Algorithmic Fairness:
at the Intersections

Golnoosh Farnadi', Q. Vera Liao?, Elliot Creager®

https://sites.google.com/mila.quebec/fairnesstutorial/
NeurlPS 2022 | New Orleans, LA | December 5, 2022
"HEC Montréal/Université de Montréal and MILA  ?Microsoft Research University of Toronto and Vector Institute



Obijectives

e Motivate study of “fairness” in machine learning

e Overview of four topics
o fairness, privacy, robustness and explainability

e Highlight their intersections
o  Why think about these topics together?
m  What new opportunities and challenges arise?
o Open research questions
e Learning in context
o Each method has its own scope and limitations
o “Fair” ML work not only approach to mitigating Al harm

Robustness

Explainability



Participation

Join us in the Zoom meeting
Type your questions in the chat; we will address them at the end of the talk

We will attempt to monitor the RocketChat as well :)
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Algorithmic fairness:

technical approaches to mitigating
algorithmic discrimination

Mahsa Amini death: facial recognition to hunt
hijab rebels in Iran

Other approaches:

Investigative journalism, auditing
Policy making and advocacy
Community organizing

Not a problem to be “solved” by Comp. Sci. alone

Selbst, A.D., Boyd, D., Friedler, S.A., Venkatasubramanian, S., Vertesi, J., 2019. Fairness and Abstraction in Sociotechnical Systems
Abebe, R., Barocas, S., Kleinberg, J., Levy, K., Raghavan, M., Robinson, D.G., 2020. Roles for Computing in Social Change.

Gebru, T., Denton, E. 2021 NeurlPS Tutorial: Beyond Fairness in Machine Learning

Ndebele, L., 2022 Social media companies urged to block hate speech linked to Tigray confiict.

Mahoozi, S., 2022. Mahsa Amini death: facial recognition to hunt hijab rebels in Iran

Barocas, S., Biega, A.J., Fish, B., Niklas, J., Stark, L., 2020. When not to design, build, or deploy
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Why is algorithmic fairness challenging? i
Subjective ':/,,;f*f |
Many formulations, which may not be compatible ) f}ﬂw’fﬁf
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benchmarks

(b) Model Building and Implementation

Suresh, H., Guttag, J.V., 2021. A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle
Obermeyer, Z., Powers, B., Vogeli, C., Mullainathan, S., 2019. Dissecting racial bias in an algorithm used to manage the health of populations.




Overview

[15m] Fairness overview

Golnoosh Farnadi

[30m] Privacy overview + Fairness/Privacy

Golnoosh Farnadi

[30m] Robustness overview + Fairness/Robustness

Elliot Creager

[30m] Explainability overview + Fairness/Explainability

Q. Vera Liao

[15m] Q&A

[30m] Panel

Moderator: Su Lin Blodgett
Panelists: Reza Shokri
Ferdinando Fioretto
Amir-Hossein Karimi
Pratyusha Kalluri
Elizabeth Anne Watkins



Introduction to Algorithmic Fairness



Why algorithmic discmrination matters?

"\ [MIT Researcher Exposing Bias in Facial
e ratiic StOPS |

Q D
Amazon ditched Al recruil'ing tool that
favored men for technical jobs

e Allocation harm: E.g., Amazon Hiring system, COMPAS risk assessment

e Quality of service harm: E.g., gender shades, VMS make women sick

e Stereotyping harm, e.g., Black criminality in predictive policing, gender issues in NLP (in translation)
e Denigration harm, e.g., mislabeling images of Black women as Gorillas, Chatbot Tay for hate speech
e Over and under-representation harm, e.g., images of men in image search results

Solon Barocas, Kate Crawford, Aaron Shapiro, and Hanna Wallach. 2017. The problem with bias: from allocative to representational harms in machine learning.Special Interest Group for Computing,
Information and Society (SIGCIS)(2017)

Kate Crawford at NeurlPS 2017 Tutorial



Laws against Discrimination

®
I

Legally recognized ‘protected classes’l

Race (Civil Rights Act of 1964)

Color (Civil Rights Act of 1964)

Sex (Equal Pay Act of 1963; Civil Rights Act of 1964)

Religion (Civil Rights Act of 1964)

National origin (Civil Rights Act of 1964)

Citizenship (Immigration Reform and Control Act)

Age (Age Discrimination in Employment Act of 1967)
Pregnancy (Pregnancy Discrimination Act)

Fal status (Civil Rights Act of 1968)

Dis: ity status (Rehabilitation Act of 1973; Americans with
Disabilities Act of 1990)

Veteran status (Vietnam Era Veterans' Readjustment
Assistance Act of 1974; Uniformed Services Employment and
Reemployment Rights Act); Genetic information (Genetic
Information Nondiscrimination Act)

sensitive attributes

Regulated domains

Credit (Equal Credit Opportunity Act)

Education (Civil Rights Act of 1964; Education Amendments of
1972)

Employment (Civil Rights Act of 1964)

Housing (Fair Housing Act)

Public Accommodation (Civil Rights Act of 1964)

Extends to marketing and advertising; not limited to final
decision

This list sets aside complex web of laws that regulates the
government

Article 14. Equality before law. -The State shall not deny to any person equality before the
law or the equal protection of the laws within the territory of India. (1) The State shall not
discriminate against any citizen on grounds only of religion, race, caste, sex, place of
birth or any of them.

ethnicity and other grounds. May 30, 2022

Canadians have the right to be treated fairly in workplaces free from discrimination, and our
country has laws and programs to protect this right. The Canadian Human Rights Act is a
broad-reaching piece of legislation that prohibits discrimination on the basis of gender, race,

https://laws-lois.justice.gc.ca/eng/acts/h-6/fulltext.html

* *x The 1982 Constitution has enshrined the principle of

* equality of all citizens before the law (Article 33). Articles 4,
36, 48, and 89 also guarantee the rights of ethnic minorities,
religious freedom and gender equality and prohibits
discrimination on those grounds.

Initiating an Anti-Discrimination Regime in China

EU Charter of Fundamental Rights

1. Any discrimination based on any ground such as sex, race, colour, ethnic or social origin,
genetic features, language, religion or belief, political or any other opinion, membership of a
national minority, property, birth, disability, age or sexual orientation shall be prohibited. 2.

https://www.refworld.org/pdfid/4d886bf02.pdf

The basis for progressively redressing these conditions lies in the Constitution which,
amongst others, upholds the values of human dignity, equality, freedom and social
justice in a united, non-racial and non-sexist society where all may flourish;

South Africa also has international obligations under binding treaties and customary
international law in the field of human rights which promote equality and prohibit unfair
discrimination. Among these obligations are those specified in the Convention on the
Elimination of All Forms of Discrimination Against Women and the Convention on the
Elimination of All Forms of Racial Discrimination;




Confusion Matrix

Running Example Y=1 Y=0

yr=1 TP | FP
............. ¥=0 FN TN
XBSH=»> — = =)
Applicant Loan
Application Loan Approval
s X 7 y
sensitive non-sensitive Prediction Actual
attribute attributes decision o Outcome

Note gender is assumed to be binary for the sake of simplicity
Scheuerman, M.K., Brubaker, J.R., 2018 Gender is not a Boolean: Towards Designing Algorithms to Understand Complex Human Identities.

Hu, L., Kohler-Hausmann, |., 2020. What’s Sex Got To Do With Fair Machine Learning?
Lu, C., Kay, J., McKee, K., 2022. Subverting machines, fluctuating identities: Re-learning human categorization.



What does fairness in ML mean??

Individual: measures the impact that discrimination has on the individuals

O @
O " O

E.g., similar applicants, should have similar probability of receiving positive loan approval

The Lipschitz condition requires that any two individuals x, y that are at distance
d(x,y) € [0, 1] map to distributions M(x) and M(y), respectively, such that the statistical distance
between M(x) and M(y) is at most d(x, y). In other words, the distributions over outcomes observed by
x and y are indistinguishable up to their distance d(x, y).

Dwork, Cynthia, et al. "Fairness through awareness." Proceedings of the 3rd innovations in theoretical computer science conference. ACM, 2012.



What does fairness in ML mean??

Individual: measures the impact that discrimination has on the individuals

O @
O " O

E.g., similar applicants, should have similar probability of receiving positive loan approval

Group: measures the impact that the discmrination has on the groups of individuals

8% 988

E.g., The probability of receiving positive loan approval should be similar among female and male
applicants

Verma, S., & Rubin, J. (2018, May). Fairness definitions explained. In 2018 ieee/acm international workshop on software fairness (fairware) (pp. 1-7). |IEEE.



Statistical Fairness Notions

Demographic Parity p(f/= 1|1S=1)= P(fgz 118 = 0)

equal probability of receiving a positive loan approval for female and male applicants

Calders, T., Kamiran, F., & Pechenizkiy, M. (2009, December). Building classifiers with independency constraints. In 2009 IEEE International Conference on Data Mining Workshops (pp. 13-18).
IEEE.



Statistical Fairness Notions

Demographic Parity p(f/= 1|1S=1)= P(f/= 118 = 0)
equal probability of receiving a positive loan approval for female and male applicants

Equal opportunity PY =1 1Y=1,S=1) = PY=1 |1Y=1,8=0)

classifier should give similar results to applicants of both genders with actual positive loan
approval.

Hardt, M., Price, E. and Srebro, N., 2016. Equality of opportunity in supervised learning. In Advances in neural information processing systems (pp. 3315-3323).



Statistical Fairness Notions

Demographic Parity p(f/= 1|1S=1)= P(f/= 118 = 0)
equal probability of receiving a positive loan approval for female and male applicants

Equal opportunity PY =1 1Y=1,S=1) = PY=1 |1Y=1,8=0)

classifier should give similar results to applicants of both genders with actual positive loan
approval.

Equalized odds P¥=1]Y,S=1)=PF=1|7,5=0)

applicants with a rejected loan application and applicants with an accepted loan application
should have a similar classification, regardless of their gender.

Hardt, M., Price, E. and Srebro, N., 2016. Equality of opportunity in supervised learning. In Advances in neural information processing systems (pp. 3315-3323).



Impossibility of Fairness

Impossibility wrt group and individual notions

2e-0-2-8 +
£2-9-2-2

Impossibility wrt various group fairness notions

e Independence
e Separation
e Sufficiency

You can only achieve one of these measures: demographic parity, equality
of odds, and equality of opportunity

Friedler, Sorelle A., Carlos Scheidegger, and Suresh Venkatasubramanian. "On the (im) possibility of fairness." arXiv preprint arXiv:1609.07236 (2016).

Kleinberg, J., Mullainathan, S., & Raghavan, M. (2016). Inherent trade-offs in the fair determination of risk scores. arXiv preprint arXiv:1609.05807.



Causal Notions of Fairness

e (Causal fairness notions are based on
social-legal requirements, e.g.,

US Supreme Court, 2015

A disparate-impact claim relying on a statistical disparity must fail if the plaintiff cannot
point to a defendant's policy or policies causing that disparity.

e Based on existence of causal
mechanisms, which are almost never
observed.

e Construction of causal graph to encode

assumptions about underlying SCM is
required

Zhang & Bareinboim. “Fairness in Decision-Making - The Causal Explanation Formula, AAAI, 2018

Reality (unobserved)

2
22|z 140
E 2 | XefdZ U) 3
c 5 Fairness measures
& S We= fiu(X, Uy) B A he SCM
3 S Y «§(Z, W, X, Uy) ased on the
@ £ | P(Uz Ug Uy)
)
Dataset D Standard model
(past decisions) (simplified causal model)
Z X WY Z
Empirical Measures
X Y of Fairness

TV, (Y) = DEx (Y| X0) — (IEy, 5, (Y [ Xg) + SEy (V)

DE,, (Y1) = Y, (E [¥ 13,02 = E[Y [ 30w.2] ) Pv1x,, DPOv]

Wz

By, (Y1) = Y E[Y | 20,2 (POW]x1,2) = POw]x0,2)) Pw ] x)

W,z

SE.u(Y1%) = D E[Y | xg,w,2] Pw|x0,2) (POw|x,) — Pw| )

e

Structural Measures Empirical Measure
(w.r.t. SCM M?*) (fn of the data, P(X, Y, Z, W))

Kusner, M. J., Loftus, J., Russell, C., & Silva, R. (2017). Counterfactual fairness. Advances in neural information processing systems, 30.

no subscript!

Nilforoshan, Hamed, et al. "Causal conceptions of fairness and their consequences." International Conference on Machine Learning. PMLR, 2022.



How to mitigate algorithmic discrimination in machine
learning?

Machine Learning Pipeline

B - [E > B

=

bias ...................................................... B>

Data is unbalanced Unfair Objective Unfair outcome
Historical discrimination Lack of algorithmic design knowledge Black-box models
Biased loss functions No user feedback

Encoded of protected attributes



How to mitigate algorithmic discrimination in machine
learning?

Machine Learning Pipeline
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Pre-processing In-processing Post-processing



How to mitigate algorithmic discrimination in machine
learning?

Machine Learning Pipeline

m =) E ké,El =) Output

=

bias ...................................................... B>

Data is unbalanced Unfair Objective Unfair outcome
Historical discrimination Lack of algorithmic design knowledge Black-box models
Biased loss functions No user feedback

Encoded of protected attributes

Pre-processing In-processing Post-processing



Fairness in Pre-Processing: Data De-Biasing
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Kamiran, F., & Calders, T. (2012). Data preprocessing techniques for classification without discrimination. Knowledge and information systems, 33(1), 1-33.

Alabdulmohsin, 1., Schrouff, J., & Koyejo, O. (2022). A Reduction to Binary Approach for Debiasing Multiclass Datasets. arXiv preprint arXiv:2205.15860.

3 o




Fairness in Pre-Processing: Data Generative Models
2 gl
2 agg 29 2%

S m
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E.g., Using Generative Adversarial Networks E.g., Using SCMs (by removing paths from
(GANSs), Variational Autoencoders, etc. sensitive attributes)

Sattigeri, Prasanna, et al. "Fairness GAN: Generating datasets with fairness properties using a generative adversarial network." IBM Journal of Research and Development 63.4/5 (2019): 3-1.

van Breugel, Boris, et al. "Decaf: Generating fair synthetic data using causally-aware generative networks." Advances in Neural Information Processing Systems 34 (2021): 22221-22233.



Fair Representation Learning Goal of Representation

learning
User representation Outcome Preserve Performance:
Z Y Reconstruction term: the

learned representation should
resemble the original data

Utility terms: the learned
representation should predict
target variable

Cas
D

Individuals

+ Fairness

Zemel, R., Wu, Y., Swersky, K., Pitassi, T., & Dwork, C. (2013, May). Learning fair representations. In International conference on machine learning (pp. 325-333). PMLR



Fair Representation Learning: Group Fairness

A

S
=

D0

BF
=

Fairness

Balancing the distribution
among various groups
Remove sensitive attributes
(common approach is to use
deep learning: VAE, adversarial
learning, or disentangled

learning)

Louizos, C., Swersky, K., Li, Y., Welling, M., & Zemel, R. (2015). The variational fair autoencoder. arXiv preprint arXiv:1511.00830.

Madras, D., Creager, E., Pitassi, T., & Zemel, R. (2018, July). Learning adversarially fair and transferable representations. In International Conference on Machine Learning (pp. 3384-3393). PMLR.

Locatello, F., Abbati, G., Rainforth, T., Bauer, S., Scholkopf, B., & Bachem, O. (2019). On the fairness of disentangled representations. Advances in Neural Information Processing Systems, 32.



Fair Representation Learning: Individual Fairness

o) Fairness
e 150 I——— M) e Similar individuals should map to
k®, = = = = =

Q -z similar distributions.
B o I I I /()

. i, e Task-specific similarity metric. Ideally
Lipschiz condition | | M(x,) — M(x,) || < d(x;,x,)

captures ground truth or society’s best
approximation
M:D = P2) e Many applications: ranking in
%& — recommender systems, financial risk
D 7 Ueer metrics, health metric for treating
Individuals representation patients, etc.

Dong, Yushun, et al. "Individual fairness for graph neural networks: A ranking based approach." Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. 2021.
Salganik, Rebecca, Fernando Diaz, and Golnoosh Farnadi. "Analyzing the Effect of Sampling in GNNs on Individual Fairness." arXiv preprint arXiv:2209.03904 (2022).



How to mitigate algorithmic discrimination in machine
learning?

Machine Learning Pipeline
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In-processing techniques

e Supervised learning tasks are often expressed as optimization problems

minimize f(X,Y;0)
6

e The optimization problem: finding the parameters that give the best model
w.r.t the desired properties

Fairness in another desired property of the learned models

8(X,Y;0)



In-processing techniques

e Not all optimization problems are the same!

e Some problems are computational easy

e Some problems are hard, but behave well (approximation methods work
well)

e Some problems are hard, but have structure. And we can exploit this

structure.

Adding fairness can change these properties!



In-processing techniques

Fairness as Fairness as Fairness as

Constrained Optimization Regularizer Multi-objective Optimization

minimize f(X,Y;0) minimize fX,Y;0)+ /ﬁg(X, Y; 9)§ mini;nize fX,Y;0) xig(X, Y;0)
0 0 . : : :

subject to Eg(X, Y; 9)?

Choi, Y., Farnadi, G., Babaki, B., & Van den Broeck, G. (2020, April). Learning fair naive bayes classifiers by discovering and eliminating discrimination patterns. In Proceedings of the AAAI
Conference on Atrtificial Intelligence (Vol. 34, No. 06, pp. 10077-10084).

Mohammadi, K., Sivaraman, A., & Farnadi, G. (2022). FETA: Fairness Enforced Verifying, Training, and Predicting Algorithms for Neural Networks. arXiv preprint arXiv:2206.00553.

Kamishima, Toshihiro, Shotaro Akaho, and Jun Sakuma. "Fairness-aware learning through regularization approach." 2011 IEEE 11th International Conference on Data Mining Workshops. IEEE, 2011.

A. Agarwal, A. Beygelzimer, M. Dudik, J. Langford, and H. Wallach, “A Reductions Approach to Fair Classification,” arXiv.org, 16-Jul-2018. [Online]. Available: https://arxiv.org/abs/1803.02453.

Kearns, M., Neel, S., Roth, A., & Wu, Z. S. (2018, July). Preventing fairness gerrymandering: Auditing and learning for subgroup fairness. In International Conference on Machine Learning (pp.
2564-2572). PMLR.



How to mitigate algorithmic discrimination in machine
learning?

Machine Learning Pipeline
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Data is unbalanced Unfair Objective Unfair outcome
Historical discrimination Lack of algorithmic design knowledge Black-box models
Biased loss functions No user feedback
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Fairness in Post-Processing

Rejection Option Thresholding
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Kamiran, F., Karim, A., & Zhang, X. (2012, December). Decision theory for discrimination-aware classification. In 2012 IEEE 12th International Conference on Data Mining (pp. 924-929). |IEEE.

Hardt, M., Price, E. and Srebro, N., 2016. Equality of opportunity in supervised learning. In Advances in neural information processing systems (pp. 3315-3323).



Trade-offs

Ease of Fairness/
implementation Scalability Ease of auditing Performance Generalization
and (re)-use tradeoff

Pre-processing,
representation

In-processing,
e.g., fairness
regularizer

learning

<

Post-processing,
e.g., thresholding

Inspired by Sanmi Koyejo’s talk on fair representation learning tutorial at NeurIPS 2019



Summary

e No free lunch: Fairness is a socio-technical challenge

e Many aspects of fairness are NOT captured by the statistical measures
e One notion cannot simultaneously satisfy all metrics

e Algorithmic fairness is highly dependent on the fairness notion, and the

result change by changing the notion of fairness

e \We may need to make a trade-off in different contexts



Introduction to Private Learning



Why Privacy matters?

Personal Data: Increasingly more and more devices collect
and stream data

Warning: a few corporations own the data and they might
abuse them

B

(ED)
ot ™
Internet, drones
social

media,
emails

Privacy Regulations




Differential Privacy
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Dwork, Cynthia. "Differential privacy: A survey of results." International conference on theory and applications of models of computation. Springer, Berlin, Heidelberg, 2008.



Properties of DP

Post-processing invariance

Composability

R

R

=

Sensitive data

-

Sensitive data\

g B T &
1.9, p 157 mp
i epsilon-DP
epsilon-DP ) N '
Algorithm With respect to sensitive data!
T E
eZIS“g:;:r;rap Union of output 1 & output 2 is
9 (epsilon 1+ epsilon 2) -DP!
* E
epsilon2-DP

Algorithm



Privacy-preserving machine learning

Privacy barrier

Summary
Statistics

Privacy-preserving _> Synthetic
% g sanitizer \ Data

Sensitive data ML Model

Privacy settings in ML
(single data source)

Privacy barrier

Summary

% Statistics
\ Privacy-preserving _> Synthetic

- sanitizer : Data
Sensitive data / \

E ML Model

Sensitive data

Privacy settings in ML
(multiple data sources)



Empirical Risk Minimization
Empirical Risk Minimization (ERM) is a common paradigm for prediction problems

* 1 -
W= argvf,nln - ;E(W, (xi,9:)) + AR(W)



Empirical Risk Minimization
Empirical Risk Minimization (ERM) is a common paradigm for prediction problems

* 1 -
W= argvf,nln - ;E(W, (xi,9:)) + AR(W)
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Empirical Risk Minimization
Empirical Risk Minimization (ERM) is a common paradigm for prediction problems

" 1O
W= argvf,nln - ;E(w, (xi,9:)) + AR(W)

Input Perturbation Objective Perturbation

Privacy barrier
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Empirical Risk Minimization
Empirical Risk Minimization (ERM) is a common paradigm for prediction problems

1 n
* I — is Ui )\
W' = argmin ; 1 U(w, (xi,9:)) + AR(W)

Input Perturbation Objective Perturbation Output Perturbation

Privacy barrier . .
y Privacy barrier Privacy barrier

Algorithm

B
|
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What Composition says about Multistage ML Methods?

e How to allocate privacy risk across different Privacy barrier
. . . . Pre-processing
stages of the machine learning pipeline? e
e Basic composition: privacy is additive &
ining ML Model
Eyéyg
=
e Having k algorithms with (e;,,6) : i =1,2,...,k &8&  Cross-validation
e S
e Total privacy loss: Sensitve data\\ S =
Evaluation
ST N[5
W =

=1l |

Bassily, Raef, Adam Smith, and Abhradeep Thakurta. "Private empirical risk minimization: Efficient algorithms and tight error bounds." 2074 IEEE 55th annual symposium on foundations of computer
science. |EEE, 2014.



DP in Deep Learning

e Stochastic Gradient Descent (SGD) is

Privacy barrier

a popular method for optimization Lol p—
Algorithm
e Main idea of DP-SGD: use moments Xox Non_ivate | New network weights
accountant to track privacy loss | > L N
e | |
—

e Additional components: Gradient
clipping, Noise addition, data
augmentation, mini-batching, etc.

}

Clip and add — Update

noise ! parameters
Moments :

accountant

Abadi, Martin, et al. "Deep learning with differential privacy." Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016.



Privacy-preserving machine learning

Privacy barrier

Summary
Statistics

Privacy-preserving _> Synthetic
% g sanitizer \ Data

Sensitive data ML Model

Privacy settings in ML
(single data source)

Privacy barrier

Summary

% Statistics
\ Privacy-preserving _> Synthetic

- sanitizer : Data
Sensitive data / \

E ML Model

Sensitive data

Privacy settings in ML
(multiple data sources) :



Secure Multi Party Computation (MPC)

Multiple parties jointly compute

e A function or output
e While their input remains private
e In a distributed fashion

No central entity- distributed setup to preserved privacy

Goldreich, O. (1998). Secure multi-party computation. Manuscript. Preliminary version, 78, 110.

E kéy




Cross-device FL

Training Cloud

Federated Learning (FL) or Split learning

e FL is a machine learning setting where multiple
entities (clients) collaborate in solving a machine
learning problem, under the coordination of a
central server or service provider.

e Each client's raw data is stored locally and not

exchanged or transferred; instead, focused Cross-silo FL
updates intended for immediate aggregation are
used to achieve the learning objective. dlrﬂjﬁ .

FL/Split Learning are not private!

McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017, April). Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics
(pp. 1273-1282). PMLR.

Gupta, Otkrist, and Ramesh Raskar. "Distributed learning of deep neural network over multiple agents." Journal of Network and Computer Applications 116 (2018): 1-8.



Memorization and Overlearning issues of Deep Learning
Models

e Unintended memorization in DL is:
o Persistent
o Hard-to-avoid issue that can have serious
consequences

e Overlearning is not a result of overfitting

e Memorization does not only happen in large
models

e Memorization can happen in various context,
text, vision, etc.

Reconstruction attack

Carlini, N., Liu, C., Erlingsson, U., Kos, J., & Song, D. (2019). The secret sharer: Evaluating and testing unintended memorization in neural networks. In 28th USENIX Security Symposium (USENIX
Security 19) (pp. 267-284).



Membership attack

The basic membership inference attack: given a data record and black-box access
to a model, determine if the record was in the model's training dataset.

........
- ~

Public

~ -
--------

--------
-
- ~e

---------

Shokri, Reza, et al. "Membership inference attacks against machine learning models." 2017 IEEE symposium on security and privacy (SP). IEEE, 2017.



Summary

e Training does not on its own guarantee privacy

e Deep learning models memorize sensitive information

e There are various privacy enhancing technologies (PETSs)

e Output privacy does not guarantee input privacy

e DPin ML pipeline is challenging due to its iterative nature

e Good DP algorithms should generalize since they learn about populations, not
individuals.

e In Federated learning/split learning, raw data never leave clients devices but it is
not necessarily make these algorithm private

e Privacy budget is relative to the task



At the Intersections: Fairness & Privacy



Fairness and Privacy: aligned goals

e DP aims at rendering the participation of individuals indistinguishable to an
observer who accesses the outputs of a computation

e Fairness attempts at equalizing properties of outputs across different
individuals.

Privacy and fairness can be viewed as aligned objectives, e.g., Dwork et al, 2021
shows individual fairness is a generalization of DP.

| €9

. PA(D) =y)
) d,(M(x), M(x")) = sup 1
.ﬁ@) A, MG yeg OgP(A(D') =)

Dwork, Cynthia, et al. "Fairness through awareness." Proceedings of the 3rd innovations in theoretical computer science conference. ACM, 2012.

d(x,x) = €| xAx’|




Fairness and Privacy: contrastive goals

Privacy and fairness can be viewed as contrastive objectives, e.g., it has been
observed that the outputs of DP classifiers may create or exacerbate disparate
impacts among groups of individuals

100
EmmLighter Skin

801 [—1Darker Skin
>
@)
© 601
=1
V]
& 404

20

o eps=9.16 eps=5.69
non-DP o o
(S=1,2=0.8) (S=1, z=1.0)

Model

Bagdasaryan, Eugene, Omid Poursaeed, and Vitaly Shmatikov. "Differential privacy has disparate impact on model accuracy." Advances in neural information processing systems 32 (2019).



DP and Fairness

e The accuracy of the minority group was disproportionately impacted by the
private training.

e These observations were validated on several vision and natural
language processing tasks and in both a centralized and federated
setting.

e The size of a protected group would play a crucial role to the

exacerbation of the disparate impacts in private training
/\

Abadi, Martin, et al. "Deep learning with differential privacy." Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016.



DP in EMR and Fairness

e Output perturbation: Input norms and
distance to decision boundary are
two key characteristics of the data
connected with exacerbating the
disparate impacts of private learning
tasks.

e DP-SGD: The two key characteristics of
DP-SGD are clipping the gradients
whose L2 norm exceeds a given bound
C and perturbing the averaged clipped
gradients with Gaussian noise.

Tran, Cuong, My Dinh, and Ferdinando Fioretto. "Differentially private empirical risk minimization under the fairness lens." Advances in Neural Information Processing Systems 34 (2021):
27555-27565.



Federated Learning and Fairness

e Fairness: Resource sl i rao (SRR | o=
allocation, Quality of service, P
Client selection ' E
(infrastructure), Incentive,
etc.

e Personalization with .

Multi-task learning, =
fine-tuning, and " vabilty 2| e

Meta-learning.

Pentyala, S., Neophytou, N., Nascimento, A., De Cock, M., & Farnadi, G. (2022). PrivFairFL: Privacy-Preserving Group Fairness in Federated Learning. arXiv preprint arXiv:2205.11584.

Fallah, A., Mokhtari, A., & Ozdaglar, A. (2020). Personalized federated learning: A meta-learning approach. arXiv preprint arXiv:2002.07948.

Li, T., Sanjabi, M., Beirami, A., & Smith, V. (2019). Fair resource allocation in federated learning. arXiv preprint arXiv:1905.10497.

Li, T., Hu, S., Beirami, A., & Smith, V. (2021, July). Ditto: Fair and robust federated learning through personalization. In International Conference on Machine Learning (pp. 6357-6368). PMLR.



Fairness and Overlearning issues of DL

e "Overlearning" means that a model trained for a seemingly simple objective

implicitly learns to recognize attributes and concepts that are
o (1) not part of the learning objective
o (2) sensitive from a privacy or bias perspective.

Privacy barrier

. ~

Song, Congzheng, and Vitaly Shmatikov. "Overlearning reveals sensitive attributes." arXiv preprint arXiv:1905.11742 (2019).



Membership Attacks and Fairness

Fairness comes at the cost of privacy, and this costisnot
distributed equally g @m g
The information leakage of fair models increases e C A
significantly on the unprivileged subgroups, which are the B & gg'gg
ones for whom we need fair learning. R
The more biased the training data is, the higher the privacy

cost of achieving fairness for the unprivileged subgroups

will be.

o  Public

Chang, H., & Shokri, R. (2021, September). On the privacy risks of algorithmic fairness. In 2021 IEEE European Symposium on Security and Privacy (EuroS&P) (pp. 292-303). IEEE.

Kulynych, Bogdan, Mohammad Yaghini, Giovanni Cherubin, Michael Veale, and Carmela Troncoso. "Disparate vulnerability to membership inference attacks." arXiv preprint arXiv:1906.00389 (2019).



Fairness & Privacy Properties

e

Unfair data

=

Post-processing invariance?

f

X E
k®s

—

Algorithm

=

Fair

> . =

>

Fair
outcome?

e

Unfair data

¥\

Composability?

B
i,
=

Fair
Algorithm 1

[,
=

Fair

Algorithm 2

=

Union of output 1 & output 2 is
Fair?

Dwork, C., & llvento, C. (2018). Group fairness under composition. In Proceedings of the 2018 Conference on Fairness, Accountability, and Transparency (FAT* 2018).

Dwork, Cynthia, and Christina llvento. "Individual fairness under composition." Proceedings of Fairness, Accountability, Transparency in Machine Learning (2018).



Open challenges

e Explore various group fairness techniques and their relations to DP and other
PPTs

e Explore data pre-processing techniques that combine privacy and fairness

e Combine various PPTs, e.g., MPC+FL+DP, may help performance, privacy,
fairness tradeoffs

e Explore new application domains at the intersection of privacy and fairness

e Analyze fairness and privacy in sequential decision making models

e Analyze fairness and privacy under composition



Introduction to Robust Learning



What does it mean to be “robust™?

Robustness can have different meanings in different contexts

Recall learning theory: models have bounded error when data are i.i.d.

I.i.d. = independent and identically distributed

For “robust” performance, go beyond in-distribution generalization

P(X) PY|X

E‘/

P(X,Y)

i




Taxonomy of model failures

To understand “robustness”, contrast with
brittleness of models in practice

Overhittingfonderfittng (handled by

standard learning theory)

A LR B Ry, el

Feature ¢,

Adversarial examples & security threats

same category for humans

but not for DNNs (intended generalisation)

Shortcut learning

Simplicity bias

domain adversarial

Algorithmic discrimination...? e e e

) ¥
o.0.d.

Shah, H., Tamuly, K., Raghunathan, A., Jain, P., Netrapalli, P., 2020. The Pitfalls of Simplicity Bias in Neural Networks.

Sagawa, S., Raghunathan, A., Koh, P.W.,, Liang, P., 2020. An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., Wichmann, F.A., 2020. Shortcut Learning in Deep Neural Networks

D’Amour, A., Heller, K., et al., 2020. Underspecification Presents Challenges for Credibility in Modern Machine Learning.

Simplicity Bias in Neural Networks (NNs)

.} Z b
K 6= - 58

spurious

Train
— Test

Worst-Group Error

Model Size

spurious

Underparameterized

core core
Overparameterized

same category for DNNs

but not for humans (unintended generalisation)

excessive fooling natural texturised
invariance images adversarials  images
Jacobsen ‘19 Nguyen'15  Hendrycks'19  Brendel 19

- EilslE



Incorporating “robustness” into learning algorithms

P(X)
Learning theory provides a “spec” for @ =
the model: in-distribution generalization

To learn a “robust” model, we need to

define a new spec
Out-of-distribution (OOD) generalization

What family of distributions should my
model handle?

P(X)P(Y|X)

©
©




Characterizing distribution shift

P(X) P(YX P(X)P(Y\X) P(Y|X) Q(X)P(Y\X)
] f
Covariate shift
o o @
P(X) P(Y|X P(X)P(Y|X) P(X)Q(Y|X)
0 0
Label noise —_—
o o
P(X) PY1X) P(X)P(Y]X) QYY) PX)Q(Y]|X)
Concept shift b f f
o ® @
P(X) PY|X P(X)P(Y|X) QX)P(Y|X)
Subpopulation shift i i
o o
Intervention (on causal graph) e ‘ — “
® ® ) ®  ® i "
o |y : 1~
® ®N ® g

Peters, J., Bihlmann, P., Meinshausen, N., 2015. Causal inference using invariant prediction: identification and confidence intervals.




Adversarial Robustness

Adversarial examples - small worst-case

+.007 x =
perturbations in feature space
_ i : ‘ | T+
Aftacks - white box, black box, ... 2 sign(VJ (8, ,)) sign(VT (0, 2,3))
“panda” “nematode” “gibbon”
Adversarial traininq - train w/ adv. Examp|es 57.7% confidence 8.2% confidence 99.3 % confidence
l.e. train under family of nearby distributions q .
B ®
° I/ ° o °A e
inp(), wh 0) = E L(6,x + 9, o /o] ® A
minp(6), where p(6) = E(y).p maxL(d,x+,y) e = -
® . ® o ¢ [ ]
/

Goodfellow, I.J., Shlens, J., Szegedy, C., 2015. Explaining and Harnessing Adversarial Examples.
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A., 2019. Towards Deep Learning Models Resistant to Adversarial Attacks.



Prefix
East Stroudsburg Stroudsburg... ]

GPT-2

Adversaries “in the wild”

Adversarial examples can be used for model evasion

Memorized text
Corporation Seabank Centre
Marine Parade Southport

.com

Other security concerns

Model inversion/data extraction

Figure 1: An image recovered using a new model in-
version attack (left) and a training set image of the

H . victim (right). The attacker is given only the per-
Data po I SO n I n g son’s name and access to a facial recognition system

that returns a class confidence score.

RO b ustn ess W. r‘t a Specrﬁ C threat model Step 1: Poison Dataset ﬁteetevg;k‘l'fr:)irr:]\g(étri::(:h Step 3: Victim is Fooled!
0.1% Clean Target Image

= 1

IM .-GE :> Deep Net

J E Prediction:

Labrador Retriever X

Bad D‘ogsr

Fredrikson, M., Jha, S., Ristenpart, T., 2015. Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures

Geiping, J., Fowl, L., Huang, W.R., Czaja, W., Taylor, G., Moeller, M., Goldstein, T., 2021. Witches’ Brew: Industrial Scale Data Poisoning via Gradient Matching.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., Roberts, A., Brown, T., Song, D., Erlingsson, U., Oprea, A., Raffel, C., 2021. Extracting Training Data from
Large Language Models.



Distributionally Robust Optimization

Minimize a worst-case loss over “nearby” distributions

m@in max Eq[L(X,Y;0)] such that @ close to P

How to optimize for Q when we have samples from P?

Importance weighting

EolL(X.¥:0)] = En( ST L(x, Y:0)

P(X,
N
~ o3 SRl X, Y
N2 Px,yy ‘Yo
=1 ,

A; “imp. weight”

Group DRO learns just a few importance weights
shared by example belonging to the same group

ffalﬂ(x)

X

p

= reviews
* news
— training

ps(x)

Duchi, J., Glynn, P., Namkoong, H., 2018. Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach.

Oren, Y., Sagawa, S., Hashimoto, T.B., Liang, P., 2019. Distributionally Robust Language Modeling

Sagawa, S., Koh, P.W., Hashimoto, T.B., Liang, P., 2020. Distributionally Robust Neural Networks for Group Shifts

s MLE
s FODUSE




Transfer Learning and Domain Adaptation

Can knowledge from a related task be leveraged for the task at hand?
Source task => Target task
Many flavours: multi-task learning, meta learning, few shot...

Domain adaptation: train using (X, Y ) ~ P

source

andXt~P

target

Methods: domain-invariant representation learning
min_f E[ Loss(f(X,), Y,) ] s.t. f(X,) = f(X)

Enforce f(X,) = f(X,) using kernels (e.g. MMD) or adversarial training

Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schélkopf, B., 2008. Covariate Shift by Kernel Mean Matching
Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., 2015. Domain-Adversarial Neural Networks.
Edwards, H., Storkey, A., 2016. Censoring Representations with an Adversary.



Domain Generalization

Tra|n on data that VarieS p(X,yl e) across Train: cows on grass Test: cows on beaches
“‘domains” (a.k.a “environments”) e Dataset Domains
Learn “core” or “invariant” features Colored MNIST .
Requires known training set partitions, i.e. Rotated MNIST . .
environment labels T Voo

- HEER

Require OOD generalization to

never-before-seen test environment PAGS > B8
Typically assume P(Y|X) fixed...P(Y), P(X) may Office-Home M B
change o 7

g Terra Incognita H a ! .

E’
\E
=
é‘
{ @

Beery, Van Horn, and Perona, Recognition in terra incognita, ECCV 2018

DomainNet * g{ 3
Gulrajani and Lopez-Paz, In search of lost domain generalization, ICLR 2021
Robert Geirhos, et al., Shortcut Learning in Deep Neural Networks, Nature Machine Intelligence vol. 2, 2021



Invariant Risk Minimization
ERM &* = ' R¢(®

arg(;nlng: ()
Per-environment risk

R*(®) = E[£(®(x), y)]e]

environment e = 1:

S

Q
®

IRM: Learn representation that yields Bayes
optimal classifier in every training environment

l.e. minimize risk subject to the Environment
Invariance Constraint (EIC)

Train env 1:

Train env 2¢

F,

L

[Image due to D. Krueger]

environment e = 2:

\
Fa s

<Q

environment e = 3:

Y = low digit < | — Y = high digit

Similar to
(partial)
causal
discovery

Ely|®(z) = h,e1] = E[y|®(z) = h, €]
VheH Ve, e € E.

interpolation
----- extrapolation

IRMv1 regularizer is a differentiable proxy for EIC

Peters, J., Bihlmann, P., Meinshausen, N., 2015. Causal inference using invariant prediction
Arjovsky et al 2019. Invariant Risk Minimization.
Krueger, D., et al 2021. Out-of-Distribution Generalization via Risk Extrapolation (REx).

REX: Optimize empirical risk s.t. low

variance on per-environment risks




Practical Concerns

Dataset / algorithm Out-of-distribution accuracy (by domain)
Rotated MNIST 0° 15° 30° 45° 60° T75° Average
.. . Tise et al. [2019] 935 993 99.1 992 993 930 972
I.i.d assumption Our ERM 956 99.0 989 99.1 99.0 96.7 980
PACS A C P S Average
train trainy test testy Asadi et al. [2019] 830 794 96.8 78.6 84.5
(X Y ) P and (X Y ) P OuiElclM 88.1 780 97.8 79.1 85.7
. . . . . . VLCS C L S v Average
justifies train/validation/test splits Albuguerque etal. [2019] 95.5 67.6 694 711 75.9
Our ERM 976 633 722 764 774
: H : Office-Home A C P R Average
By relaxing the i.i.d. assumption, we break e <oz = Te toon ey
model selection/hyperparameter tuning! S ERM el B4 Jdod I §ls
Under fair model selection criteria, ERM Training Data | TeinERM Bgased  Reweighting  FG-ased
eature Extractor rediction ata rediction

(standard training) is hard to beat

If OOD/target data available, adapting

Spurious: BG DFR >
. Core: FG Retrain linear layer
ERM features may suffice ,
(O BG Features O FG Features —— Large weights  seseees Small weights |

Gulrajani, I., Lopez-Paz, D., 2020. In Search of Lost Domain Generalization.
Menon, A K., Jayasumana, S., Rawat, A.S., Jain, H., Veit, A., Kumar, S., 2021. Long-tail Learning via Logit Adjustment
Kirichenko, P., Izmailov, P., Wilson, A.G., 2022. Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations.



At the Intersections: Fairness & Robustness



Fairness & Robustness: Learning Objectives

Under what settings are fair learning and robust
learning equivalent?

What lessons can be exchanged between the

researc h areas ’? Statistic to match/optimize e known? DG method Fairness method
match E[£|e| Ve yes REx (Krueger et al., 2021), CVaR Fairness (Williamson & Menon, 2019)
M eth Od S min max. E[fe] yes Group DRO (Sagawa et al., 2020)
min max, E, [£] no DRO (Duchi et al., 2021) Fairness without Demographics
D t (Hashimoto et al., 2018; Lahoti et al., 2020)
ata match E[y|®(z).e| Ve yes IRM (Arjovsky et al., 2019) Group Sufficiency
(Chouldechova, 2017; Liu et al., 2019)
Articulating assumptions + limitations _machElyi®().|ve i SRl o) KA fart)
match E[j|®(z).e.y = y'| Ve yes C-DANN (Liet al,, 2018) Equalized Odds (Hardt et al., 2016)
PGI (Ahmed et al., 2021)
match IlE[y|S(:r). ¢| - Ef(z)|S(z). ej;| Ve no Multicalibration (Hébert-Johnson et al., 2018)
match [lE[y|c] — Elj(z)le ]| Ve no Multiaccuracy (Kim et al., 2019)
match I[E[y £ulz)ly = 1r-| Ve no Faimess Gerrymandering (Kearns et al., 2018)

Table 1. Domain Generalization (DG) and Fairness methods can be understood as matching or optimizing some statistic across conditioning
variable ¢, representing “environment” or “domains” in DG and “sensitive” group membership in the Faimess. ® and S are learned vector
and scalar functions of the inputs, respectively.

Creager, E., Jacobsen, J.-H., Zemel, R., 2021. Environment Inference for Invariant Learning



Lessons from robustness to fairness

Formal framework for characterizing distribution shift and model failure
“My data is biased; let’s collect more”

!

“My model needs to handle covariate shift; assuming fixed P(Y|X), let’s
improve coverage over P(X)”

Methods for improving OOD generalization



Algorithmic fairness as OOD generalization

Caveat: not the whole story!

Technical fairness approaches limited in scope * ‘

Task and target variable definition matter a /ot

\
!
!

However, some unfairness comes from failure to ceremony, bride, ' ceremony,
. il e s il perEco; pacple
generallze OOD wom’ag, dresls wonlvan : wom'an, dres,s

Recall: subpopulation shift

S §
te.,.
. -

OpenImages Challenge Stage 1 Challenge Stage 2
Distribution Distribution Distribution

(See Shankar et al., 2017) (Illustrative) (Illustrative)

Shankar, S., Halpern, Y., Breck, E., Atwood, J., Wilson, J., Sculley, D., 2017. No Classification without Representation: Assessing Geodiversity Issues in Open Data Sets for the
Developing World.



Representation learning approaches
Neural net approaches to statistical fairness
influenced by domain adaptation

E.g. adversarial training with auxiliary labels

“Fair’ representations can transfer to new tasks

TRA. TASK TARUNF TRAUNF TRAFAIR TRAY-AF LAFTR

MSC2a3 0362 0.370 0.381 0.378 0.281
METAB3 0510 0.579 0.436 0.478 0.439
ARTHSPIN 0.280  0.323 0.373 0.337 0.188
NEUMENT 0419 0.419 0.332 0.450 0.199
RESPR4 0.181 0.160 0.223 0.091 0.051
MISCHRT 0.217  0.213 0.171 0.206 0.095
SKNAUT  0.324  0.125 0.205 0.315 0.155
GIBLEED 0.189  0.176 0.141 0.187 0.110
INFEC4 0.106  0.042 0.026 0.012 0.044
TRAUMA  0.020  0.028 0.032 0.032 0.019

Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., 2015. Domain-Adversarial Neural Networks.
Edwards, H., Storkey, A., 2016. Censoring Representations with an Adversary.

Louizos, C., Swersky, K., Li, Y., Welling, M., Zemel, R., 2017. The Variational Fair Autoencoder.

Madras, D., Creager, E., Pitassi, T., Zemel, R., 2018. Learning Adversarially Fair and Transferable Representations.

classification output domain regressor

Classifier Adversary
9(Z) h(Z)

input

Encoder
J(X)

Decoder
k(Z, A)




Fairness via robustness to perturbations (i.e. smoothness)

M:D — P(Z)

o liy

Individuals

Z User

representation

Robustness methods can encourage smoothness of model’s predictive fn w.r.t.

e Pairwise similarity metric for individual fairness

o e.qg. distributionally robust optimization or adversarial robustness
e Subpopulation shift for group fairness

o e.g. (group) distributionally robust optimization

Yurochkin, M., Bower, A., Sun, Y., 2020. Training individually fair ML models with Sensitive Subspace Robustness.
Yeom, S., Fredrikson, M., 2020. Individual Fairness Revisited: Transferring Techniques from Adversarial Robustness
Hashimoto, T.B., Srivastava, M., Namkoong, H., Liang, P., 2018. Fairness Without Demographics in Repeated Loss Minimization.



Fairness via robustness to perturbations (i.e. smoothness)

 [(Mengion) -~ o (Mengion} """ [Mention} ***"*""" [Mention]
The surgeon could n't operate on his patient: it was his son!
M:D - P2) -
PP coref--mmmmmmmns .--coref--- . -coref- -,
The surgeon could n't operate on their patient: it was their son!
------------------ coref-------ccmmnannnnn
D / SRR coref------ - -
Z User _ ) Mention * (Mention]  Mention)
P - ) i : 1 !
Individuals representatlon The surgeon could n't operate on her patient it was her son

Robustness methods can encourage smoothness of model’s predictive fn w.r.t.

e Pairwise similarity metric for individual fairness
o e.qg. distributionally robust optimization or adversarial robustness
e Subpopulation shift for group fairness
o e.g. (group) distributionally robust optimization
e Feature-level perturbation known to reveal model sensitivity (e.g. gendered pronoun
swap in text)
o e.g. “counterfactual” data augmentation

Yurochkin, M., Bower, A., Sun, Y., 2020. Training individually fair ML models with Sensitive Subspace Robustness.

Yeom, S., Fredrikson, M., 2020. Individual Fairness Revisited: Transferring Techniques from Adversarial Robustness

Hashimoto, T.B., Srivastava, M., Namkoong, H., Liang, P., 2018. Fairness Without Demographics in Repeated Loss Minimization.
Garg, S., Perot, V., Limtiaco, N., Taly, A., Chi, E.H., Beutel, A., 2019. Counterfactual Fairness in Text Classification through Robustness
Rudinger, R., Naradowsky, J., Leonard, B., Van Durme, B., 2018. Gender Bias in Coreference Resolution.



Min-max fairness
" —— Pareto Front
Equal Risk~ - Equal Risk Line
x
Recall tradeoff: matching performance across groups vs overall o ik Wi
L VliInimax
accuracy 03l Pareto Fair
min, E[Loss(f(X),Y)] s.t. E[Loss(f(X),Y)|A=0] = E[Loss(f(X),Y)|A=1] =
may increase loss for non-worst-off groups...”unnecessary harm”™? %2 Balancad Classifer
Alternative fairness notion: o1 UtOPii Point = paive Classifier
min, max_ E[Loss(f(X),Y)|A=a] 03 04 0’5 0’6
In

(compatible with distributionally robust optimization)

Can also consider pareto front over {E[Loss(f(X),Y)|A=a]}

Martinez, N., Bertran, M., Sapiro, G., 2020. Minimax Pareto Fairness: A Multi Objective Perspective.
Diana, E., Gill, W., Kearns, M., Kenthapadi, K., Roth, A., 2021. Minimax Group Fairness: Algorithms and Experiments.
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Learner Adversary

{ );( v ): I |
: i hy ' l Wxth %
Lessons from fairness to robustness ; HE=Iny
i I o Wt
Gradient i E E 3
Access to auxiliary labels limited in practice | ol |
, lugis: E E Al j‘
) B : i Y —*| Loss (0, $) :_-_-_1:-_:7_-_-:_ N s i
Fairness without demographics :\ = - v
Multiaccuracy/multicalibration + positive class @ negative class
consider “computationally identifiable groups” + :
+ L
. ] . . “ A
Adversarially reweighted learning o Tlie. o sulfH
Non-pr(z';ected Pro:s;:te& cor?cl;:fit;ﬁ?f?:lillz

Environment Inference for Invariant Learning

(a) Inferred environment 1 (b) Inferred environment 2
3 (mostly) landbirds on land, and  (mostly) landbirds on water,
Hébert-Johnson, U., Kim, M.P., Reingold, O., Rothblum, G.N., 2018. Calibration for the (Computationally-ldentifiable) Masses. waterbirds on water and waterbirds on land

Kim, M.P., Ghorbani, A., Zou, J., 2018. Multiaccuracy: Black-Box Post-Processing for Fairness in Classification.
Lahoti, P., Beutel, A., Chen, J., Lee, K., Prost, F., Thain, N., Wang, X., Chi, E.H., 2020. Fairness without Demographics through Adversarially Reweighted Learning.
Creager, E., Jacobsen, J.-H., Zemel, R., 2021. Environment Inference for Invariant Learning



Causality-inspired methods

Graphs encode assumptions about dist'ns

Fairness on confounded data

L —4

Independence on unconfounded data

Unconfounded data not available

emulate via importance weights

Confounded (training) data: The Unconfounded data: Spurious
main label Y and auxiliary label V' correlation between Y and Vis

generate input X, but Y only removed
affects X through X*

Pg = POX*VP(TYP(Y)P(VIY) Py, = POXIX%V)PXXYIP(Y)P(V)

Schoelkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J., 2012. On Causal and Anticausal Learning.
Veitch, V., D’Amour, A., Yadlowsky, S., Eisenstein, J., 2021. Counterfactual Invariance to Spurious Correlations: Why and How to Pass Stress Tests.

Makar, M., D’Amour, A., 2022. Fairness and robustness in anti-causal prediction.



Fair and robust learning e ©%
Source Target °

X,Y,A|S=0 X,Y,A|S=1 ©)

Fair representations can fail under o ®
distribution shifts e

X
Fair learning + DRO helps il Fai? 22828

(V) LAY, S=0 %g zg

Mostly simulated studies

Noisy observations g o g 010 —~ DRO
“:’ 005]  ___ agmmmm é 0.051 — Allneg.
Sensitive attributes s " Sl G
570057 —-=="Naive §-0051 T m
] ) 3_3’70'107 —— Allneg. 570.10_
Targets (eSp. N ”Sk assessment) ) 0.1 02 03 04 05 ) 01 02 03 1014l 05
Group noise level Group noise leve

Lechner, T., Ben-David, S., Agarwal, S., Ananthakrishnan, N., 2021. Impossibility results for fair represernauons.

Rezaei, A, Liu, A., Memarrast, O., Ziebart, B., 2021. Robust Fairness under Covariate Shift.

Singh, H., Singh, R., Mhasawade, V., Chunara, R., 2021. Fairness Violations and Mitigation under Covariate Shift

Fogliato, R., Chouldechova, A., G’'Sell, M., 2020. Fairness Evaluation in Presence of Biased Noisy Labels

Wang, S., Guo, W., Narasimhan, H., Cotter, A., Gupta, M., Jordan, M., 2020. Robust Optimization for Fairness with Noisy Protected Groups

Schrouff, J., Harris, N., Koyejo, O., Alabdulmohsin, I., Schnider, E., Opsahl-Ong, K., Brown, A., Roy, S., Mincu, D., Chen, C., Dieng, A., Liu, Y., Natarajan, V., Karthikesalingam, A.,
Heller, K., Chiappa, S., D’Amour, A., 2022 .Diagnosing failures of fairness transfer across distribution shift in real-world medical settings



Fairness/robustness: challenges and open questions

How to characterize and measure distribution shifts relevant to algorithmic
discrimination?

Can we formulate causal models for data bias in practical settings?

How to ensure statistically fair models are robust to distribution shift?



Introduction to Al Explainability



Why explainable Al (XAl)?

explainability/interpretability/intelligibility/...
= making Al understandable by people



Al is increasingly used to assist humans and impact many
aspects of human Ilves




Human scrutiny and interventions are critical

Explainability as means to many ends

Compete . . Account
hce Safety Usability Trust Privacy ability

Understanding Al



Why is explainable Al challenging?

First, not all algorithms are directly explainable

Learning Techniques (today) Explainability
(notional)
Neural Nets _— (OIS
Graphical o : >0
Explainability-performance Deep M e
Learning , Ensemble 210
tradeoff? Bayesian o
Belief Nets
nly in som ttin 2
O y Some se gS CRFSSRLHBNS g /O
Statistical ~O%S ML o LT
Models Decision e i
Markov Trees T i
SVMs Models Explainability

(Gunning, 2016)

Rudin. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature

Machine Intelligence



XAl

Post-hoc
explainability

Directly
explainable model

e Linear model
o Rule-based model
e Decision-tree

Breaking the
“explainability-
performance trade-off”

e General additive models
e General rule models
[ ]

Caruana et al. Intelligible Models for Healthcare: Predicting Pneumonia Risk and Hospital 30-day Readmission. KDD 2015
Wei et al. Generalized Linear Rule Models. ICML 2019



XAl

Post-hoc
explainability

Directly
explainable model

Explaining
the model
(global) ual

Inspecting

Explaining counterfact

a decision

Guidotti et al. (2018). A survey of methods for explaining black box models. ACM computing surveys (CSUR) .



Use case: a decision-support ML for loan application approval

Customer: Jason ] N
Assets score: 88 Risk of failing

No. Of satisfactory trades: 0

to repay: low
Mo. since account open: 3

Number of inquiries: 1
Debt percentage: 10%

Data scientist
Must ensure the model works appropriately before deployment

=
—

Loan officer
Needs to assess the model’s prediction and make the final judgment

X

Bank customer
Wants to understand the reason for the application result

B>



XAl

Post-hoc
explainability

Directly
explainable model

Explaining
the model
(global)




Post-hoc global explanation: knowledge distillation/

approximation
= ' =

S —

Transfer

information input layer
to improve hidden layer 1  hidden layer 2

J|
XA
.;.

1
%

)
@

output layer




Example global explanation: rule sets

*If {assets score> 90, Mo. since account opening>6}.Low risk
Else if {Debt percentage< 15}:Low risk

e

“ What kind of customers does the model consider as low risk?

Loan officer

Lakkaraju et al.,Faithful and customizable explanations of black box models. AIES 2019.



XAl

Post-hoc
explainability

Directly
explainable model

Explaining
a decision

Guidotti et al. (2018). A survey of methods for explaining black box models. ACM computing surveys (CSUR) .



Explaining a decision by feature: feature contribution

Customer: Jason

Assets score: 88 o ] N
No. Of satisfactory trades: 0 Risk of failing

Mo. since account open: 3 a to repay: low
No. of inquiries: 1

Debt percentage: 10%

Assets score (g
@

No. Of satisfactory trades “
Mo. since account open

Loan officer

No. Of inquiries

Debt percentage  Why is Jason predicted of low risk?

Repaying risk



edible poisonous

re-print-color=...
0.08

stalk-surface-bel...
0.06

tabular

Example post-hoc local explanation: LIME

Images (explaining prediction of 'Cat' in pros and cons)

image

Text with highlighted words
From: johnch i jchadwi

unm S5l (j

J ic)
Subject: Another request for Darwin Fish

L] +
®e°
.
.
atheism christian

Postin;

015

Hostj
0.4l
NNTP}

Organization: University of New Mexico, Albuquerque
Lines: 11

ISR - BSHHE- BGS: triton.unm B
Hello Gang,

&8 been some notes recently asking where to obtain the
DARWIN fish.

This is the same question I [filjf§l and I [l not seen an answer on
the

net. If anyone has a contact please post on the net or email me.

texts

Ribeiro et al. Why should i trust you?" Explaining the predictions of any classifier. KDD 2016



Explaining a decision by examples

Customer: Jason
Assets score: 88 . o
No. Of satisfactory trades: 0 Risk of failing
Mo. since account open: 3 to repay: low
No. of inquiries: 1
Debt percentage: 10%

James Danielle
Assets score: 86 Assets score: 89
No. Of satisfactory trades: 0 | No. Of satisfactory trades: 0
Mo. since account open: 4 | Mo. since account open: 3
No. of inquiries: 1 No. of inquiries: 1
Debt percentage: 7% Debt percentage: 9%

Chen et al. This looks like that: deep learning for interpretable image recognition. NeurlPS 2019
Gurumoorthy et al. Efficient Data Representation by Selecting Prototypes with Importance Weights. ICDM 2019



XAl

Post-hoc
explainability

Directly
explainable model

Inspecting
counterfact
ual




Inspecting counterfactual: contrastive features

Customer: Ana

Assets score: 65 a ] e
No. Of satisfactory trades: 1 Risk of failing
Mo. since account open: 12 a to repay: high
No. of inquiries: 4

Debt percentage: 50%

If {debt percentage n Why was my loan application rejected?
under 30%} , ﬁ How can | improve in the future?

you will no longer be
predicted of high risk ~ Bank customer

Dhurandhar, et al. Explanations based on the missing: Towards contrastive explanations with pertinent negatives.NeurlPS 2018



Inspecting counterfactual: counterfactual examples

Customer: Ana

Assets score: 65 o ] ee
No. Of satisfactory trades: 1 - Risk of failing
Mo. since account open: 12 o to repay: high
No. of inquiries: 4

Debt percentage: 50%

Sue
Assets score: 66
No. Of satisfactory trades: 1
Mo. since account open: 12
No. of inquiries: 3
Debt percentage: 28%  [:zULYTELI) L,

A Why was my loan application rejected?
How can | improve in the future?

Mothilal et al. Explaining machine learning classifiers through diverse counterfactual explanations. FAccT 2020



HCXAI

HUMAN-CENTERED EXPLAINABLE Al

Why is explainable Al challenging?

- Exposing algorithmic processes does not guarantee human understanding
- Understanding is multi-faceted
- Understanding may require information beyond algorithmic processes

- Challenges to support many ends of explainability

Liao & Varshney, (2021). Human-centered Explainable Al (XAl): From Algorithms to User Experiences.
Liao et al. (2020). Questioning the Al: informing design practices for explainable Al user experiences. CHI 2020
Ehsan et al. (2021). Operationalizing human-centered perspectives in explainable Al. CHI 2021 EA



Explainability as means to many ends

- H -

Account

ability

Understanding Al




HCXAI

HUMAN-CENTERED EXPLAINABLE Al

Why is explainable Al challenging?

- Exposing algorithmic processes does not guarantee human understanding
- Understanding is multi-faceted
- Understanding may require information beyond algorithmic processes

- Challenges to support many ends of explainability
- No one-fits-all solutions
- Empirical results are still inconclusive in many cases
- Different end-goals/use cases are not accounted for when developing algorithms

- Current XAl paradigms may not be all compatible with human cognitive
processes to seek and consume explanations

Liao & Varshney, (2021). Human-centered Explainable Al (XAl): From Algorithms to User Experiences.



At the Intersections: Fairness & Explainability



What happens at the intersection?

Does explainability actually
facilitate fairness?

Understanding Al



Why explainability as human interface for fairness?

e The decisions to apply fairness metrics and bias mitigation may need to be
human-in-the-loop
e \When metrics are not available: e.g., end-users, auditing & governance



Which explanation supports human fairness judgment?

Contrastive -

* [liana’s race is African American.

If it had been Caucasian, she would have been
predicted as NOT likely to reoffend

» Tliana’s age is 18-29.

If it had been older than 39. she would have been
predicted as NOT likely to reoffend

| Defendant: Iliana

* Race: African-American

* Age: 18-29

* Charge degree: Misdemeanor
* Prior convictions: 0

* Has juvenile priors: Yes

Feature importance
The more +s/-s means a person with that
attribute is more/less likely to re-offend.
* Appears next to Iliana’s attributes
Race
*Caucasian (0)
** African-American (+)
Age
+*18-29 (++++)
*30-39(+)

.

Prediction:
Likely to reoffend

__A

-« —

Charge degree:
Number of prior convictions
“\_Has juvenile priors:

Example-based
The training set contamed 10 mdividuals
identical to Iliana

V’ 6 of them reoffend (60%)

Data distribution

The prediction is based on the likelihood of previous)
cases with different attributes re-offended or not.
A * appears next to Iliana’s fearures.
Race

* 40% mn Caucasian race group re-offended

+ * 55% in African-American race group re-

offended

Age

+ *58% in 18-29 age group re-offended

* 49% 1n 30-39 age group re-offended

Charge degree:

Number of prior convictions

Has juvenile priors:

Dodge et al.. Explaining models: an empirical study of how explanations impact fairness judgment. Ul 2019



Evaluation construct: fairness calibration

Statistically
unfair model

9
o
»
Statistically

fairer model

T

-

Condition 1

Condition 2

How the Al made the prediction was fair

1 2 3 4 5

\

Strongly Disagree O O O O O Strongly Agree

How the Al made the prediction was fair

1 2 3 4 5

Strongly Disagree O O O O O Strongly Agree

J

Measurement:
fairness rating
distance between
fairer and unfair
models



Evaluation construct: fairness calibration

Contrastive
explanation
Contrastive
explanation

@
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Example
based XAl
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based XAl
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Feature
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Which explanation supports human fairness judgment?

e All explanations helped people

o 6

= g . :

B distinguish between fairer and

= unfair models

3 * e Local explanations are slightly

S 3 more effective

L . .

e Especially effective when
example contrastive influence data contrastive explanation reveals

Figure 2: Overall mean ratings of fairness, per explanation issues of individual unfairness
type, data process treatment (raw=@, processed=A ), and sam-
ple group (impacted=blue dashed lines, non-impacted=red ‘ Contrastive

solid lines). The lines indicate the 95% confidence intervals. B s ;
* Ihana’s race 1s African American.

If it had been Caucasian, she would have been
predicted as NOT likely to reoffend
» [Ilana’s age is 18-29.
If 1t had been older than 39, she would have been
\_ predicted as NOT likely to reoffend



Open question: Explanation and fairwashing

marital:married
gender:Male

age:27-60
hoursPerWeek:>43
education:bachelors
occupation:professional
occupation:white-collar
capital_gain:>7056
education:masters-doctorate
occupation:sales
education:Prof-school
workclass:FedGov
age:>60

age:<21

age:21-25
education:dropout
age:26-28
education:associates
marital:single
occupation:blue-collar
gender:Female
occupation:other
education:HS-grad
workclass:OtherGov
workclass:selfEmployed
hoursPerWeek:<=43
workclass:private
capital_gain:<=7056

-100

o

marital:married
age:27-60
occupation:white-collar
education:bachelors
capital_gain:>7056
education:masters-doctorate
age:>60
education:associates
workclass:FedGov
education:Prof-school
age:21-25

age:<21
education:dropout
age:26-28
occupation:other
marital:single
occupation:blue-collar
occupation:sales
education:HS-grad
gender:Female
workclass:OtherGov
occupation:professional
workclass:selfEmployed
hoursPerWeek:<=43
capital_gain:<=7056
workclass:private
hoursPerWeek:>43
gender:Male

Aivod;ji et al. Fairwashing: the risk of rationalization. ICML 2019

o

if capital_gain:>7056 then
income>50k

else if marital:single then
income<50k

else if education:HS-grad then
income<50k

else if occupation:other then
income<50k

else if occupation:white-collar then
income>50k

else

income: <50k

How precise is explanation in
revealing model biases,
especially with post-hoc
explanations?

Fairwashing: It is possible to
create explanations that are
highly faithful but disguise
model biases.

Anders et al. Fairwashing explanations with off-manifold detergent. /ICML 2020



Open question: Explanation for fair outcome of human-Al

joint decision-making

explanation

Customer: Ana

Assets score: 65 O . . ‘ ‘
No. Of satisfactory trades: 1 Risk of failing [=]
Mo. since account open: 12 O to repay: high

No. of inquiries: 4 WRONG

Debt percentage: 50%

Loan officer

x

W WRONG

Not rely

Fair outcomes for male v.s. Female customers?



Open question: Explanation for fair outcome of human-Al
joint decision-making

explanation

Rel
Customer: Ana m / WRONG
Assets score: 65 a . e
No. Of satisfactory trades: 1 Risk of failing x =)
Mo. since account open: 12 O to repay: high

No. of inquiries: 4

WRONG
Debt percentage: 50% “ \

Loan officer otrely
Fair outcomes for male v.s. Female customers?

How does adding explanations impact human reliance and joint outcomes?

How does perceived unfairness impact human reliance and joint outcomes?
What if human has their own biases?



Open question: Explanation for fair outcome of human-Al
joint decision-making

explanation

Rel
Customer: Ana m y WRONG
Assets score: 65 O . -
No. Of satisfactory trades: 1 Risk of failing x =)
Mo. since account open: 12 O to repay: high
No. of inquiries: 4 WRONG
Debt percentage: 50%

Loan officer
Fair outcomes for male v.s. Female customers?

Not rely

Some known empirical results:

e Presenting explanations can lead to higher (over) reliance

e Perception of Al unfairness leads to lower reliance, regardless of model correctness

e |In some settings, Al support can exacerbate existing human biases

Schoeffer et al. (2022). On Explanations, Fairness, and Appropriate Reliance in Human-Al Decision-Making. arXiv
Bansal et al. Does the whole exceed its parts? the effect of ai explanations on complementary team performance. CHI2021
Zhang et al. Effect of confidence and explanation on accuracy and trust calibration in Al-assisted decision making.FAccT 2020
Green& Chen. Algorithmic risk assessments can alter human decision-making processes in high-stakes government contexts. CSCW2021



Open question: Explanation for fair recourse

If {debt percentage Why was my loan application rejected?
under 30%} , How can | improve in the future?

you will no longer be
predicted of high risk

Bank customer

Recourse: an actionable set of changes for a person to obtain
a desired outcome from a model

How to define actionability?
Is there actionability disparity for different groups?

Ustun et al. Actionable recourse in linear classification. FAccT 2019
Barocas et al. The hidden assumptions behind counterfactual explanations and principal reasons. FAccT2020
Karimi et al (2021). A survey of algorithmic recourse: contrastive explanations and consequential recommendations. ACM Computing Surveys (CSUR).



Fairness of explanations: Disparities in explanation quality

Actual Model

o Time of diagnosis
e Hospital name
= Zip code

4

L 500

¢ &

Right Explanation

e Time of diagnosis
e Hospital name

—— Doctor Doesn’t Trust Better Outcomes
Explanation indicates Health decisions are
model is relying on not based on

e Zip code ) L spurious features ) L untrustworthy model )
o
- D o ca
Wrong Explanation > Doctor Trusts Worse Outcomes
e Fever Explanation indicates Health decisions are
e Heart Rate model is relying on based on
e Blood Pressure ) sensible features L untrustworthy model )

LIME | SHAP | SmoothGrad | IntGrad | VanillaGrad | Maple
German Credit | LR | 0.424 | 0.008 10 0.008 10 0.905
Student Performance | IR | 10 | 0.421 0 0.421 10 10
COMPAS IR | 0841 | 0.151 ) 0.131 1.0 0.401
(a) Ground truth — 2/18 significant
LIME | SHAP | SmoothGrad | IntGrad | VanillaGrad | Maple
N —_ IR | 0.032 | 0.056 0.032 0056 0.032 0.421
SRR NN | 0421 | 0421 0.690 0.421 0.310 0.548
P IR | 0691 | 0548 0.690 0549 0.690 0.690
entrerlormance "IN 0,056 | 0.016 0.056 0.016 0.056 0.031
IR | 0222 | 0.008 0.151 0310 0.151 0.548
COMEAS NN | 0095 | 0.016 0.008 0.016 0.016 0.222
(b) Prediction Gap — 11/36 significant
LIME | SHAP | SmoothGrad | IntGrad | VanillaGrad | Maple
) IR | 0.100 | 0.008 10 0.008 0.690 0.690
German Credit
NN | 0421 | 0222 0.016 0.008 0.016 0.675
SmdentPerh IR | 069 | 0016 10 0.008 0.841 1.0
ucent Ferlormance "ON| 0.690 | 0.016 0917 0.008 0.100 10
LR | 0.007 | 0.008 1.0 0.008 0.158 0.690
COMEAS NN | 0310 | 0.151 10 0222 0.310 0.548
(c) Sparsity — 11/36 significant
LIME | SHAP | SmoothGrad | IntGrad | VanillaGrad | Maple
GermanGredit IR | 0222 | 0.222 0548 10 0.016 1.0
NN | 0.690 | 0.100 0.056 0310 0.100 0.841
St IR | 0690 | 0.690 0548 0.690 0.310 1.0
udent Ferlormance. Ty 70,310 | 0310 0.690 0.056 0.056 0.841
CONPAS IR | 0421 | 0222 0.222 0222 0.008 0.841
NN | 0310 | 0.008 0.100 0.008 0.008 0.690
(d) Stability — 5/36 significant
LIME | SHAP | SmoothGrad | IntGrad | VanillaGrad | Maple
German Credit IR | 0016 | 1.0 1.0 10 1.0 0.690
NN | 0548 | 1.0 1.0 0341 .0 .0
IR | 0421 | 10 1.0 1.0 1.0 1.0
Student Performance -5 66515548 0.341 0222 0.690 10
COMPAS LR | 0310 | 0672 1.0 1.0 1.0 0.841
NN [ 0151 | 1.0 1.0 0.690 .0 0.548

(e) Consistency — 1/36 significant

Dai, et al.. Fairness via Explanation Quality: Evaluating Disparities in the Quality of Post hoc Explanations. AIES 2022.
Balagopalan, at al. The Road to Explainability is Paved with Bias: Measuring the Fairness of Explanations. FAccT 2022.




Fairness of explanations: Disparity of experience

Al novices have less performance gain but more illusory
satisfaction

% correctly answered tasks
% -
x
s
-
w
(=
EIB
X =
I
- ]

Timmn af avnlanatine

Decrease task satisfaction for people with personality trait of
low Need for Cognition

People may benefit less when they lack either the ability or motivation
to cognitively engage with XAl

Szymanski et al. Visual, textual or hybrid: the effect of user expertise on different explanations. Ul 2021
Ghai et al. Explainable active learning (xal) toward ai explanations as interfaces for machine teachers. CSCW 2021
Liao & Varshney, (2021). Human-centered explainable ai (xai): From algorithms to user experiences.



Open questions: explainability and fairness

e How to ensure explanation faithfulness for fairness?

e How to ensure fair explainability?

e \What are the implications for fair human-Al joint work and what are
the best practices?

e How to cope with disparities created by explainability?



