CSC236 winter 2020, week 12: (non-)regularity Recommended reading: Chapter 7 Vassos course notes, section 7.6.3—

> Colin Morris colin@cs.toronto.edu http://www.cs.toronto.edu/~colin/236/W20/

> > March 30, 2020

Reminders

- A3 due Thursday @ 15:00
 - It's short!
 - Extra office hours available by request
- One last tutorial + quiz this Friday
- Also, final Q&A session Wednesday 12:00-14:00
 - These are really worth attending!
- Marking scheme changes
 - Course website will be updated when vote officially closes on Monday
- ▶ Exam-like final assessment (worth 20%) to be written April 7-9

Regular languages

A language *L* is **regular** iff

- \blacktriangleright L is denoted by a regular expression
- L is accepted by a deterministic FSA
- L is accepted by a non-deterministic FSA

(We now know that all of these criteria are equivalent.)

A few options to prove that L is regular:

- 1. Construct an RE, or a DFSA, or an NFSA that matches L.
- 2. Use closure properties of regular languages. Show that *L* can be formed by application of union/intersection/complement/Kleene star to some languages that are known to be regular.
- 3. Use the fact that all finite languages are regular

Example: proving regularity

 $L_1 = \text{strings over } \{0,1\} \text{ of length 236. Prove } L_1 \text{ is regular.}$

Example: proving regularity

 $L_1 = \text{strings over } \{0, 1\} \text{ of length } 236. \text{ Prove } L_1 \text{ is regular.}$

 $L_2 =$ strings over $\{0, 1\}$ where length is a multiple of 236. Prove L_2 is regular.

$$L_2 = L_1^*$$

 L_1 regular, so L_1^* do regular

Are all languages regular? Big if true

 \bigcirc $^{\prime}$ $^{\prime}$

Detour: probing the limits of FSAs

Suppose *M* is a DFSA such that $\mathcal{L}(M) = \{a^n \mid \exists k \in \mathbb{N}, n = 3k\}$. What is the minimum number of states *M* can have?

Proving lower bounds on states Recall, $\mathcal{L}(M) = \{a^n \mid \exists k \in \mathbb{N}, n = 3k\}$.

Consider

- δ*(s, a) = q₁
 δ*(s, aa) = q₂
- $\delta^*(s,aa) = q_2$ $\delta^*(s,aaa) = q_3$

Claim: q_1 , q_2 , and q_3 are distinct. Proof: Show that each of the following possibilities leads to a contradiction $p = q_3 = q_1 - q_3 \in F$ $q_1 \notin F$ $p = q_3 = q_2 - q_1$ $p = q_2 = q_1$ $f = q_2 = q_2$ $f = q_3$ $f = q_3$ $f = q_3$

Pigeonhole principle

Figure: 10 pigeons > 9 pigeonholes \implies pigeon cohabitation

Recipe: proving lower bound on DFSA states

To prove that any DFSA M that accepts L must have at least n states

- 1. Prove that *n* is *sufficient*, by demonstrating an accepting *n*-state DFSA
 - (May or may not be necessary, depending on how question is worded)
- 2. Find *n* distinct prefixes $x_1, x_2, \ldots x_n$, and matching suffixes $y_1, y_2, \ldots y_n$, such that
 - $\blacktriangleright x_i y_k \in L \iff j = k$
 - ▶ i.e. for each prefix, exactly one of the suffixes can be concatenated to it to form a string in L
- 3. Prove minimum of *n* states by contradiction
 - 3.1 Assume, for sake of contradiction, that |Q| < n.
 - 3.2 By the pigeonhole principle, there must be two different prefixes, x_j and x_k that go to the same state. a

¹It's actually sufficient to find just n-1 suffixes, i.e. we can get away with having one prefix x that doesn't have a matching suffix. See steps 3.2 and 3.3 for the reason why.

Another (worked out) lower bound example

Find the minimum number of states for a DFSA that accepts

 $L = \{w \in \{0,1\}^* \mid w \text{ ends with '011'}\}.$ Below, we give a 4-state DFSA for L.

Another (worked out) lower bound example

Find the minimum number of states for a DFSA that accepts

 $L = \{w \in \{0,1\}^* \mid w \text{ ends with '011'}\}.$ Below, we give a 4-state DFSA for *L*.

So 4 is sufficient. Is it necessary? Consider

- ► $x_0 = \varepsilon$
- ▶ $x_1 = 0, y_1 = 11$
- ► $x_2 = 01, y_2 = 1$
- ► x₃ = 011, y₃ = ε

Another (worked out) lower bound example

Find the minimum number of states for a DFSA that accepts

 $L = \{w \in \{0,1\}^* \mid w \text{ ends with '011'}\}.$ Below, we give a 4-state DFSA for *L*.

So 4 is sufficient. Is it necessary? Consider

•
$$x_0 = \varepsilon$$

• $x_1 = 0, y_1 = 11$
• $x_2 = 01, y_2 = 1$
• $x_3 = 011, y_3 = \varepsilon$

By inspection, each suffix y_i has exactly one prefix x_i such that $x_i y_i \in L$. Suppose FSOC a DFSA with < 4 states accepts L. By the pigeonhole principle, there must be a distinct pair, x_i, x_k , such that $\delta^*(s, x_i) = \delta^*(s, x_k) = q$ for some state a. WLOG, suppose $j \neq 0$. Then $\delta^*(q, y_i)$ must be accepting. But that would mean we also accept, $x_k y_j \notin L$. $\Rightarrow \Leftarrow$

An infinite flock of pigeons

Prove that $L = \{0^n 1^n \mid n \in \mathbb{N}\}$ is non-regular. Suppose M is a PFSA st. L(M)=L 0,00,000,0000... By pigeonhole principle, In, MEN, N ≠ M N S*(5, 0°) = S*(s, O") = q, for some state q $S^*(q, 1^n) \in F?$ If yes we accept Om In Alt Jf no, ve reject of in the

Recipe: proving non-regularity via pigeonhole principle

Very similar to recipe for proving lower bound on number of states

To prove that L is non-regular

- 1. Find a **infinite** family of distinct prefixes x_1, x_2, \ldots , and corresponding suffixes y_1, y_2, \ldots , such that
 - $\flat \ x_j y_k \in L \iff j = k$
 - ▶ i.e. for each prefix, exactly one of the suffixes can be concatenated to it to form a string in L
- 2. Prove non-existence of DFSA for L by contradiction
 - 2.1 Assume, for sake of contradiction, that there is a DFSA M such that $\mathcal{L}(M) = L$. Let n be its number of states.
 - 2.2 By the pigeonhole principle, there must be two different prefixes, x_j and x_k that go to the same state, q
 - 2.3 So $\delta^*(q, y_j)$ must be accepting and non-accepting. $\Rightarrow \Leftarrow$

Another approach: the Pumping Lemma

Use whichever approach you prefer. We'll ask you to prove non-regularity, but won't force you to use one approach or the other.

Let *L* be a regular language. Then there exists $n \in \mathbb{N}$, such that for every $x \in L$ where $|x| \ge n$, x satisfies the following property:

►
$$\exists y, v, w \in \Sigma^*, x = \underline{uvw} \land v \neq \varepsilon \land |uv| \leq n$$
, and $\underline{uv^k w \in L}$ for all $k \in \mathbb{N}$

Another approach: the Pumping Lemma

Use whichever approach you prefer. We'll ask you to prove non-regularity, but won't force you to use one approach or the other.

Let *L* be a regular language. Then there exists $n \in \mathbb{N}$, such that for every $x \in L$ where $|x| \ge n$, x satisfies the following property:

►
$$\exists y, v, w \in \Sigma^*, x = uvw \land v \neq \varepsilon \land |uv| \leq n$$
, and $uv^k w \in L$ for all $k \in \mathbb{N}$

i.e.

If L is regular, then every sufficiently long string in L contains a (non-empty) part that can be repeated ("pumped") any number of times, to keep getting more strings in L.

Pumping Lemma proof sketch

The pigeonhole principle returns

Using Pumping Lemma to prove non-regularity: example $10 101 \le P_{A_{L}}$

WTS: $\underline{PAL} = \{x \in \{0, 1\}^* \mid x \text{ is a palindrome}\}\$ is non-regular. Assume, for sake of contradiction, that PAL is regular. Then the Pumping Lemma applies for some value $n \in \mathbb{N}$.

Consider
$$X = 010^{n} \in L$$

 $\exists M \in \mathbb{N}^{+}, O^{n+1} \cup O \in L$, but this is not a pulled rome
 $\exists X \in \mathbb{N}^{+}, O^{n+1} \cup O \in L$