
CSC236 winter 2020, week 7: Iterative correctness
Recommended supplementary reading: Chapter 2 Vassos course notes

Colin Morris
colin@cs.toronto.edu

http://www.cs.toronto.edu/~colin/236/W20/

February 24, 2020

http://www.cs.toronto.edu/~colin/236/W20/


Outline

Correctness proof pitfalls
Actual vs. expected behaviour
Level of detail / justification

Finishing recursive correctness

Iterative correctness



isuniform (quiz 6, version 2)

1 def isuniform(A):

2 """ Pre: A is a list

3 Post: Return True if and only if every element in A is the same.

4 """

5 if len(A) <= 1:

6 return True

7 return A[0] == A[1] and isuniform(A[1:])



What’s wrong with this proof?

1 def isuniform(A):

2 """ Pre: A is a list

3 Post: Return True if and only if every element in A is the same.

4 """

5 if len(A) <= 1:

6 return True

7 return A[0] == A[1] and isuniform(A[1:])

P(n) : for all lists A of length n Pre(A) =⇒ isuniform terminates and satisfies Post(A).
Basis: Let A be a list of length 0 or 1. By lines 5-6, isuniform returns True, so P(0) ∧ P(1).
IS: Let n ∈ N+ and assume P(n). WTS: P(n + 1). Let A be a list of length n + 1, and assume Pre(A).
Case 1: A[0] 6= A[1]. Then by line 7, we return False, so Post(A).
Case 2: A[0] = A[1]. By IH, isuniform(A[1:]) returns True or False.

Case 2a: isuniform(A[1:]) is True. Then line 7 returns (True and True), which evaluates to
True, so Post(A) holds.

Case 2b: isuniform(A[1:]) is False. Then line 7 returns (True and False), which evaluates to
False, so Post(A) holds.
Post(A) holds in all cases, so P(n + 1). �





Actual vs. expected

For any input, your proof should address:

1. What a function should return on that input in order to satisfy the postcondition

2. What our function actually returns given that input

Aren’t these the same thing?

I This is exactly what you need to prove.



Actual vs. expected
Cases are commonly patterned on one or the other.

I Case 1: My function returns X
I here’s why X is the right answer in this case

I Case 2: My function returns Y
I here’s why Y is the right answer in this case

I . . .

Or

I Case 1: The correct answer is X
I here’s why my function actually returns X on these inputs

I Case 2: The correct answer is Y

I . . .



Actual → Expected

1 def isuniform(A):

2 """ Pre: A is a list

3 Post: Return True if and only if every element in A is the same.

4 """

5 if len(A) <= 1:

6 return True

7 return A[0] == A[1] and isuniform(A[1:])

Assume our function is correct for inputs of size n for some n ∈ N+. Let A be a list of length n + 1,
and assume Pre(A). Then isuniform(A) reaches line 7 and returns (A[0] = A[1] and

isuniform(A[1:])). By the IH, isuniform(A[1:]) ⇐⇒ A[1 :] is uniform.

Case 1: We return True. Then, every element in A[1 :] is equal to A[1]. Since A[0] = A[1], every
element in A is the same.
Case 2: We return False. Then by line 7, at least one of the following is true:

I A[0] 6= A[1]

I A[1 :] is non-uniform

In either case, this means A is not uniform.



Expected → Actual

1 def isuniform(A):

2 """ Pre: A is a list

3 Post: Return True if and only if every element in A is the same.

4 """

5 if len(A) <= 1:

6 return True

7 return A[0] == A[1] and isuniform(A[1:])

Assume our function is correct for inputs of size n for some n ∈ N+. Let A be a list of length n + 1,
and assume Pre(A). Then isuniform(A) reaches line 7 and returns (A[0] = A[1] and

isuniform(A[1:])). By the IH, isuniform(A[1:]) ⇐⇒ A[1 :] is uniform.

Case 1: A is uniform. Then it follows that A[0] = A[1] and that any sublist of A, including A[1 :] is
uniform. Thus we return True.
Case 2: A is not uniform. Then let i ∈ N be the smallest index such that A[i ] 6= 0 (such an i must
exist, otherwise A would uniformly consist of the element A[0]).

Case 2a: i = 1. Then A[0] 6= A[1] and we return False.
Case 2b: i > 1. Then A[1 :] is non-uniform, since it contains A[i ], and A[1 :][0] = A[0] 6= A[i ]. So

we return False.
In either case, we return False, as required.



Level of detail / justification

At this stage, your induction proofs can be a bit less formal. e.g.

I Don’t need to define a predicate
I Can omit justification of some ‘obvious’ facts

I “A is a list of natural numbers, therefore A[1 :] is also a list of natural numbers”

I Don’t need to specify domain of variables if it’s clear from context
I “Let i ∈ N be the index of. . . ” → “Let i be the index of. . . ”
I For convenience, we can use the notation N∗ to denote the set of lists of natural

numbers (and similarly for Z∗, R∗, etc.).

(But note that taking off the training wheels → more speed, but easier to wipe out)



isuniform sample solution
The bare minimum.

1 def isuniform(A):

2 """ Pre: A is a list

3 Post: Return True if and only if every element in A is the same.

4 """

5 if len(A) <= 1:

6 return True

7 return A[0] == A[1] and isuniform(A[1:])

Basis: any list of length 0 or 1 is uniform, and our function returns True for such lists
IS: assume that our function is correct on inputs of size n , n > 0.
Let A be a list of length n + 1 .
Case 1: A is uniform. It follows that A[0] = A[1] and that A[1 :] is uniform. So our function returns
True.
Case 2: A is not uniform. Then by definition, there exists an index i such that A[0] 6= A[i ] . Let i ′ be
the smallest such index. If i ′ = 1, then we return False . If i ′ > 1, then it follows that A[1 :] is not
uniform . Thus we return False on line 7.

�



isuniform sample solution
The bare minimum.

Recommended, but not required Nice-to-have

Basis: any list of length 0 or 1 is uniform, and our function returns True for such lists

, by lines 5-6.

IS:

Let n ∈ N+, and

assume that our function is correct on inputs of size n , n > 0.

Let A be a list of length n + 1

satisfying the precondition

.

Because n + 1 ≥ 2, we reach line 7 in the code.

Since len(A[1 :] = n, by the IH, isuniform(A[1:]) is True iff A[1 :] is uniform.

Case 1: A is uniform. It follows that A[0] = A[1] and that A[1 :]

(indeed, any sublist of A)

is
uniform. So our function returns True.
Case 2: A is not uniform. Then by definition, there exists an index i such that A[0] 6= A[i ]

(it is easy to see that the negation of this statement entails that A uniformly consists of instances of A[0])

. Let i ′ be the smallest such index. If i ′ = 1, then we return False

, by the first condition of line 7

.

If i ′ > 1, then it follows that A[1 :] is not uniform

, because the sublist contains an element not

equal to A[0], and the first element of the sublist (A[1]) is equal to A[0]

. Thus

, by the IH, because A[1 :] is not uniform, the recursive call returns False, meaning that

we return
False on line 7.

In either case, our function matches the postcondition for an arbitrary input of size n + 1.

�



isuniform sample solution
Recommended, but not required

Nice-to-have

Basis: any list of length 0 or 1 is uniform, and our function returns True for such lists , by lines 5-6.

IS: Let n ∈ N+, and assume that our function is correct on inputs of size n .

Let A be a list of length n + 1 satisfying the precondition .

Because n + 1 ≥ 2, we reach line 7 in the code.

Since len(A[1 :] = n, by the IH, isuniform(A[1:]) is True iff A[1 :] is uniform.

Case 1: A is uniform. It follows that A[0] = A[1] and that A[1 :]

(indeed, any sublist of A)

is
uniform. So our function returns True.
Case 2: A is not uniform. Then by definition, there exists an index i such that A[0] 6= A[i ]

(it is easy to see that the negation of this statement entails that A uniformly consists of instances of A[0])

. Let i ′ be the smallest such index. If i ′ = 1, then we return False , by the first condition of line 7 .

If i ′ > 1, then it follows that A[1 :] is not uniform , because the sublist contains an element not

equal to A[0], and the first element of the sublist (A[1]) is equal to A[0] . Thus

, by the IH, because A[1 :] is not uniform, the recursive call returns False, meaning that we return
False on line 7.

In either case, our function matches the postcondition for an arbitrary input of size n + 1. �



isuniform sample solution
Recommended, but not required Nice-to-have

Basis: any list of length 0 or 1 is uniform, and our function returns True for such lists , by lines 5-6.

IS: Let n ∈ N+, and assume that our function is correct on inputs of size n .

Let A be a list of length n + 1 satisfying the precondition .

Because n + 1 ≥ 2, we reach line 7 in the code.

Since len(A[1 :] = n, by the IH, isuniform(A[1:]) is True iff A[1 :] is uniform.

Case 1: A is uniform. It follows that A[0] = A[1] and that A[1 :] (indeed, any sublist of A) is
uniform. So our function returns True.
Case 2: A is not uniform. Then by definition, there exists an index i such that A[0] 6= A[i ]
(it is easy to see that the negation of this statement entails that A uniformly consists of instances of A[0])

. Let i ′ be the smallest such index. If i ′ = 1, then we return False , by the first condition of line 7 .

If i ′ > 1, then it follows that A[1 :] is not uniform , because the sublist contains an element not

equal to A[0], and the first element of the sublist (A[1]) is equal to A[0] . Thus

, by the IH, because A[1 :] is not uniform, the recursive call returns False, meaning that we return
False on line 7.

In either case, our function matches the postcondition for an arbitrary input of size n + 1. �



isuniform sample solution (bonkers level of detail)
Not recommended!

P(n) : for any input A having len(A) = n, if A satisfies the precondition, then isuniform(A) terminates and satisfies the postcondition.
Basis: Let A be a list satisfying the precondition such that len(A) ≤ 1. By lines 5-6, isuniform(A) returns True. I will show that this matches the
postcondition, i.e. A is uniform.
Case 1: len(A) = 0, i.e. A = [ ]. Since A has no elements, it is vacuously true that they are all equal.
Case 2: len(A) = 1. It follows that for all valid pairs of indices i, j that A[i ] = A[j], since there is only one valid index, 0.
So P(0) ∧ P(1).

IS: Let n ∈ N+, and assume P(n). WTS: P(n + 1).
Let A be a list of length n + 1 satisfying the precondition. Because n + 1 ≥ 2, we reach line 7 in the code and return (A[0] == A[1] and

isuniform(A[1:])). Note that:
I Since len(A) = n + 1 ≥ 2, A[0] and A[1] are legal index expressions (i.e. they do not raise an IndexError).

I By the IH, the recursive call to isuniform(A[1:]) terminates and returns True iff A[1 :] is uniform. We are justified in applying P(n) to

draw this conclusion because...

I Since A satisfies the precondition, A[1 :] does as well, since a slice of a list is also a list.

I len(A[1 :]) = n
Case 1: A is uniform. Since all elements in A are equal, it follows that A[0] = A[1] and that A[1 :] (indeed, any sublist of A) is uniform. So our
function returns (True and True) which evaluates to True, as required by the postcondition.
Case 2: A is not uniform. Claim: there exists an index i such that A[0] 6= A[i ]. Suppose for the sake of contradiction that no such index exists. Then
∀j ∈ N, j < len(A) =⇒ A[0] = A[j]. But this would mean that A is uniform, contradicting the assumption of our case. Therefore such an index
does exist. Let i′ be the smallest such index (i′ is guaranteed to exist by the Principle of Well-ordering, since the set S = {i ∈ N | A[0] 6= A[i ]} is a
non-empty subset of N).
Case 2a:i′ = 1. Then A[0] 6= A[1], and we return False by the first condition of line 7.
Case 2b: i′ > 1, then it follows that A[1 :] is not uniform, because the sublist contains an element not equal to A[0], and the first element of the
sublist (A[1]) is equal to A[0]. Thus, by the IH, because A[1 :] is not uniform, the recursive call returns False, meaning that we return False on line 7.
Note that i′ > 0, since i′ = 0 would imply A[0] 6= A[0], a contradiction. Therefore cases 2a and 2b are exhaustive. In both subcases, our function
returns False, as required.
In each outer case, our function matches the postcondition for an arbitrary input of size n + 1 meeting the precondition. Thus P(n + 1).

P(0) ∧ P(1) ∧
(
∀n ∈ N+, P(n) =⇒ P(n + 1)

)
, so by the principle of induction, ∀n ∈ N, P(n). �



Return of silly sum

1 def sum(A):

2 """ Pre: A is a list containing

3 only natural numbers.

4 Post: return the sum of the

5 numbers in A."""

6 if len(A) == 0:

7 return 0

8 first = A[0]

9 if first == 0:

10 return sum(A[1:])

11 else:

12 A[0] = A[0] - 1

13 return 1 + sum(A)

Proof sketch:

I Lemma 1: For all non-empty A ∈ N∗, sum(A)
returns A[0]+ sum(A[1:]).
I Prove by induction on A[0]
I Note: this doesn’t imply termination!

I Theorem: sum is correct
I Prove by induction on length of A, using

Lemma 1

(Breaking a tricky proof into intermediate lemmas is an important skill, especially for
correctness proofs, which can have many interacting parts. This comes up in a big way
in A2 question 3.)



Lemma 1: sum(A) returns A[0] + sum(A[1:]) for non-empty A
By induction on the head

1 def sum(A):

2 """ Pre: A is a list containing

3 only natural numbers.

4 Post: return the sum of the

5 numbers in A."""

6 if len(A) == 0:

7 return 0

8 first = A[0]

9 if first == 0:

10 return sum(A[1:])

11 else:

12 A[0] = A[0] - 1

13 return 1 + sum(A)

P(k) : for all lists A where A[0] = k,
sum(A) returns k+ sum(A[1:]).

Basis:

IS: Assume P(k) for some k. Let A be a
list starting with k + 1. sum(A) reaches
lines 12-13...



Main course: correctness of sum
By induction on length of A, and a little help from Lemma 1

1 def sum(A):

2 """ Pre: A is a list containing

3 only natural numbers.

4 Post: return the sum of the

5 numbers in A."""

6 if len(A) == 0:

7 return 0

8 first = A[0]

9 if first == 0:

10 return sum(A[1:])

11 else:

12 A[0] = A[0] - 1

13 return 1 + sum(A)

Q(n) : For all lists A of size n, sum(A) =
∑
x∈A

x .



Sometimes code has loops

1 def imax(A):

2 """ Pre: A is non -empty and contains comparable items.

3 Post: return the maximum element in A

4 """

5 curr = A[0]

6 i = 1

7 while i < len(A):

8 if A[i] > curr:

9 curr = A[i]

10 i += 1

11 return curr



Loop invariants

I A loop invariant is a statement involving the program’s variables which is true at
the end of each iteration of a loop.
I Important convention: “the end of the 0th iteration” ≡ the state of the program

immediately before the first iteration

I There are lots of candidates. Which should we prove? Whichever ones we need to
prove the program correct.
I For correctness proofs, loop invariant will often be a conjunction of several

(unrelated) facts needed for different reasons. (See A2 Q3 starter.)

What about imax?

1 curr = A[0]

2 i = 1

3 while i < len(A):

4 if A[i] > curr:

5 curr = A[i]

6 i += 1



Formalizing imax loop invariant

1 def imax(A):

2 """ Pre: A is non -empty and contains comparable items.

3 Post: return the maximum element in A

4 """

5 curr = A[0]

6 i = 1

7 while i < len(A):

8 if A[i] > curr:

9 curr = A[i]

10 i += 1

11 return curr

Inv(j) : at the end of the jth iteration, if one occurs, currj is ≥ every element in A[: ij ]

I xj denotes the value of variable x at the end of the jth iteration.
I for simplicity, we can drop subscripts for variables like A whose values never change

during execution

Suppose we’ve proven ∀j ∈ N, Inv(j). Is that enough to show that imax is correct?



TODO list

1 def imax(A):

2 curr = A[0]

3 i = 1

4 while i < len(A):

5 if A[i] > curr:

6 curr = A[i]

7 i += 1

8 return curr

I Prove that at the end of every iteration j . . .
I



Lemma 1: loop invariant

1 def imax(A):

2 curr = A[0]

3 i = 1

4 while i < len(A):

5 if A[i] > curr:

6 curr = A[i]

7 i += 1

8 return curr

∀j ∈ N, at the end of the jth iteration, if it exists:

(a)



Lemma 2: partial correctness
For any valid input, if the program terminates, the postcondition is satisfied

1 def imax(A):

2 curr = A[0]

3 i = 1

4 while i < len(A):

5 if A[i] > curr:

6 curr = A[i]

7 i += 1

8 return curr



Lemma 3: termination
itermax terminates on all valid inputs. (We’ll leave this to next week.)

1 def imax(A):

2 curr = A[0]

3 i = 1

4 while i < len(A):

5 if A[i] > curr:

6 curr = A[i]

7 i += 1

8 return curr



Corollary: itermax is correct

Let A be a list satisfying the precondition.

Lemma 2 says that if itermax(A) terminates, it returns the right answer.

Lemma 3 says that itermax(A) terminates.

Something something modus ponens. . . �



Iterative correctness proofs recipe

1. Prove loop invariant by induction. ∀j ∈ N, if a jth iteration occurs, then at the
end of that iteration:

1.1 Basis: show that invariant holds before entering loop
1.2 Inductive step: if the invariant holds at the end of iteration j , it also holds at the end

of j + 1 (after another pass through the loop)

I How to choose what statements to prove? Look ahead to 2.

2. Prove partial correctness - if the program terminates, then the postcondition is
satisfied. Typical proof pattern:

2.1 Assume loop terminates after k iterations
2.2 Therefore, we know the while loop condition Q is false.
2.3 ¬Q tells us something about state of variables at the end of iteration k. Combine

with loop invariant from 1 and postcondition follows.

3. Prove termination.
I We’ll learn how to do this next week



Return of mergesort

1 def mergesort(A):

2 if len(A) <= 1:

3 return A

4 m = len(A) // 2

5 L1 = mergesort(A[:m])

6 L2 = mergesort(A[m:])

7 return merge(L1 , L2)

1 def merge(A, B):

2 """ Pre: A and B are sorted lists of numbers.

3 Post: return a sorted permutation of A+B

4 """

5 i = j = 0

6 C = []

7 while i < len(A) and j < len(B):

8 if A[i] <= B[j]:

9 C.append(A[i])

10 i += 1

11 else:

12 C.append(B[j])

13 j += 1

14 return C + A[i:] + B[j:]



merge loop invariant

1 def merge(A, B):

2 """ Pre: A and B are sorted lists of numbers.

3 Post: return a sorted permutation of A+B

4 """

5 i = j = 0

6 C = []

7 while i < len(A) and j < len(B):

8 if A[i] <= B[j]:

9 C.append(A[i])

10 i += 1

11 else:

12 C.append(B[j])

13 j += 1

14 return C + A[i:] + B[j:]



merge loop invariant

1 def merge(A, B):

2 """ Pre: A and B are sorted lists of numbers.

3 Post: return a sorted permutation of A+B

4 """

5 i = j = 0

6 C = []

7 while i < len(A) and j < len(B):

8 if A[i] <= B[j]:

9 C.append(A[i])

10 i += 1

11 else:

12 C.append(B[j])

13 j += 1

14 return C + A[i:] + B[j:]



merge partial correctness

1 def merge(A, B):

2 """ Pre: A and B are sorted lists of numbers.

3 Post: return a sorted permutation of A+B

4 """

5 i = j = 0

6 C = []

7 while i < len(A) and j < len(B):

8 if A[i] <= B[j]:

9 C.append(A[i])

10 i += 1

11 else:

12 C.append(B[j])

13 j += 1

14 return C + A[i:] + B[j:]



merge partial correctness

1 def merge(A, B):

2 """ Pre: A and B are sorted lists of numbers.

3 Post: return a sorted permutation of A+B

4 """

5 i = j = 0

6 C = []

7 while i < len(A) and j < len(B):

8 if A[i] <= B[j]:

9 C.append(A[i])

10 i += 1

11 else:

12 C.append(B[j])

13 j += 1

14 return C + A[i:] + B[j:]




