CSC236 winter 2020, week 12: (non-)regularity

Recommended reading: Chapter 7 Vassos course notes, section 7.6.3-

Colin Morris
colin@cs.toronto.edu
http://www.cs.toronto.edu/~colin/236/W20/

March 30, 2020

Reminders

- A3 due Thursday @ 15:00
- It's short!
- Extra office hours available by request
- One last tutorial + quiz this Friday
- Also, final Q\&A session Wednesday 12:00-14:00
- These are really worth attending!
- Marking scheme changes
- Course website will be updated when vote officially closes on Monday
- Exam-like final assessment (worth 20%) to be written April 7-9

Regular languages

A language L is regular iff

- L is denoted by a regular expression
- L is accepted by a deterministic FSA
- L is accepted by a non-deterministic FSA
(We now know that all of these criteria are equivalent.)

Proving regularity

A few options to prove that L is regular:

1. Construct an RE, or a DFSA, or an NFSA that matches L.
2. Use closure properties of regular languages. Show that L can be formed by application of union/intersection/complement/Kleene star to some languages that are known to be regular.
3. Use the fact that all finite languages are regular

Example: proving regularity
$L_{1}=$ strings over $\{0,1\}$ of length 236. Prove L_{1} is regular.
$\{0,1\}^{236}$ is finite, co regular

Example: proving regularity

$L_{1}=$ strings over $\{0,1\}$ of length 236 . Prove L_{1} is regular.
$L_{2}=$ strings over $\{0,1\}$ where length is a multiple of 236 . Prove L_{2} is regular.

$$
\begin{aligned}
& L_{2}=L_{1}^{*} \\
& L_{1} \text { regulus, so } L_{1}^{*} \text { so regular }
\end{aligned}
$$

Are all languages regular?

Big if true

Detour: probing the limits of FSAs

Suppose M is a DFSA such that $\mathcal{L}(M)=\left\{a^{n} \mid \exists k \in \mathbb{N}, n=3 k\right\}$. What is the minimum number of states M can have?

Proving lower bounds on states
Recall, $\mathcal{L}(M)=\left\{a^{n} \mid \exists k \in \mathbb{N}, n=3 k\right\}$.
Consider

- $\delta^{*}(\underline{s}, a)=q_{1}$
- $\delta^{*}(s, a a)=q_{2}$
- $\delta^{*}(s, a a a)=q_{3}$

Claim: q_{1}, q_{2}, and q_{3} are distinct.
Proof: Show that each of the following possibilities leads to a contradiction

$$
\begin{aligned}
& q_{3}=q_{1}-q_{3} \in F \quad q, \& F \\
& \Rightarrow q_{3}=q_{2}- \\
& \int\left(q_{1}, a\right) \in F ? \\
& \text { If yes, we accept aq \&L } \\
& \text { If no, we reject aaa } \in L
\end{aligned}
$$

Pigeonhole principle

Figure: 10 pigeons >9 pigeonholes \Longrightarrow pigeon cohabitation

Recipe: proving lower bound on DFSA states

To prove that any DFSA M that accepts L must have at least n states

1. Prove that n is sufficient, by demonstrating an accepting n-state DFSA

- (May or may not be necessary, depending on how question is worded)

2. Find n distinct prefixes $x_{1}, x_{2}, \ldots x_{n}$, and matching suffixes ${ }^{1} y_{1}, y_{2}, \ldots y_{n}$, such that

- $x_{j} y_{k} \in L \Longleftrightarrow j=k$
- i.e. for each prefix, exactly one of the suffixes can be concatenated to it to form a string in L

3. Prove minimum of n states by contradiction
3.1 Assume, for sake of contradiction, that $|Q|<n$.
3.2 By the pigeonhole principle, there must be two different prefixes, x_{j} and x_{k} that go to the same state, q
3.3 So $\delta^{*}\left(q, y_{j}\right)$ must be accepting and non-accepting. $\Rightarrow \Leftarrow$

$$
x_{j} y_{j} \in L \quad x_{k} y_{i} \& L
$$

[^0]
Another (worked out) lower bound example

Find the minimum number of states for a DFSA that accepts
$L=\left\{w \in\{0,1\}^{*} \mid w\right.$ ends with '011' $\}$.
Below, we give a 4-state DFSA for L.

So 4 is sufficient. Is it necessary?

Another (worked out) lower bound example

Find the minimum number of states for a DFSA that accepts
$L=\left\{w \in\{0,1\}^{*} \mid w\right.$ ends with '011' $\}$.
Below, we give a 4 -state DFSA for L.

So 4 is sufficient. Is it necessary? Consider

- $x_{0}=\varepsilon$
- $x_{1}=0, y_{1}=11$
- $x_{2}=01, y_{2}=1$
- $x_{3}=011, y_{3}=\varepsilon$

Another (worked out) lower bound example

Find the minimum number of states for a DFSA that accepts
$L=\left\{w \in\{0,1\}^{*} \mid w\right.$ ends with '011' $\}$. Below, we give a 4-state DFSA for L.

So 4 is sufficient. Is it necessary?

Consider

- $x_{0}=\varepsilon$
- $x_{1}=0, y_{1}=11$
- $x_{2}=01, y_{2}=1$
- $x_{3}=011, y_{3}=\varepsilon$

By inspection, each suffix y_{j} has exactly one prefix x_{j} such that $x_{j} y_{j} \in L$. Suppose FSOC a DFSA with <4 states accepts L. By the pigeonhole principle, there must be a distinct pair, x_{j}, x_{k}, such that $\delta^{*}\left(s, x_{j}\right)=\delta^{*}\left(s, x_{k}\right)=q$ for some state q.
WLOG, suppose $j \neq 0$. Then $\delta^{*}\left(q, y_{j}\right)$ must be accepting. But that would mean we also accept, $x_{k} y_{j} \notin L . \Rightarrow \Leftarrow$

An infinite flock of pigeons
Prove that $L=\left\{\underline{0}^{n} \underline{1}^{n} \mid n \in \mathbb{N}\right\}$ is non-regular.
Suppose M is a DESA st. $L(M)=L$
$0,00,060,0000 \ldots$
By pigeonhole principle, $\exists n, m \in \mathbb{N}, n \neq m \cap \delta^{*}\left(J, 0^{n}\right)=$ $\delta^{x}\left(s, o^{n}\right)=q$, for some state q

$$
\delta^{*}\left(q, 1^{n}\right) \in F ?
$$

If yes, we accept $O^{m} 1^{n} \Rightarrow E$
If no, we reject $\partial^{n} 1^{n} \Rightarrow \lll$

Recipe: proving non-regularity via pigeonhole principle

Very similar to recipe for proving lower bound on number of states

To prove that L is non-regular

1. Find a infinite family of distinct prefixes x_{1}, x_{2}, \ldots, and corresponding suffixes y_{1}, y_{2}, \ldots, such that

- $x_{j} y_{k} \in L \Longleftrightarrow j=k$
- i.e. for each prefix, exactly one of the suffixes can be concatenated to it to form a string in L

2. Prove non-existence of DFSA for L by contradiction
2.1 Assume, for sake of contradiction, that there is a DFSA M such that $\mathcal{L}(M)=L$. Let n be its number of states.
2.2 By the pigeonhole principle, there must be two different prefixes, x_{j} and x_{k} that go to the same state, q
2.3 So $\delta^{*}\left(q, y_{j}\right)$ must be accepting and non-accepting. $\Rightarrow \Leftarrow$

Another approach: the Pumping Lemma

Use whichever approach you prefer. We'll ask you to prove non-regularity, but won't force you to use one approach or the other.
"pumpirg leng'(h"

Let L be a regular language. Then there exists $\hat{n} \in \mathbb{N}$, such that for every $x \in L$ where $|x| \geq n, x$ satisfies the following property:

- $\exists y, v, w \in \Sigma^{*}, x=\underline{u v w} \wedge v \neq \varepsilon \wedge|u v| \leq n$, and $\underline{u v^{k}} w \in L$ for all $k \in \mathbb{N}$

Another approach: the Pumping Lemma

Use whichever approach you prefer. We'll ask you to prove non-regularity, but won't force you to use one approach or the other.

Let L be a regular language. Then there exists $n \in \mathbb{N}$, such that for every $x \in L$ where $|x| \geq n, x$ satisfies the following property:

- $\exists y, v, w \in \Sigma^{*}, x=u v w \wedge v \neq \varepsilon \wedge|u v| \leq n$, and $u v^{k} w \in L$ for all $k \in \mathbb{N}$
i.e.

If L is regular, then every sufficiently long string in L contains a (non-empty) part that can be repeated ("pumped") any number of times, to keep getting more strings in L.

Pumping Lemma proof sketch
The pigeonhole principle returns

Using Pumping Lemma to prove non-regularity: example $10101 \in P_{A L}$
UTS: PAL $=\left\{x \in\{0,1\}^{*} \mid x\right.$ is a palindrome $\}$ is non-regular.
Assume, for sake of contradiction, that PAL is regular. Then the Pumping Lemma applies for some value $n \in \mathbb{N}$.

Consider $x=0^{n} 10^{n} \in L$
$\exists m \in N^{+}, O^{n+m} \mid O^{n} \in L$ but this is not a palindrome

[^0]: ${ }^{1}$ It's actually sufficient to find just $n-1$ suffixes, i.e. we can get away with having one prefix x that doesn't have a matching suffix. See steps 3.2 and 3.3 for the reason why.

