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Objectives

● Motivate study of “fairness” in machine learning
● Overview of four topics

○ fairness, privacy, robustness and explainability
● Highlight their intersections 

○ Why think about these topics together?
■ What new opportunities and challenges arise?

○ Open research questions
● Learning in context

○ Each method has its own scope and limitations
○ “Fair” ML work not only approach to mitigating AI harm



Participation

Join us in the Zoom meeting

Type your questions in the chat; we will address them at the end of the talk

We will attempt to monitor the RocketChat as well :)



Scope

Algorithmic fairness: 

technical approaches to mitigating 
algorithmic discrimination

Other approaches:

Investigative journalism, auditing

Policy making and advocacy

Community organizing

Not a problem to be “solved” by Comp. Sci. alone

Selbst, A.D., Boyd, D., Friedler, S.A., Venkatasubramanian, S., Vertesi, J., 2019. Fairness and Abstraction in Sociotechnical Systems
Abebe, R., Barocas, S., Kleinberg, J., Levy, K., Raghavan, M., Robinson, D.G., 2020. Roles for Computing in Social Change.
Gebru, T., Denton, E. 2021 NeurIPS Tutorial: Beyond Fairness in Machine Learning
Ndebele, L., 2022 Social media companies urged to block hate speech linked to Tigray conflict.
Mahoozi, S., 2022. Mahsa Amini death: facial recognition to hunt hijab rebels in Iran
Barocas, S., Biega, A.J., Fish, B., Niklas, J., Stark, L., 2020. When not to design, build, or deploy



Why is algorithmic fairness challenging?

Subjective

Many formulations, which may not be compatible

Context-specific

 No one-size-fits-all solution

 Many components in ML pipeline

“Spurious” associations due to historical inequities

Limited data

Demographic information often unavailable 

Available data not representative

Available “targets” may not tell whole story

Suresh, H., Guttag, J.V., 2021. A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle
Obermeyer, Z., Powers, B., Vogeli, C., Mullainathan, S., 2019. Dissecting racial bias in an algorithm used to manage the health of populations.



Overview

[15m] Fairness overview

Golnoosh Farnadi

[30m] Privacy overview + Fairness/Privacy

Golnoosh Farnadi

[30m] Robustness overview + Fairness/Robustness

Elliot Creager

[30m] Explainability overview + Fairness/Explainability

Q. Vera Liao

[15m] Q&A 

[30m] Panel

Moderator: Su Lin Blodgett
Panelists: Reza Shokri
           Ferdinando Fioretto
           Amir-Hossein Karimi
           Pratyusha Kalluri
           Elizabeth Anne Watkins



Introduction to Algorithmic Fairness



Why algorithmic discmrination matters?

● Allocation harm: E.g., Amazon Hiring system, COMPAS risk assessment

● Quality of service harm: E.g., gender shades, VMS make women sick

● Stereotyping harm, e.g., Black criminality in predictive policing, gender issues in NLP (in translation)

● Denigration harm, e.g., mislabeling images of Black women as Gorillas, Chatbot Tay for hate speech

● Over and under-representation harm, e.g., images of men in image search results

Solon Barocas, Kate Crawford, Aaron Shapiro, and Hanna Wallach. 2017. The problem with bias: from allocative to representational harms in machine learning.Special Interest Group for Computing, 
Information and Society (SIGCIS)(2017)
Kate Crawford at NeurIPS 2017 Tutorial 



Laws against Discrimination



Running Example
Confusion Matrix

Note gender is assumed to be binary for the sake of simplicity

Scheuerman, M.K., Brubaker, J.R., 2018 Gender is not a Boolean: Towards Designing Algorithms to Understand Complex Human Identities.
Hu, L., Kohler-Hausmann, I., 2020. What’s Sex Got To Do With Fair Machine Learning?
Lu, C., Kay, J., McKee, K., 2022. Subverting machines, fluctuating identities: Re-learning human categorization.



What does fairness in ML mean?

E.g., similar applicants, should have similar probability of receiving positive loan approval

E.g., The probability of receiving positive loan approval should be similar among female and male 
patients

Dwork, Cynthia, et al. "Fairness through awareness." Proceedings of the 3rd innovations in theoretical computer science conference. ACM, 2012.

Individual: measures the impact that discrimination has on the individuals



What does fairness in ML mean?

E.g., similar applicants, should have similar probability of receiving positive loan approval

E.g., The probability of receiving positive loan approval should be similar among female and male 
applicants

Group: measures the impact that the discmrination has on the groups of individuals

Individual: measures the impact that discrimination has on the individuals

Verma, S., & Rubin, J. (2018, May). Fairness definitions explained. In 2018 ieee/acm international workshop on software fairness (fairware) (pp. 1-7). IEEE.



Statistical Fairness Notions

Demographic Parity

equal probability of receiving a positive loan approval for female and male applicants

Calders, T., Kamiran, F., & Pechenizkiy, M. (2009, December). Building classifiers with independency constraints. In 2009 IEEE International Conference on Data Mining Workshops (pp. 13-18). 
IEEE.



Statistical Fairness Notions

Demographic Parity

Equal opportunity  
equal probability of receiving a positive loan approval for female and male applicants

classifier should give similar results to applicants of both genders with actual positive loan 
approval.

Hardt, M., Price, E. and Srebro, N., 2016. Equality of opportunity in supervised learning. In Advances in neural information processing systems (pp. 3315-3323).



Statistical Fairness Notions

Demographic Parity

Equal opportunity  

Equalized odds

equal probability of receiving a positive loan approval for female and male applicants

classifier should give similar results to applicants of both genders with actual positive loan 
approval.

applicants with a rejected loan application and applicants with an accepted loan application 
should have a similar classification, regardless of their gender.

Hardt, M., Price, E. and Srebro, N., 2016. Equality of opportunity in supervised learning. In Advances in neural information processing systems (pp. 3315-3323).



Impossibility of Fairness

Impossibility wrt group and individual notions

Impossibility wrt various group fairness notions

● Independence
● Separation
● Sufficiency

You can only achieve one of these measures: demographic parity, equality 
of odds, and equality of opportunity

Kleinberg, J., Mullainathan, S., & Raghavan, M. (2016). Inherent trade-offs in the fair determination of risk scores. arXiv preprint arXiv:1609.05807.

Friedler, Sorelle A., Carlos Scheidegger, and Suresh Venkatasubramanian. "On the (im) possibility of fairness." arXiv preprint arXiv:1609.07236 (2016).



Causal Notions of Fairness
● Causal fairness notions are based on 

social-legal requirements, e.g., 

● Based on existence of causal 
mechanisms, which are almost never 
observed.

● Construction of causal graph to encode 
assumptions about underlying SCM is 
required

Zhang & Bareinboim. “Fairness in Decision-Making - The Causal Explanation Formula, AAAI, 2018

Nilforoshan, Hamed, et al. "Causal conceptions of fairness and their consequences." International Conference on Machine Learning. PMLR, 2022.

Kusner, M. J., Loftus, J., Russell, C., & Silva, R. (2017). Counterfactual fairness. Advances in neural information processing systems, 30.



How to mitigate algorithmic discrimination in machine 
learning?

Machine Learning Pipeline

Data is unbalanced

Historical discrimination

Encoded of protected attributes

Unfair outcome

Black-box models

No user feedback

Unfair Objective 

Lack of algorithmic design knowledge

Biased loss functions
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Fairness in Pre-Processing: Data De-Biasing 

Kamiran, F., & Calders, T. (2012). Data preprocessing techniques for classification without discrimination. Knowledge and information systems, 33(1), 1-33.

Alabdulmohsin, I., Schrouff, J., & Koyejo, O. (2022). A Reduction to Binary Approach for Debiasing Multiclass Datasets. arXiv preprint arXiv:2205.15860.



Fairness in Pre-Processing: Data Generative Models

E.g., Using Generative Adversarial Networks 
(GANs), Variational Autoencoders, etc.

E.g., Using SCMs (by removing paths from 
sensitive attributes)

Sattigeri, Prasanna, et al. "Fairness GAN: Generating datasets with fairness properties using a generative adversarial network." IBM Journal of Research and Development 63.4/5 (2019): 3-1.

van Breugel, Boris, et al. "Decaf: Generating fair synthetic data using causally-aware generative networks." Advances in Neural Information Processing Systems 34 (2021): 22221-22233.



Fair Representation Learning

Zemel, R., Wu, Y., Swersky, K., Pitassi, T., & Dwork, C. (2013, May). Learning fair representations. In International conference on machine learning (pp. 325-333). PMLR

Goal of Representation 
learning

Preserve Performance: 

Reconstruction term: the 
learned representation should 
resemble the original data

Utility terms: the learned 
representation should predict 
target variable

+ Fairness



Fair Representation Learning: Group Fairness

Louizos, C., Swersky, K., Li, Y., Welling, M., & Zemel, R. (2015). The variational fair autoencoder. arXiv preprint arXiv:1511.00830.

Madras, D., Creager, E., Pitassi, T., & Zemel, R. (2018, July). Learning adversarially fair and transferable representations. In International Conference on Machine Learning (pp. 3384-3393). PMLR.

Fairness

● Balancing the distribution 
among various groups

● Remove sensitive attributes 
(common approach is to use 

deep learning: VAE, adversarial 

learning, or disentangled 

learning)

Locatello, F., Abbati, G., Rainforth, T., Bauer, S., Schölkopf, B., & Bachem, O. (2019). On the fairness of disentangled representations. Advances in Neural Information Processing Systems, 32.



● Similar individuals should map to 
similar distributions.

● Task-specific similarity metric. Ideally 
captures ground truth or society’s best 
approximation

● Many applications: ranking in 
recommender systems, financial risk 
metrics, health metric for treating 
patients, etc.

Fair Representation Learning: Individual Fairness

Dong, Yushun, et al. "Individual fairness for graph neural networks: A ranking based approach." Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data 
Mining. 2021.
Salganik, Rebecca, Fernando Diaz, and Golnoosh Farnadi. "Analyzing the Effect of Sampling in GNNs on Individual Fairness." arXiv preprint arXiv:2209.03904 (2022).

Fairness



How to mitigate algorithmic discrimination in machine 
learning?

Machine Learning Pipeline

Data is unbalanced

Historical discrimination

Encoded of protected attributes

Unfair outcome

Black-box models

No user feedback

Unfair Objective 

Lack of algorithmic design knowledge

Biased loss functions



In-processing techniques

● Supervised learning tasks are often expressed as optimization problems

● The optimization problem: finding the parameters that give the best model 
w.r.t the desired properties

Fairness in another desired property of the learned models



● Not all optimization problems are the same!

● Some problems are computational easy

● Some problems are hard, but behave well (approximation methods work 

well)

● Some problems are hard, but have structure. And we can exploit this 

structure.

Adding fairness can change these properties!

In-processing techniques



In-processing techniques

A. Agarwal, A. Beygelzimer, M. Dudík, J. Langford, and H. Wallach, “A Reductions Approach to Fair Classification,” arXiv.org, 16-Jul-2018. [Online]. Available: https://arxiv.org/abs/1803.02453.

Kamishima, Toshihiro, Shotaro Akaho, and Jun Sakuma. "Fairness-aware learning through regularization approach." 2011 IEEE 11th International Conference on Data Mining Workshops. IEEE, 2011.

Fairness as 

Constrained Optimization

Fairness as

Regularizer

Fairness as

Multi-objective Optimization

Kearns, M., Neel, S., Roth, A., & Wu, Z. S. (2018, July). Preventing fairness gerrymandering: Auditing and learning for subgroup fairness. In International Conference on Machine Learning (pp. 
2564-2572). PMLR.

Mohammadi, K., Sivaraman, A., & Farnadi, G. (2022). FETA: Fairness Enforced Verifying, Training, and Predicting Algorithms for Neural Networks. arXiv preprint arXiv:2206.00553.

Choi, Y., Farnadi, G., Babaki, B., & Van den Broeck, G. (2020, April). Learning fair naive bayes classifiers by discovering and eliminating discrimination patterns. In Proceedings of the AAAI 
Conference on Artificial Intelligence (Vol. 34, No. 06, pp. 10077-10084).



How to mitigate algorithmic discrimination in machine 
learning?
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Unfair outcome
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Unfair Objective 
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Fairness in Post-Processing 

Kamiran, F., Karim, A., & Zhang, X. (2012, December). Decision theory for discrimination-aware classification. In 2012 IEEE 12th International Conference on Data Mining (pp. 924-929). IEEE.

Hardt, M., Price, E. and Srebro, N., 2016. Equality of opportunity in supervised learning. In Advances in neural information processing systems (pp. 3315-3323).



Trade-offs

Inspired by Sanmi Koyejo’s talk on fair representation learning tutorial at NeurIPS 2019



Summary

● No free lunch: Fairness is a socio-technical challenge

● Many aspects of fairness are NOT captured by the statistical measures

● One notion cannot simultaneously satisfy all metrics

● Algorithmic fairness is highly dependent on the fairness notion, and the 

result change by changing the notion of fairness

● We may need to make a trade-off in different contexts



Introduction to Private Learning



Why Privacy matters?

Privacy Regulations

Personal Data: Increasingly more and more devices collect 
and stream data

Warning: a few corporations own the data and they might 
abuse them

dronesInternet, 
social 
media, 
emails

IOT



Differential Privacy

Dwork, Cynthia. "Differential privacy: A survey of results." International conference on theory and applications of models of computation. Springer, Berlin, Heidelberg, 2008.

Laplace mechanism Gaussian mechanism



Properties of DP

Post-processing invariance 

Composability 



Privacy-preserving machine learning 

Privacy settings in ML 
(single data source) 

Privacy settings in ML 
(multiple data sources) 



Empirical Risk Minimization

Empirical Risk Minimization (ERM) is a common paradigm for prediction problems
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Empirical Risk Minimization

Empirical Risk Minimization (ERM) is a common paradigm for prediction problems



What Composition says about Multistage ML Methods?

● How to allocate privacy risk across different 

stages of the machine learning pipeline?

● Basic composition: privacy is additive

● Having k algorithms with 

● Total privacy loss: 

Bassily, Raef, Adam Smith, and Abhradeep Thakurta. "Private empirical risk minimization: Efficient algorithms and tight error bounds." 2014 IEEE 55th annual symposium on foundations of computer 
science. IEEE, 2014.



DP in Deep Learning

● Stochastic Gradient Descent (SGD) is 
a popular method for optimization

● Main idea of DP-SGD: use moments 
accountant to track privacy loss

● Additional components: Gradient 
clipping, Noise addition, data 
augmentation, mini-batching, etc.

Abadi, Martin, et al. "Deep learning with differential privacy." Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016.



Privacy-preserving machine learning 

Privacy settings in ML 
(single data source) 

Privacy settings in ML 
(multiple data sources) 



Secure Multi Party Computation (MPC)

Multiple parties jointly compute

● A function or output
● While their input remains private
● In a distributed fashion

No central entity- distributed setup to preserved privacy

Goldreich, O. (1998). Secure multi-party computation. Manuscript. Preliminary version, 78, 110.



Federated Learning (FL) or Split learning

● FL is a machine learning setting where multiple 
entities (clients) collaborate in solving a machine 
learning problem, under the coordination of a 
central server or service provider. 

● Each client's raw data is stored locally and not 
exchanged or transferred; instead, focused 
updates intended for immediate aggregation are 
used to achieve the learning objective.

Cross-device FL

Cross-silo FL

McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017, April). Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics 
(pp. 1273-1282). PMLR.

Gupta, Otkrist, and Ramesh Raskar. "Distributed learning of deep neural network over multiple agents." Journal of Network and Computer Applications 116 (2018): 1-8.

FL/Split Learning are not private!



Memorization and Overlearning issues of Deep Learning 
Models
● Unintended memorization in DL is:

○ Persistent 
○ Hard-to-avoid issue that can have serious 

consequences
● Overlearning is not a result of overfitting
● Memorization does not only happen in large 

models
● Memorization can happen in various context, 

text, vision, etc.

Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., & Song, D. (2019). The secret sharer: Evaluating and testing unintended memorization in neural networks. In 28th USENIX Security Symposium (USENIX 
Security 19) (pp. 267-284).

Reconstruction attack



Membership attack

The basic membership inference attack: given a data record and black-box access 
to a model, determine if the record was in the model's training dataset. 

Shokri, Reza, et al. "Membership inference attacks against machine learning models." 2017 IEEE symposium on security and privacy (SP). IEEE, 2017.



Summary

● Training does not on its own guarantee privacy 
● Deep learning models memorize sensitive information
● There are various privacy enhancing technologies (PETs)
● Output privacy does not guarantee input privacy 
● DP in ML pipeline is challenging due to its iterative nature 
● Good DP algorithms should generalize since they learn about populations, not 

individuals.
● In Federated learning/split learning, raw data never leave clients devices but it is 

not necessarily make these algorithm private
● Privacy budget is relative to the task



At the Intersections: Fairness & Privacy



Fairness and Privacy: aligned goals

● DP aims at rendering the participation of individuals indistinguishable to an 
observer who accesses the outputs of a computation

● Fairness attempts at equalizing properties of outputs across different 
individuals.  

Privacy and fairness can be viewed as aligned objectives, e.g., Dwork et al, 2021 
shows individual fairness is a generalization of DP.

Dwork, Cynthia, et al. "Fairness through awareness." Proceedings of the 3rd innovations in theoretical computer science conference. ACM, 2012.



Fairness and Privacy: contrastive goals

Privacy and fairness can be viewed as contrastive objectives, e.g., it has been 
observed that the outputs of DP classifiers may create or exacerbate disparate 
impacts among groups of individuals

Bagdasaryan, Eugene, Omid Poursaeed, and Vitaly Shmatikov. "Differential privacy has disparate impact on model accuracy." Advances in neural information processing systems 32 (2019).



DP and Fairness

● The accuracy of the minority group was disproportionately impacted by the 
private training.   

● These  observations  were  validated  on  several  vision and natural 
language processing tasks and in both a centralized  and  federated  
setting.   

● The  size  of  a  protected  group  would  play  a  crucial  role  to the 
exacerbation of the disparate impacts in private training

Abadi, Martin, et al. "Deep learning with differential privacy." Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. 2016.



DP in EMR and Fairness
● Output perturbation: Input norms and 

distance to decision boundary are 
two key characteristics of the data 
connected with exacerbating the 
disparate impacts of private learning 
tasks.

● DP-SGD: The two key characteristics of 
DP-SGD are clipping the gradients 
whose L2 norm exceeds a given bound 
C and perturbing the averaged clipped 
gradients with Gaussian noise.

Tran, Cuong, My Dinh, and Ferdinando Fioretto. "Differentially private empirical risk minimization under the fairness lens." Advances in Neural Information Processing Systems 34 (2021): 
27555-27565.



Federated Learning and Fairness

● Fairness: Resource 
allocation, Quality of service, 
Client selection 
(infrastructure), Incentive, 
etc.

● Personalization with 
Multi-task learning, 
fine-tuning, and 
Meta-learning.

Li, T., Sanjabi, M., Beirami, A., & Smith, V. (2019). Fair resource allocation in federated learning. arXiv preprint arXiv:1905.10497.

Li, T., Hu, S., Beirami, A., & Smith, V. (2021, July). Ditto: Fair and robust federated learning through personalization. In International Conference on Machine Learning (pp. 6357-6368). PMLR.

Fallah, A., Mokhtari, A., & Ozdaglar, A. (2020). Personalized federated learning: A meta-learning approach. arXiv preprint arXiv:2002.07948.

Pentyala, S., Neophytou, N., Nascimento, A., De Cock, M., & Farnadi, G. (2022). PrivFairFL: Privacy-Preserving Group Fairness in Federated Learning. arXiv preprint arXiv:2205.11584.



Fairness and Overlearning issues of DL

● "Overlearning" means that a model trained for a seemingly simple objective 
implicitly learns to recognize attributes and concepts that are 

○ (1) not part of the learning objective
○ (2) sensitive from a privacy or bias perspective.

Song, Congzheng, and Vitaly Shmatikov. "Overlearning reveals sensitive attributes." arXiv preprint arXiv:1905.11742 (2019).



Membership Attacks and Fairness

● Fairness comes at the cost of privacy, and this cost is not 
distributed equally

● The information leakage of fair models increases 
significantly on the unprivileged subgroups, which are the 
ones for whom we need fair learning. 

● The more biased the training data is, the higher the privacy 
cost of achieving fairness for the unprivileged subgroups 
will be. 

Kulynych, Bogdan, Mohammad Yaghini, Giovanni Cherubin, Michael Veale, and Carmela Troncoso. "Disparate vulnerability to membership inference attacks." arXiv preprint arXiv:1906.00389 (2019).

Chang, H., & Shokri, R. (2021, September). On the privacy risks of algorithmic fairness. In 2021 IEEE European Symposium on Security and Privacy (EuroS&P) (pp. 292-303). IEEE.



Fairness & Privacy Properties

Dwork, Cynthia, and Christina Ilvento. "Individual fairness under composition." Proceedings of Fairness, Accountability, Transparency in Machine Learning (2018).

Dwork, C., & Ilvento, C. (2018). Group fairness under composition. In Proceedings of the 2018 Conference on Fairness, Accountability, and Transparency (FAT* 2018).

Post-processing invariance?  
Composability?



Open challenges

● Explore various group fairness techniques and their relations to DP and other 
PPTs

● Explore data pre-processing techniques that combine privacy and fairness
● Combine various PPTs, e.g., MPC+FL+DP, may help performance, privacy, 

fairness tradeoffs
● Explore new application domains at the intersection of privacy and fairness
● Analyze fairness and privacy in sequential decision making models
● Analyze fairness and privacy under composition
● …



Introduction to Robust Learning



What does it mean to be “robust”?

Robustness can have different meanings in different contexts

Recall learning theory: models have bounded error when data are i.i.d.

i.i.d. = independent and identically distributed

For “robust” performance, go beyond in-distribution generalization



Taxonomy of model failures

To understand “robustness”, contrast with 
brittleness of models in practice

Overfitting/underfitting (handled by 
standard learning theory)

Adversarial examples & security threats

Shortcut learning

Simplicity bias

Algorithmic discrimination…? 

Shah, H., Tamuly, K., Raghunathan, A., Jain, P., Netrapalli, P., 2020. The Pitfalls of Simplicity Bias in Neural Networks.
Sagawa, S., Raghunathan, A., Koh, P.W., Liang, P., 2020. An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., Wichmann, F.A., 2020. Shortcut Learning in Deep Neural Networks
D’Amour, A., Heller, K., et al., 2020. Underspecification Presents Challenges for Credibility in Modern Machine Learning.



Learning theory provides a “spec” for 
the model: in-distribution generalization

To learn a “robust” model, we need to 
define a new spec

Out-of-distribution (OOD) generalization

What family of distributions should my 
model handle?

Incorporating “robustness” into learning algorithms



Characterizing distribution shift

Covariate shift

Label noise

Concept shift

Subpopulation shift

Intervention (on causal graph)

Peters, J., Bühlmann, P., Meinshausen, N., 2015. Causal inference using invariant prediction: identification and confidence intervals.



Adversarial Robustness

Adversarial examples - small worst-case 
perturbations in feature space

Attacks - white box, black box, …

Adversarial training - train w/ adv. Examples

I.e. train under family of nearby distributions

Goodfellow, I.J., Shlens, J., Szegedy, C., 2015. Explaining and Harnessing Adversarial Examples.
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A., 2019. Towards Deep Learning Models Resistant to Adversarial Attacks.



Adversarial examples can be used for model evasion

Other security concerns

Model inversion/data extraction

Data poisoning

Robustness w.r.t. a specific threat model

Adversaries “in the wild”

Fredrikson, M., Jha, S., Ristenpart, T., 2015. Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures
Geiping, J., Fowl, L., Huang, W.R., Czaja, W., Taylor, G., Moeller, M., Goldstein, T., 2021. Witches’ Brew: Industrial Scale Data Poisoning via Gradient Matching.
Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., Roberts, A., Brown, T., Song, D., Erlingsson, U., Oprea, A., Raffel, C., 2021. Extracting Training Data from 
Large Language Models.



Distributionally Robust Optimization

Minimize a worst-case loss over “nearby” distributions

How to optimize for Q when we have samples from P?

Importance weighting

Group DRO learns just a few importance weights 
shared by example belonging to the same group

Duchi, J., Glynn, P., Namkoong, H., 2018. Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach.
Oren, Y., Sagawa, S., Hashimoto, T.B., Liang, P., 2019. Distributionally Robust Language Modeling
Sagawa, S., Koh, P.W., Hashimoto, T.B., Liang, P., 2020. Distributionally Robust Neural Networks for Group Shifts



Transfer Learning and Domain Adaptation

Can knowledge from a related task be leveraged for the task at hand?

Source task => Target task

Many flavours: multi-task learning, meta learning, few shot…

Domain adaptation: train using (Xs, Ys) ~ Psource and Xt ~ Ptarget

Methods: domain-invariant representation learning

min_f E[ Loss(f(Xs), Ys) ] s.t. f(Xs) ≈ f(Xt)

Enforce f(Xs) ≈ f(Xt) using kernels (e.g. MMD) or adversarial training

Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B., 2008. Covariate Shift by Kernel Mean Matching
Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., 2015. Domain-Adversarial Neural Networks.
Edwards, H., Storkey, A., 2016. Censoring Representations with an Adversary.



Domain Generalization

Train on data that varies p(x,y|e) across 
“domains” (a.k.a “environments”) e

Learn “core” or “invariant” features

Requires known training set partitions, i.e. 
environment labels

Require OOD generalization to 
never-before-seen test environment

Typically assume P(Y|X) fixed…P(Y), P(X) may 
change

Train: cows on grass             Test: cows on beaches

Beery, Van Horn, and Perona, Recognition in terra incognita, ECCV 2018
Gulrajani and Lopez-Paz, In search of lost domain generalization, ICLR 2021
Robert Geirhos, et al., Shortcut Learning in Deep Neural Networks, Nature Machine Intelligence vol. 2, 2021



Invariant Risk Minimization
ERM

Per-environment risk

IRM:  Learn representation that yields Bayes 
optimal classifier in every training environment 

I.e. minimize risk subject to the Environment 
Invariance Constraint (EIC)

IRMv1 regularizer is a differentiable proxy for EIC

Peters, J., Bühlmann, P., Meinshausen, N., 2015. Causal inference using invariant prediction
Arjovsky et al 2019. Invariant Risk Minimization.
Krueger, D., et al 2021. Out-of-Distribution Generalization via Risk Extrapolation (REx).

Y = low digit ← | → Y = high digit

Train env 1

Train env 2

Test env

REx: Optimize empirical risk s.t. low 
variance on per-environment risks

Similar to 
(partial) 
causal 
discovery



Practical Concerns

i.i.d assumption

(Xtrain, Ytrain) ~ P and (Xtest, Ytest) ~ P

justifies train/validation/test splits

By relaxing the i.i.d. assumption, we break 
model selection/hyperparameter tuning!

Under fair model selection criteria, ERM 
(standard training) is hard to beat

If OOD/target data available, adapting 
ERM features may suffice

Gulrajani, I., Lopez-Paz, D., 2020. In Search of Lost Domain Generalization.
Menon, A.K., Jayasumana, S., Rawat, A.S., Jain, H., Veit, A., Kumar, S., 2021. Long-tail Learning via Logit Adjustment
Kirichenko, P., Izmailov, P., Wilson, A.G., 2022. Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations.



At the Intersections: Fairness & Robustness



Fairness & Robustness: Learning Objectives

Under what settings are fair learning and robust 
learning equivalent?

What lessons can be exchanged between the 
research areas?

Methods

Data

Articulating assumptions + limitations 

Creager, E., Jacobsen, J.-H., Zemel, R., 2021. Environment Inference for Invariant Learning



Lessons from robustness to fairness

Formal framework for characterizing distribution shift and model failure

“My data is biased; let’s collect more”

                                ↓

“My model needs to handle covariate shift; assuming fixed P(Y|X), let’s 
improve coverage over P(X)”

Methods for improving OOD generalization



Algorithmic fairness as OOD generalization

Caveat: not the whole story!

Technical fairness approaches limited in scope

Task and target variable definition matter a lot

However, some unfairness comes from failure to 
generalize OOD

Recall: subpopulation shift

Shankar, S., Halpern, Y., Breck, E., Atwood, J., Wilson, J., Sculley, D., 2017. No Classification without Representation: Assessing Geodiversity Issues in Open Data Sets for the 
Developing World.



Representation learning approaches

Neural net approaches to statistical fairness 
influenced by domain adaptation

E.g. adversarial training with auxiliary labels

“Fair” representations can transfer to new tasks

Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., 2015. Domain-Adversarial Neural Networks.
Edwards, H., Storkey, A., 2016. Censoring Representations with an Adversary.
Louizos, C., Swersky, K., Li, Y., Welling, M., Zemel, R., 2017. The Variational Fair Autoencoder.
Madras, D., Creager, E., Pitassi, T., Zemel, R., 2018. Learning Adversarially Fair and Transferable Representations.



Fairness via robustness to perturbations (i.e. smoothness)

Robustness methods can encourage smoothness of model’s predictive fn w.r.t.

● Pairwise similarity metric for individual fairness
○ e.g. distributionally robust optimization or adversarial robustness

● Subpopulation shift for group fairness
○ e.g. (group) distributionally robust optimization

● Feature-level perturbation known to reveal model sensitivity (e.g. gendered pronoun 
swap in text)
○ e.g. “counterfactual” data augmentation

Yurochkin, M., Bower, A., Sun, Y., 2020. Training individually fair ML models with Sensitive Subspace Robustness.
Yeom, S., Fredrikson, M., 2020. Individual Fairness Revisited: Transferring Techniques from Adversarial Robustness
Hashimoto, T.B., Srivastava, M., Namkoong, H., Liang, P., 2018. Fairness Without Demographics in Repeated Loss Minimization.
Garg, S., Perot, V., Limtiaco, N., Taly, A., Chi, E.H., Beutel, A., 2019. Counterfactual Fairness in Text Classification through Robustness
Rudinger, R., Naradowsky, J., Leonard, B., Van Durme, B., 2018. Gender Bias in Coreference Resolution.



Fairness via robustness to perturbations (i.e. smoothness)

Robustness methods can encourage smoothness of model’s predictive fn w.r.t.

● Pairwise similarity metric for individual fairness
○ e.g. distributionally robust optimization or adversarial robustness

● Subpopulation shift for group fairness
○ e.g. (group) distributionally robust optimization

● Feature-level perturbation known to reveal model sensitivity (e.g. gendered pronoun 
swap in text)
○ e.g. “counterfactual” data augmentation

Yurochkin, M., Bower, A., Sun, Y., 2020. Training individually fair ML models with Sensitive Subspace Robustness.
Yeom, S., Fredrikson, M., 2020. Individual Fairness Revisited: Transferring Techniques from Adversarial Robustness
Hashimoto, T.B., Srivastava, M., Namkoong, H., Liang, P., 2018. Fairness Without Demographics in Repeated Loss Minimization.
Garg, S., Perot, V., Limtiaco, N., Taly, A., Chi, E.H., Beutel, A., 2019. Counterfactual Fairness in Text Classification through Robustness
Rudinger, R., Naradowsky, J., Leonard, B., Van Durme, B., 2018. Gender Bias in Coreference Resolution.



Min-max fairness

Recall tradeoff: matching performance across groups vs overall 
accuracy

minf E[Loss(f(X),Y)] s.t. E[Loss(f(X),Y)|A=0] = E[Loss(f(X),Y)|A=1]

may increase loss for non-worst-off groups…”unnecessary harm”?

Alternative fairness notion:

minf maxa E[Loss(f(X),Y)|A=a]

(compatible with distributionally robust optimization)

Can also consider pareto front over {E[Loss(f(X),Y)|A=a]}

Martinez, N., Bertran, M., Sapiro, G., 2020. Minimax Pareto Fairness: A Multi Objective Perspective.
Diana, E., Gill, W., Kearns, M., Kenthapadi, K., Roth, A., 2021. Minimax Group Fairness: Algorithms and Experiments.



Lessons from fairness to robustness

Access to auxiliary labels limited in practice

Fairness without demographics

Multiaccuracy/multicalibration

consider “computationally identifiable groups”

Adversarially reweighted learning

Environment Inference for Invariant Learning

Hébert-Johnson, Ú., Kim, M.P., Reingold, O., Rothblum, G.N., 2018. Calibration for the (Computationally-Identifiable) Masses.
Kim, M.P., Ghorbani, A., Zou, J., 2018. Multiaccuracy: Black-Box Post-Processing for Fairness in Classification.
Lahoti, P., Beutel, A., Chen, J., Lee, K., Prost, F., Thain, N., Wang, X., Chi, E.H., 2020. Fairness without Demographics through Adversarially Reweighted Learning.
Creager, E., Jacobsen, J.-H., Zemel, R., 2021. Environment Inference for Invariant Learning



Causality-inspired methods

Graphs encode assumptions about dist’ns

Fairness on confounded data 

⇔

Independence on unconfounded data

Unconfounded data not available

emulate via importance weights

Schoelkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J., 2012. On Causal and Anticausal Learning.
Veitch, V., D’Amour, A., Yadlowsky, S., Eisenstein, J., 2021. Counterfactual Invariance to Spurious Correlations: Why and How to Pass Stress Tests.
Makar, M., D’Amour, A., 2022. Fairness and robustness in anti-causal prediction.

Confounded (training) data: The 
main label Y and auxiliary label V 
generate input X, but Y only 
affects X through X*

PC = P(X|X*,V)P(X*|Y)P(Y)P(V|Y)

Unconfounded data: Spurious 
correlation between Y and V is 
removed

PU = P(X|X*,V)P(X*|Y)P(Y)P(V)



Fair representations can fail under 
distribution shifts

Fair learning + DRO helps

Mostly simulated studies

Noisy observations

Sensitive attributes

Targets (esp. in risk assessment)

Fair and robust learning

Lechner, T., Ben-David, S., Agarwal, S., Ananthakrishnan, N., 2021. Impossibility results for fair representations.
Rezaei, A., Liu, A., Memarrast, O., Ziebart, B., 2021. Robust Fairness under Covariate Shift.
Singh, H., Singh, R., Mhasawade, V., Chunara, R., 2021. Fairness Violations and Mitigation under Covariate Shift
Fogliato, R., Chouldechova, A., G’Sell, M., 2020. Fairness Evaluation in Presence of Biased Noisy Labels
Wang, S., Guo, W., Narasimhan, H., Cotter, A., Gupta, M., Jordan, M., 2020. Robust Optimization for Fairness with Noisy Protected Groups
Schrouff, J., Harris, N., Koyejo, O., Alabdulmohsin, I., Schnider, E., Opsahl-Ong, K., Brown, A., Roy, S., Mincu, D., Chen, C., Dieng, A., Liu, Y., Natarajan, V., Karthikesalingam, A., 
Heller, K., Chiappa, S., D’Amour, A., 2022 .Diagnosing failures of fairness transfer across distribution shift in real-world medical settings



Fairness/robustness: challenges and open questions

How to characterize and measure distribution shifts relevant to algorithmic 
discrimination?

Can we formulate causal models for data bias in practical settings?

How to ensure statistically fair models are robust to distribution shift?



Introduction to AI Explainability



Why explainable AI (XAI)? 

explainability/interpretability/intelligibility/…
= making AI understandable by people



AI is increasingly used to assist humans and impact many 
aspects of human lives 



Human scrutiny and interventions are critical

Understanding AI 

Usability TrustCompete
nce Safety Fairness Account

abilityPrivacy

Explainability as means to many ends



Why is explainable AI challenging?

First, not all algorithms are directly explainable 

Explainability-performance 
tradeoff?
Only in some settings

(Gunning, 2016)



Directly 
explainable model

Post-hoc 
explainability

XAI

● Linear model
● Rule-based model
● Decision-tree

● General additive models
● General rule models
● …

Breaking the 
“explainability- 
performance trade-off”

Caruana et al. Intelligible Models for Healthcare: Predicting Pneumonia Risk and Hospital 30-day Readmission. KDD 2015
Wei et al. Generalized Linear Rule Models. ICML 2019 



Directly 
explainable model

Post-hoc 
explainability

XAI

Explaining 
the model 

(global)

Explaining 
a decision

Inspecting 
counterfact

ual

Guidotti et al. (2018). A survey of methods for explaining black box models. ACM computing surveys (CSUR) .



Use case: a decision-support ML for loan application approval



Directly 
explainable model

Post-hoc 
explainability

XAI

Explaining 
the model 

(global)



Post-hoc global explanation: knowledge distillation/ 
approximation



Example global explanation: rule sets 

Lakkaraju et al.,Faithful and customizable explanations of black box models. AIES 2019.



Directly 
explainable model

Post-hoc 
explainability

XAI

Explaining 
a decision

Guidotti et al. (2018). A survey of methods for explaining black box models. ACM computing surveys (CSUR) .



Explaining a decision by feature: feature contribution



Example post-hoc local explanation: LIME

Ribeiro et al. Why should i trust you?" Explaining the predictions of any classifier. KDD 2016

tabular image texts



Explaining a decision by examples

Chen et al. This looks like that: deep learning for interpretable image recognition. NeurIPS 2019
Gurumoorthy et al. Efficient Data Representation by Selecting Prototypes with Importance Weights. ICDM 2019 



Directly 
explainable model

Post-hoc 
explainability

XAI

Inspecting 
counterfact

ual



Inspecting counterfactual: contrastive features

Dhurandhar, et al. Explanations based on the missing: Towards contrastive explanations with pertinent negatives.NeurIPS 2018 



Inspecting counterfactual: counterfactual examples

Mothilal et al. Explaining machine learning classifiers through diverse counterfactual explanations. FAccT 2020
 



Why is explainable AI challenging?

- Exposing algorithmic processes does not guarantee human understanding
- Understanding is multi-faceted
- Understanding may require information beyond algorithmic processes

- Challenges to support many ends of explainability

Liao & Varshney, (2021). Human-centered Explainable AI (XAI): From Algorithms to User Experiences. 
Liao et al. (2020). Questioning the AI: informing design practices for explainable AI user experiences. CHI 2020

Ehsan et al. (2021). Operationalizing human-centered perspectives in explainable AI. CHI 2021 EA

 



Understanding AI 

Usability TrustCompete
nce Safety Fairness Account

abilityPrivacy

Explainability as means to many ends



Why is explainable AI challenging?

- Exposing algorithmic processes does not guarantee human understanding
- Understanding is multi-faceted
- Understanding may require information beyond algorithmic processes

- Challenges to support many ends of explainability
- No one-fits-all solutions
- Empirical results are still inconclusive in many cases
- Different end-goals/use cases are not accounted for when developing algorithms

- Current XAI paradigms may not be all compatible with human cognitive 
processes to seek and consume explanations 

Liao & Varshney, (2021). Human-centered Explainable AI (XAI): From Algorithms to User Experiences. 
 



At the Intersections: Fairness & Explainability



Understanding AI 

Fairness

What happens at the intersection?

Does explainability actually 
facilitate fairness?



Why explainability as human interface for fairness?

● The decisions to apply fairness metrics and bias mitigation may need to be 
human-in-the-loop

● When metrics are not available: e.g., end-users, auditing & governance



Which explanation supports human fairness judgment? 

Dodge et al.. Explaining models: an empirical study of how explanations impact fairness judgment. IUI 2019 

 



Evaluation construct: fairness calibration

Condition 1

Condition 2

Statistically 
unfair model

Statistically 
fairer model

Measurement: 
fairness rating 
distance between 
fairer and unfair 
models



Evaluation construct: fairness calibration

Contrastive 
explanation

Contrastive 
explanation

Example 
based XAI

Example 
based XAI

Feature 
influence

Feature 
influence

Data 
distribution

Data 
distribution



Which explanation supports human fairness judgment? 

example contrastive influence data

● All explanations helped people 
distinguish between fairer and 
unfair models

● Local explanations are slightly 
more effective

● Especially effective when 
contrastive explanation reveals 
issues of individual unfairness 



Open question: Explanation and fairwashing

How precise is explanation in 
revealing model biases, 
especially with post-hoc 
explanations?

Fairwashing: It is possible to 
create explanations that are 
highly faithful but disguise 
model biases.

Aïvodji et al. Fairwashing: the risk of rationalization. ICML 2019
Anders et al. Fairwashing explanations with off-manifold detergent.  ICML 2020



Open question: Explanation for fair outcome of human-AI 
joint decision-making 

Rely

Not relyLoan officer

Fair outcomes for male v.s. Female customers?

explanation



Open question: Explanation for fair outcome of human-AI 
joint decision-making 

Rely

Not rely

How does adding explanations impact human reliance and joint outcomes?
How does perceived unfairness impact human reliance and joint outcomes?
What if human has their own biases?

Loan officer

Fair outcomes for male v.s. Female customers?

explanation



Rely

Not rely

Some known empirical results:
● Presenting explanations can lead to higher (over) reliance
● Perception of AI unfairness leads to lower reliance, regardless of model correctness 
● In some settings, AI support can exacerbate existing human biases 

Loan officer

Fair outcomes for male v.s. Female customers?

Schoeffer et al.  (2022). On Explanations, Fairness, and Appropriate Reliance in Human-AI Decision-Making. arXiv 
Bansal et al. Does the whole exceed its parts? the effect of ai explanations on complementary team performance. CHI2021

Zhang et al. Effect of confidence and explanation on accuracy and trust calibration in AI-assisted decision making.FAccT 2020
Green& Chen. Algorithmic risk assessments can alter human decision-making processes in high-stakes government contexts. CSCW2021

Open question: Explanation for fair outcome of human-AI 
joint decision-making 

explanation



Open question: Explanation for fair recourse

Recourse: an actionable set of changes for a person to obtain 
a desired outcome from a model 

Ustun et al. Actionable recourse in linear classification. FAccT 2019
Barocas et al. The hidden assumptions behind counterfactual explanations and principal reasons. FAccT2020

Karimi et al (2021). A survey of algorithmic recourse: contrastive explanations and consequential recommendations. ACM Computing Surveys (CSUR).

How to define actionability?
Is there actionability disparity for different groups?



Fairness of explanations: Disparities in explanation quality

Dai, et al.. Fairness via Explanation Quality: Evaluating Disparities in the Quality of Post hoc Explanations. AIES 2022.
Balagopalan, at al. The Road to Explainability is Paved with Bias: Measuring the Fairness of Explanations. FAccT 2022.



Fairness of explanations: Disparity of experience

AI novices have less performance gain but more illusory 
satisfaction 

Decrease task satisfaction for people with personality trait of 
low Need for Cognition

Szymanski et al. Visual, textual or hybrid: the effect of user expertise on different explanations. IUI 2021
Ghai et al. Explainable active learning (xal) toward ai explanations as interfaces for machine teachers. CSCW 2021
Liao & Varshney, (2021). Human-centered explainable ai (xai): From algorithms to user experiences. 

People may benefit less when they lack either the ability or motivation 
to cognitively engage with XAI



Open questions: explainability and fairness

● How to ensure explanation faithfulness for fairness?
● How to ensure fair explainability?
● What are the implications for fair human-AI joint work and what are 

the best practices?
● How to cope with disparities created by explainability?


