metrics used for benchmarking.

A. Hardware Setup

For this work we use a TDCR that is 250 mm in length and
20 mm in diameter. It has two identical bending segments with
20 equally distributed spacer disks for tendon routing along a
super-elastic Nitinol backbone. The robot is covered in a flexible
polyethylene sleeve. The TDCR is mounted on a mechanical
frame and tendons are manually operated.

We collect RGB and depth images using an RGB-D camera
(RealSense D415, Intel, USA) at 1280× 720 resolution. The
ground truth shape of the TDCR is measured by an FBG shape

sensing system (custom multicore fiber, fan-out box, and FBG-
Scan 908 interrogator, FBGS International NV, Belgium) placed
inside the backbone. The multicore fiber sensor has sensing
length of 250 mm, which contains 26 evenly spaced gratings,
and outputs a shape measurement of 251 points (with RMS error
of 1.27 mm or 0.5%). During data collection, the camera allows
simultaneous RGB and depth image capture at 6 Hz, while the
FBG system provides updates at 100 Hz. We collect the shape
measurement with the closest timestamp for each camera frame,
resulting in a worst-case time difference of 5ms.

The FBG sensor is positioned such that its coordinate frame
aligns with that of the robot. During training, the RGB images
are inputs to the network. Points along the robot centerline are
given directly by the FBG system and are used as ground truth.
Depth images are not used in our method, but are included in
the dataset to facilitate further research.

B. Simulation Setup

A TDCR with the same parameters is simulated using the
Cosserat rod-based static model [28], specifically a C++ im-
plementation published in [29]. The simulated robot is then
rendered using the Visualization Toolkit (VTK) with simple
texture and lighting [30]. We apply calibrated camera intrinsic
and extrinsic from the hardware setup to obtain the same view,
as shown by the sample images in Fig. 3. By sampling random
joint space configurations, we simulate realistic robot shapes
and obtain RGB and depth images from VTK. The model
implementation also allows us to sample robot shapes under
external load, so we also simulate robot shapes with a random
external force and moment at the tip.

For training, the RGB images are inputs to the network. Points
along the robot’s centerline, provided by the simulator, are used
as the ground truth.

C. MoSS-Real and MoSS-Sim Datasets

We present our dataset for monocular shape sensing of a
two-segment TDCR. Using the hardware and simulation setup
outlined above, we collect 12 000 configurations on the robot
prototype and 50 000 configurations rendered in the simulator,
including 25 000 in free space and 25 000 with external load at
the tip with 3 force components and 3 moment components. Each
force component is randomly sampled between [−0.1N, 0.1N],
and each moment component is randomly sampled between
[−0.01Nm, 0.01Nm]. We will refer to the two datasets as the
MoSS-Real dataset and the MoSS-Sim dataset in later sections
of this letter. We split both datasets into training, validation, and
test sets randomly with ratios of 60%, 15%, and 25% respec-
tively. Depth images and camera parameters are not used in our
proposed method but are included to support the development
of alternative methods.

D. Benchmarking Metrics

Shape sensing for continuum robots is typically evaluated
in terms of mean error of robot shape (MERS) and mean
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Fig. 3. We collect a monocular shape sensing dataset with a two-segment tendon-driven continuum robot on hardware and in simulation. An overview of hardware
setup is shown on the left, and sample images are shown on the right.

error of robot tip (MERT) [5]. Although they have been cal-
culated differently across literature, we define MERS to be
the average Euclidean distance between the predicted set of
evenly-spaced points, P̂r ∈ RM×3, and corresponding ground
truth points, Pr ∈ RM×3, across different configurations in the
robot’s workspace.

MERS =
1

M

M∑
j=1

‖P̂r,j −Pr,j‖2. (5)

Shape sensing output should provide information dense enough
to reconstruct the complete robot shape for applications like
collision checking. Thus, the minimum number of output points
depend on the complexity of robot shape representation (i.e.,
degree-of-freedom in configuration space), such that there are
enough data points for model fitting. We further constraint M to
be at least double the minimum number of points to take account
for errors from robot shape representation and avoid aliasing. In
our case, 4th order polynomial is used and requires 5 points for
curve fitting, so we constraint M ≥ 10. MERT is calculated in
the same way but only accounting for the tip position.

MERT = ‖P̂r,M −Pr,M‖2. (6)

To facilitate comparison of results between different robots, we
also report MERS and MERT with respect to the sensed length of
the robot as a percentage. In our case the entire TDCR is being
sensed, so we divide the error by 250 mm. We also evaluate
our method’s real-time capability by reporting its update rate in
frames per second (fps). We evaluate our method against these
three metrics on a large number of different shapes to ensure its
robustness.

V. EVALUATION

In this section, we first present the implementation details and
then show the quantitative and qualitative results of the proposed
approach on MoSS-Sim and MoSS-Real datasets. Further, we
explore the approach’s sim-to-real transfer capability and pro-
vide an ablation analysis on various components of the network.

Finally, we discuss the robustness of our approach when the
camera configuration changes.

A. Implementation Details

To process the captured image, we first crop it to 512× 512
using a manually defined region of interest. We then use nearest
downsampling to scale the image to 128× 128 before feed-
ing it into our network. We use a fourth order polynomial to
model the centerline of the robot, and take M = 10. During
training, we use a batch size of 4 and run our experiments on
an NVIDIA T4 GPU. For both simulated and real datasets, we
train our network with the AdamW optimizer using a constant
learning rate of 0.001 for 150 epochs. The loss weight βj is
set to 1 for j = 1. . .M − 1 and 2 for j = M . We evaluate our
method’s update rate on the test set, with a batch size of 1 to
simulate sequential input image data, on the same computer
(GPU: NVIDIA GeForce RTX 3090, CPU: AMD - Ryzen 5950
× 3.4 GHz 16-core 32-thread, RAM: 64 GB, OS: Ubuntu 20.04).
Specifically, we measure the time between input data being
passed to the network and shape sensing results being received.
This includes not only the inference time but also data transfers
between CPU and GPU, thus is more reflective of real-life update
rate.

B. Quantitative Results

We report the shape sensing accuracy and runtime of our
method, which are trained and tested on MoSS-Real and MoSS-
Sim datasets separately. Additionally, MoSS-Real does not con-
tain external effects besides gravity and friction from the sleeve.
To explore if the method can generalize to robot shapes unseen
during training, we collect an additional test set of 5 000 shapes
on hardware with external forces, achieved by attaching a 20 g
calibrated weight to the robot tip. The weight is attached with
a blue polyethylene string to minimize the influence on the
captured images, which results in an average shape disturbance
of 56.9 mm and tip disturbance of 8.27 mm compared to the
closest shapes seen in training. We refer to this test set as
Disturbed-Real.
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Fig. 4. MoSSNet’s three decoders output interpretable pixel-wise information for 3D curve fitting despite not having pixel-wise supervision. The three encoder
outputs, from left to right, provide spatial, length, and contour information about the robot to obtain accurate shape via weighted curve fitting.

TABLE II
QUANTITATIVE PERFORMANCE OF MOSSNET ON MOSS-SIM, MOSS-REAL,

AND AN ADDITIONAL REAL TEST SET DISTURBED-REAL WITH UNSEEN

EXTERNAL DISTURBANCE

Table II presents the metrics obtained from our evaluation.
Specifically, MoSSNet achieves a mean error of robot shape
(MERS) of 0.51 mm (0.20%) and a mean tip error (MERT) of
0.88mm (0.35%) on the simulated test set. On the real test set,
MoSSNet achieves a MERS of 0.91 mm (0.36%) and a MERT
of 1.85 mm (0.74%). While our approach performs well on both
datasets, it appears to perform slightly better on the simulated
dataset due to the ideal conditions in that environment and the
larger size of the dataset. The performance in the real-world
setting is hindered slightly by the presence of noise in the
captured images and sensor readings. Moreover, we observed
that MoSSNet generalizes well on the disturbed test set, which
is the real dataset with external forces that were not seen during
training. The network achieves a MERS of 1.98 mm (0.79%)
and a MERT of 4.40 mm (1.76%)mm on this test set. The model
also achieves update rates over 70 fps consistently, which makes
it suitable for real-time and even dynamic applications.

C. Qualitative Results

The network’s performance can also be seen in Fig. 4, where
test samples from MoSS-Real and MoSS-Sim are shown along
with decoder outputs and shape output. All three decoder outputs
provide interpretable pixel-wise information: 1) the centerline
decoder predicts a 3D coordinate for each pixel in the image;
2) the arclength decoder predicts the pixel’s relative position
along the robot, and we observe increasing weight toward the
bottom of the image as the robot points downward, with low
weights at unreachable pixels; 3) the importance decoder outputs

a nearly-binary segmentation of the robot, with noisy patches
located at unreachable areas. The decoder outputs are then
flattened and used for weighted linear least squares to obtain
the robot shape. Compared to MoSS-Sim, the outputs from
MoSS-Real are noisier due to more complex background and
lighting condition, which aligns with our previous observation
of higher shape sensing error on the real dataset.

The decoder outputs are noisy in general because only the
ground truth shape is provided to the network during training,
resulting in a lack of direct supervision on each pixel. This is
a design decision made for practicality considerations, since
per-pixel ground truth information is difficult to obtain on real
continuum robots, especially if they are small in size. In our
datasets, we include depth images to facilitate development in
alternative approaches.

D. Sim-to-Real Transfer Learning

We conduct further experiments to evaluate transfer learning
from the simulated to the real dataset. Specifically, we compare
the performance of training the network from scratch to that of
using a network pre-trained on the simulated dataset for the real
test set. We run these experiments in various settings where
the amount of available training data varied. Our results are
presented in Fig. 5.

Generally, a larger amount of training data leads to lower test
error. When only a small fraction of the real training dataset
was available (e.g. 1% to 10%), pretraining the network on
the simulated dataset leads to a significant improvement in
performance on the real test set. However, when the amount
of training data was large, pretraining on the simulated dataset
does not provide additional benefit.

Thus, pre-training the network on simulation is beneficial
when data collection on real hardware is not possible or costly. It
is also worth noting that a model trained on simulated data only
has very high MERS of 74.1 mm on MoSS-Real. This represent a
significant sim-to-real gap caused by images in MoSS-Sim being
very abstract and perceivably different from MoSS-Real. Having
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Fig. 5. Influence of the amount of real training data and pre-training with
simulated data on MERS.

TABLE III
ABLATION STUDY OF THE PROPOSED COMPONENTS

TABLE IV
ABLATION ANALYSIS ON POLYNOMIAL DEGREE

more realistic simulated images could improve the performance
gain of pretraining.

E. Ablations

a) Influence of multiple decoders: We performed ablation
studies to evaluate the contribution of each decoder, and the
results are presented in Table III. In the first row, we use only one
decoder to generate centerline coordinates and rely on the norm
of the predicted 3D coordinates as a proxy for arclength during
curve fitting. The addition of the arclength decoder enables
us to predict the relative arclength accurately at each location
within the captured image, resulting in a decrease of MERS
by 0.13 mm and MERT by 0.29 mm. It’s important to note
that the arclength decoder has a more significant impact on
reducing MERT, as it allows for better localization of the tip
location. Furthermore, since not every pixel plays an equal role
in regressing the robot shape, the introduction of the importance
decoder assigns different weights for curve fitting to each pixel,
leading to a further reduction in MERS to 0.91 mm and MERT
to 1.85 mm.

b) Influence of polynomial degree for fitting: We performed
an ablation analysis on the polynomial degree used for represent-
ing the robot shape. From the results summarized in Table IV,
our chosen representation of degree 4 polynomials has the lowest
MERS, while degree 3 yields very similar results and has a
lower MERT. We think this design parameter is dependent on

TABLE V
QUANTITATIVE RESULTS ON MOSS-SIMWIDE

Fig. 6. Qualitative results on MoSS-SimWide demonstrates the method is
robust against changes in camera intrinsic and extrinsic parameters.

the robot – a more complex shape naturally requires higher-order
representations, and that is why we see higher errors for degree
2 polynomial representation.

Interestingly, the errors increase for degree 5 polynomial,
which indicates worse representation of the achievable robot
shapes. It may also be beneficial to consider other basis functions
for shape representation, such as Euler curves and Chebyshev
polynomials; however, formal comparison between basis func-
tions is outside the scope of this work.

F. Robustness to Camera Configuration

To verify that our method is robust to different imaging
systems, we collected a new dataset on the simulation setup de-
scribed in Section IV-B. The dataset contains 20 000 shapes cap-
tured in 512× 512 resolution with the same 60% − 15%–25%
split. The camera is placed 50 mm from the robot’s base and
has a view angle of 120 ◦ to simulate small wide-angle cameras
used for endoscopy or industrial inspection, and we refer to this
dataset as MoSS-SimWide.

Quantitative and qualitative results are shown in Table V and
Fig. 6, respectively. The mean error of robot shape achieved
is slightly higher compared to the MoSS-Sim dataset, which is
possibly caused by the smaller dataset size and a higher level
of robot self-occlusion. They demonstrate that our approach
is robust to different camera intrinsic and extrinsic parameters
and can potentially be applied to different imaging modalities
depending on the specific application (e.g. laparoscopic imaging
and X-ray imaging).

VI. LIMITATIONS AND FUTURE RESEARCH

While our method has shown good performance, the dataset
collected in this work is not exhaustive in spanning all practi-
cal scenarios or environmental conditions (e.g., lighting, back-
ground, etc). Future work could improve robustness of the
method to conditions outside the training dataset, or develop
monocular methods on application-specific datasets, and quanti-
tatively evaluate its robustness against lighting changes, imaging
artifacts, and unseen configurations.
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Furthermore, the method can be made more data efficient with
sim-to-real domain randomization techniques. Self-supervision
is also promising as unlabelled real data is inexpensive to collect
in most cases.

Although the method only predicts the 3D position of the robot
centerline, state estimation methods could be applied in tandem
to obtain other robot states. The method could also be extended
to incorporate temporal information for improved accuracy and
robustness, and inspire future work in sensor fusion and shape
control.

VII. CONCLUSION

We propose a novel monocular shape sensing method for
continuum robots, called MoSSNet. Simulated and real datasets
collected on a two-segment TDCR demonstrate the method is
accurate (mean shape error of 0.91 mm((0.36%)), real-time (70
fps), and generalizes to unseen data. The method is also opti-
mized end-to-end and does not require fiducial markers, segmen-
tation, or camera calibration. MoSSNet outperforms existing
stereo-vision-based shape sensing methods in terms of real-time
capability and has much lower hardware complexity compared
to embedded sensing methods. We believe that these promising
results present a potential new alternative for continuum robot
shape sensing. Additionly, we provide our code and dataset as
part of the Open Continuum Robotics Project1, serving as a
research benchmarking tool.
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