CSC236 winter 2020, week 7: Iterative correctness

Recommended supplementary reading: Chapter 2 Vassos course notes

Colin Morris
colin@cs.toronto.edu
http://www.cs.toronto.edu/~colin/236/W20/

- Al results on MarkUs
- A2[i-1] posted

February 24, 2020

Outline

Correctness proof pitfalls
Actual vs. expected behaviour Level of detail / justification

Finishing recursive correctness

Iterative correctness

isuniform (quiz 6, version 2)

```
def isuniform(A):
    """Pre: A is a list
    Post: Return True if and only if every element in A is the same.
    """
    if len(A) <= 1:
        return True
    return A[0] == A[1] and isuniform(A[1:])
```


What's wrong with this proof?

```
def isuniform(A):
    """Pre: A is a list
    Post: Return True if and only if every element in A is the same.
    """
    if len(A) <= 1:
        return True
    return A[0] == A[1] and isuniform(A [1:])
```

$P(n)$: for all lists A of length $n \operatorname{Pre}(A) \Longrightarrow$ isuniform terminates and satisfies $\operatorname{Post}(A)$.
Basis: Let A be a list of length 0 or 1 . By lines 5-6, isuniform returns True, so $P(0) \wedge P(1)$.
IS: Let $n \in \mathbb{N}^{+}$and assume $P(n)$. WTS: $P(n+1)$. Let A be a list of length $n+1$, and assume $\operatorname{Pre}(A)$.
Case 1: $A[0] \neq A[1]$. Then by line 7 , we return False, so $\operatorname{Post}(A)$.
Case 2: $A[0]=A[1]$. By IH , isuniform (A[1:]) returns True or False.
Case 2a: isuniform(A[1:]) is True. Then line 7 returns (True and True), which evaluates to True, so $\operatorname{Post}(A)$ holds.

Case 2b: isuniform(A[1:]) is False. Then line 7 returns (True and False), which evaluates to False, so $\operatorname{Post}(A)$ holds.
$\operatorname{Post}(A)$ holds in all cases, so $P(n+1)$.

Actual vs. expected

For any input, your proof should address:

1. What a function should return on that input in order to satisfy the postcondition
2. What our function actually returns given that input

Aren't these the same thing?

- This is exactly what you need to prove.

Actual vs. expected

Cases are commonly patterned on one or the other.

- Case 1: My function returns X
- here's why X is the right answer in this case
- Case 2: My function returns Y
- here's why Y is the right answer in this case

Or

- Case 1: The correct answer is X
- here's why my function actually returns X on these inputs
- Case 2: The correct answer is Y

Actual \rightarrow Expected

```
def isuniform(A):
    """Pre: A is a list
    Post: Return True if and only if every element in A is the same.
    " " "
    if len(A) <= 1:
        return True
    return A[0] == A[1] and isuniform(A[1:])
```

Assume our function is correct for inputs of size n for some $n \in \mathbb{N}^{+}$. Let A be a list of length $n+1$, and assume $\operatorname{Pre}(A)$. Then isuniform (A) reaches line 7 and returns (A[0] =A[1] and isuniform (A[1:])). By the IH, isuniform (A[1:]) $\Longleftrightarrow A[1:]$ is uniform.

Case 1: We return True. Then, every element in $A[1:]$ is equal to $A[1]$. Since $A[0]=A[1]$, every element in A is the same.
Case 2: We return False. Then by line 7, at least one of the following is true:

- $A[0] \neq A[1]$
- $A[1$:] is non-uniform

In either case, this means A is not uniform.

Expected \rightarrow Actual

```
def isuniform(A):
    """Pre: A is a list
    Post: Return True if and only if every element in A is the same.
    " ""
    if len(A) <= 1:
        return True
    return A[0] == A[1] and isuniform(A[1:])
```

Assume our function is correct for inputs of size n for some $n \in \mathbb{N}^{+}$. Let A be a list of length $n+1$, and assume $\operatorname{Pre}(A)$. Then isuniform (A) reaches line 7 and returns (A[0] =A[1] and isuniform (A[1:])). By the IH, isuniform (A[1:]) $\Longleftrightarrow A[1:]$ is uniform.

Case 1: A is uniform. Then it follows that $A[0]=A[1]$ and that any sublist of A, including $A[1:]$ is uniform. Thus we return True.
Case 2: A is not uniform. Then let $i \in \mathbb{N}$ be the smallest index such that $A[i] \neq 0$ (such an i must exist, otherwise A would uniformly consist of the element $A[0]$).

Case 2a: $i=1$. Then $A[0] \neq A[1]$ and we return False.
Case $2 \mathrm{~b}: ~ i>1$. Then $A[1:]$ is non-uniform, since it contains $A[i]$, and $A[1:][0]=A[0] \neq A[i]$. So we return False.
In either case, we return False, as required.

Level of detail / justification

At this stage, your induction proofs can be a bit less formal. e.g.

- Don't need to define a predicate
- Can omit justification of some 'obvious' facts
- "A is a list of natural numbers, therefore $A[1:]$ is also a list of natural numbers"
- Don't need to specify domain of variables if it's clear from context
- "Let $i \in \mathbb{N}$ be the index of. .." \rightarrow "Let i be the index of..."
- For convenience, we can use the notation \mathbb{N}^{*} to denote the set of lists of natural numbers (and similarly for $\mathbb{Z}^{*}, \mathbb{R}^{*}$, etc.).
(But note that taking off the training wheels \rightarrow more speed, but easier to wipe out)

isuniform sample solution

The bare minimum.

```
def isuniform(A):
    """Pre: A is a list
    Post: Return True if and only if every element in A is the same.
    """
    if len(A) <= 1:
        return True
    return A[0] == A[1] and isuniform(A [1:])
```

Basis: any list of length 0 or 1 is uniform, and our function returns True for such lists IS: assume that our function is correct on inputs of size $n, n>0$.
Let A be a list of length $n+1$
Case 1: A is uniform. It follows that $A[0]=A[1]$ and that $A[1:]$ is uniform. So our function returns True.
Case 2: A is not uniform. Then by definition, there exists an index i such that $A[0] \neq A[i]$. Let i^{\prime} be the smallest such index. If $i^{\prime}=1$, then we return False . If $i^{\prime}>1$, then it follows that $A[1:]$ is not uniform . Thus we return False on line 7.

isuniform sample solution

The bare minimum.

Basis: any list of length 0 or 1 is uniform, and our function returns True for such lists IS: assume that our function is correct on inputs of size $n, n>0$.
Let A be a list of length $n+1$

Case 1: A is uniform. It follows that $A[0]=A[1]$ and that $A[1:]$ uniform. So our function returns True.
Case 2: A is not uniform. Then by definition, there exists an index i such that $A[0] \neq A[i]$
. Let i^{\prime} be the smallest such index. If $i^{\prime}=1$, then we return False
If $i^{\prime}>1$, then it follows that $A[1:]$ is not uniform

Thus

False on line 7.

isuniform sample solution

Recommended, but not required

Basis: any list of length 0 or 1 is uniform, and our function returns True for such lists , by lines 5-6.
IS: Let $n \in \mathbb{N}^{+}$, and assume that our function is correct on inputs of size n.
Let A be a list of length $n+1$ satisfying the precondition
Because $n+1 \geq 2$, we reach line 7 in the code.

Case 1: A is uniform. It follows that $A[0]=A[1]$ and that $A[1:]$ uniform. So our function returns True.
Case 2: A is not uniform. Then by definition, there exists an index i such that $A[0] \neq A[i]$
. Let i^{\prime} be the smallest such index. If $i^{\prime}=1$, then we return False , by the first condition of line 7 If $i^{\prime}>1$, then it follows that $A[1:]$ is not uniform , because the sublist contains an element not equal to $A[0]$, and the first element of the sublist $(A[1])$ is equal to $A[0]$. Thus , by the IH, because $A[1:]$ is not uniform, the recursive call returns False, meaning that we return False on line 7.

In either case, our function matches the postcondition for an arbitrary input of size $n+1$.

isuniform sample solution

Recommended, but not required Nice-to-have

Basis: any list of length 0 or 1 is uniform, and our function returns True for such lists , by lines 5-6.
IS: Let $n \in \mathbb{N}^{+}$, and assume that our function is correct on inputs of size n.
Let A be a list of length $n+1$ satisfying the precondition
Because $n+1 \geq 2$, we reach line 7 in the code.
Since len $(A[1:]=n$, by the IH, isuniform (A[1:]) is True iff $A[1:]$ is uniform.
Case 1: A is uniform. It follows that $A[0]=A[1]$ and that $A[1:] \quad$ (indeed, any sublist of A) is uniform. So our function returns True.
Case 2: A is not uniform. Then by definition, there exists an index i such that $A[0] \neq A[i]$
(it is easy to see that the negation of this statement entails that A uniformly consists of instances of $A[0]$)
. Let i^{\prime} be the smallest such index. If $i^{\prime}=1$, then we return False , by the first condition of line 7
If $i^{\prime}>1$, then it follows that $A[1:]$ is not uniform , because the sublist contains an element not equal to $A[0]$, and the first element of the sublist $(A[1])$ is equal to $A[0]$. Thus
, by the IH, because $A[1:]$ is not uniform, the recursive call returns False, meaning that we return False on line 7.
In either case, our function matches the postcondition for an arbitrary input of size $n+1$.

isuniform sample solution (bonkers level of detail)

Not recommended!

$P(n)$: for any input A having len $(A)=n$, if A satisfies the precondition, then isuniform(A) terminates and satisfies the postcondition.
Basis: Let A be a list satisfying the precondition such that len $(A) \leq 1$. By lines $5-6$, isuniform (A) returns True. I will show that this matches the postcondition, i.e. A is uniform.
Case 1: $\operatorname{len}(A)=0$, i.e. $A=[]$. Since A has no elements, it is vacuously true that they are all equal.
Case 2: $\operatorname{len}(A)=1$. It follows that for all valid pairs of indices i, j that $A[i]=A[j]$, since there is only one valid index, 0 .
So $P(0) \wedge P(1)$.
IS: Let $n \in \mathbb{N}^{+}$, and assume $P(n)$. WTS: $P(n+1)$.
Let A be a list of length $n+1$ satisfying the precondition. Because $n+1 \geq 2$, we reach line 7 in the code and return $(\mathrm{A}[0]=\mathrm{A}[1]$ and isuniform(A[1:])). Note that:

- Since $\operatorname{len}(A)=n+1 \geq 2, A[0]$ and $A[1]$ are legal index expressions (i.e. they do not raise an IndexError).
- By the IH , the recursive call to isuniform (A[1:]) terminates and returns True iff $A[1:]$ is uniform. We are justified in applying $P(n)$ to draw this conclusion because...
- Since A satisfies the precondition, $A[1$:] does as well, since a slice of a list is also a list.
- $\operatorname{len}(A[1:])=n$

Case 1: A is uniform. Since all elements in A are equal, it follows that $A[0]=A[1]$ and that $A[1:]$ (indeed, any sublist of A) is uniform. So our function returns (True and True) which evaluates to True, as required by the postcondition.
Case 2: A is not uniform. Claim: there exists an index i such that $A[0] \neq A[i]$. Suppose for the sake of contradiction that no such index exists. Then $\forall j \in \mathbb{N}, j<\operatorname{len}(A) \Longrightarrow A[0]=A[j]$. But this would mean that A is uniform, contradicting the assumption of our case. Therefore such an index does exist. Let i^{\prime} be the smallest such index (i^{\prime} is guaranteed to exist by the Principle of Well-ordering, since the set $S=\{i \in \mathbb{N} \mid A[0] \neq A[i]\}$ is a non-empty subset of \mathbb{N}).
Case 2 a $: i^{\prime}=1$. Then $A[0] \neq A[1]$, and we return False by the first condition of line 7 .
Case $2 \mathrm{~b}: i^{\prime}>1$, then it follows that $A[1:]$ is not uniform, because the sublist contains an element not equal to $A[0]$, and the first element of the sublist ($A[1]$) is equal to $A[0]$. Thus, by the IH, because $A[1:]$ is not uniform, the recursive call returns False, meaning that we return False on line 7 . Note that $i^{\prime}>0$, since $i^{\prime}=0$ would imply $A[0] \neq A[0]$, a contradiction. Therefore cases 2 a and 2 b are exhaustive. In both subcases, our function returns False, as required.
In each outer case, our function matches the postcondition for an arbitrary input of size $n+1$ meeting the precondition. Thus $P(n+1)$.
$P(0) \wedge P(1) \wedge\left(\forall n \in \mathbb{N}^{+}, P(n) \Longrightarrow P(n+1)\right)$, so by the principle of induction, $\forall n \in \mathbb{N}, P(n)$.

Return of silly sum

```
def sum(A):
    """Pre: A is a list containing
    only natural numbers.
    Post: return the sum of the
    numbers in A."""
    if len(A) == 0:
        return 0
    first = A[0]
    if first == 0:
        return sum(A[1:])
    else:
        A[0] = A[0] - 1
        return 1 + sum(A)
```

Proof sketch:

- Lemma 1: For all non-empty $A \in \mathbb{N}^{*}$, sum (A) returns $A[0]+\operatorname{sum}(A[1:])$.
- Prove by induction on $A[0]$
- Note: this doesn't imply termination!
- Theorem: sum is correct
- Prove by induction on length of A, using Lemma 1
(Breaking a tricky proof into intermediate lemmas is an important skill, especially for correctness proofs, which can have many interacting parts. This comes up in a big way in A2 question 3.)

Lemma 1: sum (A) returns $A[0]+\operatorname{sum}(A[1:])$ for nonempty A
By induction on the head

$$
\begin{aligned}
& i=i=1 \Rightarrow \ll \\
& \text { def summA): } \\
& \text { """Pe: A is a list containing } \\
& \begin{array}{l}
\text { """Prep: A is a list containing lines } 12-13 \ldots \text { Let } A_{0} \text { be } A \text { at the start of the } f_{k} \\
\text { only natural numbers. } \\
\text { Post: return the sum of the }
\end{array} \\
& \text { Post: return the sum of the } \\
& \text { numbers in A.""" } \\
& \text { if } \operatorname{len}(A)==0 \text { : } \\
& \text { return } 0 \\
& \text { first }=A[0] \\
& \text { if first == 0: } \\
& \text { return sum(A[1:]) } \\
& \text { else: } \\
& \mathrm{A}[0]=\mathrm{A}[0]-1 \\
& \text { return } 1+\operatorname{sum}(A) \\
& \text { IS: Assume } P(k) \text { for some } k \text {. Let } A \text { be a } \\
& \text { list starting with } k+1 \text {. sum (A) reaches } \\
& A_{0}=[k+1, . . .] \text { Let } A \text {, be } A \text { after lea } \\
& \text { after l } 12 \quad A_{1}=\left[k_{0} . . .\right] \\
& \text { l/3 returns } 1+\operatorname{sum}\left(A_{1}\right) \\
& =1+(k+\operatorname{sum}(A[i[j])) \text { \# } 6 y \text { Jj } \\
& =1+k+\operatorname{sum}\left(A_{1}[1 i]\right) \\
& \operatorname{sum}(A) \text { returns } k+\operatorname{sum}(A[1:]) \text {. } \\
& \text { Basis: Let } A \text { be list of form }[0, \cdots] \text {. note } A,[1 ;]=A_{0}[1 i]
\end{aligned}
$$ by $l 8-10$, we return $\operatorname{sum}(A[1 i])+0 \therefore P(k+1)$

Main course: correctness of sum
By induction on length of A, and a little help from Lemma 1
I5 Assume $Q(n)$ for $n \in N$
def sum (A): Let A be list of size $n+1$
only natural numbers.

if $\operatorname{len}(A)==0$:
return 0
first $=A[0]$

$$
A[0]+\operatorname{sum}(A[1 i j)
$$

if first $==0$:
$=A[0]+[$ sun of $A[i]]$
else:
$=$ sum of A,
$Q(n)$: For all lists A of size $n, \operatorname{sum}(A)=\sum_{x \in A} x$. so $P(n+1)$
Basis: $Q(0)$ by $16-7$

Sometimes code has loops

```
def imax(A):
    """Pre: A is non-empty and contains comparable items.
    Post: return the maximum element in A
    " ""
    curr = A[0]
    i = 1
    while i < len(A):
        if A[i] > curr:
            curr = A[i]
        i += 1
    return curr
```

Loop invariants

- A loop invariant is a statement involving the program's variables which is true at the end of each iteration of a loop.
- Important convention: "the end of the 0th iteration" \equiv the state of the program immediately before the first iteration
- There are lots of candidates. Which should we prove? Whichever ones we need to prove the program correct.
- For correctness proofs, loop invariant will often be a conjunction of several (unrelated) facts needed for different reasons. (See A2 Q3 starter.)
What about imax? At the end of iter. ion J...

$$
\begin{aligned}
& \begin{array}{l}
\text { sur }=A[0] \\
\text { i= }=1 \\
\text { while } i<\operatorname{len}(A): \\
\text { if } A[i]>\operatorname{curr}: \\
\text { curry }=A[i] \\
i++1
\end{array}
\end{aligned} \quad-i_{j}=j+1
$$

Formalizing imax loop invariant

```
def imax(A):
    """Pre: A is non-empty and contains comparable items.
    Post: return the maximum element in A
    " ""
    curr = A[0]
    i = 1
    while i < len(A):
        if A[i] > curr:
            curr = A[i]
        i += 1
    return curr
```

$\operatorname{lnv}(j)$: at the end of the j th iteration, if one occurs, currrj is \geq every element in $A\left[: i_{j}\right]$

- x_{j} denotes the value of variable x at the end of the j th iteration.
- for simplicity, we can drop subscripts for variables like A whose values never change during execution

Suppose we've proven $\forall j \in \mathbb{N}, \operatorname{lnv}(j)$. Is that enough to show that imax is correct?

TODO list

```
def imax(A):
    curr = A[0]
    i = 1
    while i < len(A):
        if A[i] > curr:
            curr = A[i]
        i += 1
    return curr
```

a) - Prove that at the end of every iteration $j \ldots$
6) Prove that max terminates
C) $a+b \Rightarrow$ postcondition

Lemma 1: loop invariant
Is, Assume inv holds after $j^{\text {in }}$ ier.

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{def} \text { ina }(A): \\
\text { sur }=A(0)
\end{array} \\
& \underset{\substack{\text { sur } \\
i=1 \\
=1}}{ }=100 \\
& \text { while } i<\operatorname{len}(A): \\
& \begin{array}{c}
\text { if } A[i]>\text { sur: } \\
\text { curry }=A[i]
\end{array} \\
& \begin{array}{l}
\text { i }+=1 \\
\text { return cor }
\end{array} \\
& \text { Assume we do another Her. } \\
& \text { * } i_{j+1}=i_{j}+1 \\
& \operatorname{Curr}_{j=1}=\max \left(A\left[i_{j}\right], \text { cur }{ }_{j}\right)
\end{aligned}
$$

$\forall j \in \mathbb{N}$, at the end of the j th iteration, if it exists:
(a) $i_{j}=j+1$
(b) Gur $_{j}$ is the max of $\Delta\left[: i_{j}\right]$

$$
\left.=\max \left(A C i_{j}\right], \max \left(A\left[: i_{j}\right]\right)\right)^{\#+4}
$$

Base case

$$
\begin{aligned}
& \text { curs }=A[0] \\
& i_{0}=1=0.1 \\
& A\left[: i_{0}\right]=A[: 1]=[A[0]]
\end{aligned}
$$

by TH $i_{j}=j+1$
So inv holds,

Lemma 2: partial correctness

$$
A=[1,2]
$$

For any valid input, if the program terminates, the postcondition is satisfied $A[: 100]$

```
def imax(A):
    curr =A[0]
    while i < len(A):
    if A[i] > curr:
    curr = A[i]
    return curr
```

Assume loop exits after some iteration, call it j.

$$
\text { By } 14, i_{j} \geq \operatorname{len}(A)
$$

Inv (b) says curry is max of $A\left[: i_{j}\right]=A$

Lemma 3: termination

itermax terminates on all valid inputs. (We'll leave this to next week.)

```
def imax(A):
    curr = A[0]
    i}=
    while i < len(A):
        if A[i] > curr:
            curr = A[i]
        i += 1
    return curr
```


Corollary: itermax is correct

(overly pedantic)

Let A be a list satisfying the precondition.
Lemma 2 says that if itermax (A) terminates, it returns the right answer.
Lemma 3 says that itermax (A) terminates.

Something something modus ponens. .

Iterative correctness proofs recipe

1. Prove loop invariant by induction. $\forall j \in \mathbb{N}$, if a j th iteration occurs, then at the end of that iteration: \qquad
1.1 Basis: show that invariant holds before entering loop
1.2 Inductive step: if the invariant holds at the end of iteration j, it also holds at the end of $j+1$ (after another pass through the loop)

- How to choose what statements to prove? Look ahead to 2.

2. Prove partial correctness - if the program terminates, then the postcondition is satisfied. Typical proof pattern:
2.1 Assume loop terminates after k iterations
2.2 Therefore, we know the while loop condition Q is false.
$2.3 \neg Q$ tells us something about state of variables at the end of iteration k. Combine with loop invariant from 1 and postcondition follows.
3. Prove termination.

- We'll learn how to do this next week

Return of mergesort Exercisei brainstorn inveriants for merge

```
def mergesort(A):
    if len(A) <= 1:
        return A
    m = len(A) // 2
    L1 = mergesort(A[:m]) [\]
    L2 = mergesort(A[m:])
    return merge(L1, L2)
def merge(A, B):
    """Pre: A and B are sorted lists of numbers. 
    Post: return a sorted permutation of A+B
    " | |
    i = j = 0
    C = []
    while i < len(A) and j < len(B):
        if A[i] <= B[j]:
            C.append(A[i])
            i += 1
        else:
            C.append (B[j])
            j += 1
    return C + A[i:] + B[j:]
```

merge loop invariant e) every ale in $c_{k} \leq B\left[j_{1}\right]$
def merge (A, B):
Post: return a sorted permutation of $\mathrm{A}+\mathrm{B}$
"n"
$i=j=0$
$C=[]$
while $i<\operatorname{len}(A)$ and $j<\operatorname{len}(B)$:
if $A[i]<=B[j]:$
$C . a p p e n d(A[i])$
f) $j_{2+1} \leqslant \operatorname{len}(13)$
i $+=1$
else:
C. append $(B[j])$
$j+=1$
$\mathrm{j}+\mathrm{B}$
return $\mathrm{C}+\mathrm{A}[\mathrm{i}:]+\mathrm{B}[\mathrm{j}:]$
At the end of each iter k
a) C_{k} is sorted
b) $\operatorname{ten}\left(C_{k}\right)=i_{k}+j_{k}$
c) $\operatorname{len}\left(C_{k}\right)=k$
d) C_{k} is a permutation of $A\left[: i_{k}\right]+B\left[i j_{k}\right]$

merge loop invariant

```
def merge(A, B):
    """Pre: A and B are sorted lists of numbers
    Post: return a sorted permutation of A+B
    "!"
    i}=j=
    C = []
    while i < len(A) and j < len(B):
        if A[i] <= B[j]:
            C.append(A[i])
            i += 1
        else:
            C.append (B[j])
            j += 1
    return C + A[i:] + B[j:]
```

merge partial correctness
def merge (A, B):
"""Pre: A and B are sorted lists of numbers.
Post: return a sorted permutation of $A+B$

while $i<\operatorname{len}(A)$ and $j<\operatorname{len}(B)$:
if $A[i]<=B[j]$
C. append (ALi])
i += 1
C. append ($B[j]$)
$\begin{aligned} & j+=1 \\ & \text { urn } C\end{aligned}+A[i:]+B[j:]$

PT lireturn vil is sorted

- by inv (a), C_{k} is sorted
- by prem $b\left[j_{k}\right]$ is sorted
- by inv (e) eventing in $c_{k} \leqslant B\left[j_{k i}\right]$

Assume loop exits after ilea k
By 17 , either $i_{k} \geqslant \operatorname{len}(A)$ or $j_{k} \geqslant \operatorname{len}(B)$
\therefore one of $A\left[i_{k} i\right]$ or $B\left[j_{k}:\right]$ is empty.
w log, let $A\left[i_{k i}\right]=[]$
we return $C_{k}+[]+B\left[j_{k} ;\right]$

merge partial correctness

```
def merge(A, B):
    """Pre: A and B are sorted lists of numbers
    Post: return a sorted permutation of A+B
    """
    i}=j=
    C = []
    while i < len(A) and j < len(B):
        if A[i] <= B[j]:
            C.append(A[i])
            i += 1
        else:
            C. append (B[j])
            j += 1
    return C + A[i:] + B[j:]
```

