
CSC236 winter 2020, week 4: Runtime of recursive algorithms
Recommended supplementary reading: David Liu 236 course notes pp 27-41, Ch. 5

“Algorithm Design” by Kleinberg & Tardos, Ch. 3 Vassos course notes

Colin Morris
colin@cs.toronto.edu

http://www.cs.toronto.edu/~colin/236/W20/

January 27, 2020

https://www.cs.toronto.edu/~david/courses/csc236_w14/resources/notes.pdf
http://www.cs.toronto.edu/~colin/236/W20/

Outline

Induction roundup

Runtime analysis of recursive algorithms

Divide-and-conquer algorithms
Example: merge sort
Divide-and-conqer definitions
Experimenting with different runtime characteristics

The Master Theorem

Appendix

Cardinal sins of induction
You will always lose marks for these

1. ‘Overwriting’ your predicate’s argument. e.g. P(n) : ∀n ∈ N, 2n ≥ n
Should be P(n) : 2n ≥ n
If you really want to be explicit about the domain of your predicate, these are also
acceptable (but not necessary):

I P(n) : 2n ≥ n, n ∈ N
I For n ∈ N, define P(n) : 2n ≥ n
I Define a predicate of the natural numbers P(n) : 2n ≥ n, n ∈ N

2. Referring to a predicate without defining it.

3. Omitting the induction hypothesis.

Venial sins of induction
You might be able to get away with these, but try to avoid them.

1. Writing something like P(0) = 20 ≥ 0
I TypeError: Incompatible types ‘bool’ and ‘int’
I Instead “20 ≥ 0, thus P(0)”

2. Using variables without introducing them. e.g. starting I.S. with “Assume P(n)”
I NameError: name ‘n’ is not defined
I Instead “Let n ∈ N and assume P(n)”, or “Assume P(n) for arbitrary n”, etc.
I Especially important if you need to put restrictions on n to make I.S. work. e.g. “Let

n ∈ N, n ≥ 20”

3. Unnecessary base cases. Usually one is enough.
I You’ll never lose marks for this, but you will lose time!
I If you need more than 1 base case, it should become apparent as you’re writing your

I.S.

4. Implicitly using I.H.
I If you’re using the I.H. to rewrite an expression, say so
I In complete induction, if you invoke, say, P(n − 3), justify why you’re able to do so.

How do you know n − 3 falls under the range of the I.H.?

Parting induction tips

I Not sure where to start? Looking at some small examples may help.
I And, if applicable, scribbling some diagrams

I You can get most of the marks for having the right structure, even if you can’t
figure out the “trick” to complete the induction step.

I For complete induction, focus on understanding the induction hypothesis, rather
than memorizing a formula

I Remember, there are lots of acceptable ways to write the I.H.
I In general, we’re not picky about notation, as long as your reasoning is clearly

expressed

Runtime analysis of recursive algorithms

What is the runtime of fact on input n?

1 def fact(n):

2 """ Return n!

3 """

4 if n == 0:

5 return 1

6 return n * fact(n-1)

T (n) =

Closed form for T (n)?

Motivation: suppose we want to know T (1000)...

What is the runtime of subset sum?

For more information see Wikipedia’s article on the subset sum problem.

1 def subset_sum(A, target):

2 """ Return True iff there is a subset of items in A, a list

3 of integers , which adds up to the given target sum.

4 """

5 if len(A) == 0:

6 return target == 0

7 # Try to make the sum either with the first number , or without

8 return subset_sum(A[1:], target) or subset_sum(A[1:], target -A[0])

T (n) =

https://en.wikipedia.org/wiki/Subset_sum_problem

Closed form for runtime of subset sum?

Use the technique of repeated substitution (aka “unwinding”)...

Proving our closed form is correct

Runtime of merge sort

1 def mergesort(A):

2 if len(A) <= 1:

3 return A

4 m = len(A) // 2

5 L1 = mergesort(A[:m])

6 L2 = mergesort(A[m:])

7 return merge(L1, L2)

8

9 def merge(A, B):

10 i = j = 0

11 C = []

12 while i < len(A) and j < len(B):

13 if A[i] <= B[j]:

14 C.append(A[i])

15 i += 1

16 else:

17 C.append(B[j])

18 j += 1

19 return C + A[i:] + B[j:]

T (n) =

Finding a closed form for T (n)
Via unwinding

An officially sanctioned deus ex machina

For proofs in this course, you may assume that inputs are always “nice” sizes when
analysing the runtime of recursive algorithms that partition their inputs, such as
mergesort.
In this case, you may assume n is always such that

dn/2e = bn/2c = n/2

If you’re skeptical, you may wish to look at chapter 3 of the course notes, which proves
a closed form for mergesort without this hand-waving. The proof is long, but not
difficult to understand.

Trying again

Find a closed form for T (n) via unwinding, assuming n is a power of 2

Trying again

Find a closed form for T (n) via unwinding, assuming n is a power of 2

Trying again

Find a closed form for T (n) via unwinding, assuming n is a power of 2

Divide-and-conquer

Mergesort is an example of the general class of divide and conquer algorithms.
These algorithms break their input into equally sized subproblems, solve them
recursively, then combine the results. Their runtime can be written as:

T (n) = aT (
n

b
) + f (n)

Where

I a is the number of recursive calls

I b is the ‘shrinkage factor’ of the subproblems

I f (n) is the cost of the non-recursive part (splitting and recombining)

Divide-and-conquer

T (n) = aT (
n

b
) + f (n)

We’ve seen a = b = 2 and f (n) ∈ Θ(n) =⇒ T (n) ∈ Θ(n log n)

What happens when we change some of these parameters?

A silly algorithm
T (n) = aT (n

b
) + f (n). What are a, b, and f (n)?

1 def closest_distance(A):

2 if len(A) == 2:

3 return abs(A[0] - A[1])

4 mid = len(A)//2

5 L = A[:mid]

6 R = A[mid:]

7 # Find the closest distance between pairs that straddle L and R

8 closest_LR = infinity

9 for l in L:

10 for r in R:

11 closest_LR = min(closest_LR , abs(l-r))

12 # Closest pair is either within L, within R, or between L and R

13 return min(closest_LR , closest_distance(L), closest_distance(R))

Closed form when cost per recursive call is quadratic?
T (n) = 2T (n/2) + f (n), where f (n) ∈ Θ(n2)

