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Reminders

v

A3 due Thursday @ 15:00

> It's short!
» Extra office hours available by request

v

One last tutorial + quiz this Friday
Also, final Q&A session Wednesday 12:00-14:00
» These are really worth attending!

v

v

Marking scheme changes
» Course website will be updated when vote officially closes on Monday

v

Exam-like final assessment (worth 20%) to be written April 7-9


https://piazza.com/class/k4xo4w48g2u35e?cid=313

Regular languages

A language L is regular iff
» L is denoted by a regular expression
> L is accepted by a deterministic FSA
» L is accepted by a non-deterministic FSA

(We now know that all of these criteria are equivalent.)



Proving regularity

A few options to prove that L is regular:

1. Construct an RE, or a DFSA, or an NFSA that matches L.

2. Use closure properties of regular languages. Show that L can be formed by
application of union/intersection/complement/Kleene star to some languages that
are known to be regular.

3. Use the fact that all finite languages are regular



Example: proving regularity

L; = strings over {0, 1} of length 236. Prove L; is regular.
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Example: proving regularity

L; = strings over {0, 1} of length 236. Prove L; is regular.

L, = strings over {0, 1} where length is a multiple of 236. Prove L, is regular.

¥

Lf_l: L‘

[\ (\eév‘tfd <o (,T‘ Ao S



Are all languages regular?
Big if true
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Detour: probing the limits of FSAs

Suppose M is a DFSA such that £L(M) = {a" | 3k € N, n = 3k}.
What is the minimum number of states M can have?




Proving lower bounds on states
Recall, £L(M) = {a" | 3k € N, n = 3k}.

Consider
> 5>k(_§?_i) =q1
> 0%(s,aa) = q2
> §%(s, aaa) = g3
Claim: g1, g», and g3 are distinct.
Proof: Show that each of the following possibilities leads to a contradiction
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Figure: 10 pigeons > 9 pigeonholes — pigeon cohabitation



Recipe: proving lower bound on DFSA states

To prove that any DFSA M that accepts L must have at least n states

1. Prove that n is sufficient, by demonstrating an accepting n-state DFSA
» (May or may not be necessary, depending on how question is worded)

2. Find n distinct prefixes x1, Xa, . . . X,, and matching suffixes! y1,yo, ... yn, such
that T —
» Xiyk €L = j=k
> i.e. for each prefix, exactly one of the suffixes can be concatenated to it to form a
string in L
3. Prove minimum of n states by contradiction
3.1 Assume, for sake of contradiction, that |Q] < n.

3.2 By the pigeonhole principle, there must be two different prefixes, x; and x, that go
to the same state, ¢ -
3.3 So 5*(q,yj)%n{ust be accepting and non-accepting. =<
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s actually sufficient to find just n — 1 suffixes, i.e. we can get away with having one prefix x that
doesn’t have a matching suffix. See steps 3.2 and 3.3 for the reason why.




Another (worked out) lower bound example

Find the minimum number of states for a
DFSA that accepts

L={w e {0,1}* | w ends with ‘011'}.
Below we g|ve a 4-state DFSA for L.

So 4 is sufficient. Is it necessary7
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Another (worked out) lower bound example

Find the minimum number of states for a
DFSA that accepts

L={w e {0,1}* | w ends with ‘011'}.
Below we g|ve a 4-state DFSA for L.

So 4 is sufficient. Is it necessary?
Consider

> xp=¢

» x3 =0,y1 =11

> xo =01,y =1

» x3=011,y3 =¢



Another (worked out) lower bound example

Find the minimum number of states for a
DFSA that accepts
L={w e {0,1}* | w ends with ‘011'}.
Below, we give a 4-state DFSA for L. By inspection, each suffix y; has exactly
0 one prefix x; such that x;y; € L.
& /Q Suppose FSOC a DFSA with < 4 states
~( a @@ accepts L. By the pigeonhole principle,
there must be a distinct pair, x;, X, such

that 6*(s, x;) = 6*(s, xx) = q for some

0

1

So 4 is sufficient. Is it necessary? state q.
Consider WLOG, suppose j # 0. Then 6*(q, yj)
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must be accepting. But that would mean
we also accept, xxy; & L. =<«
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» xp=0Ly, =1 o

> Xp=¢

» x3=011,y3 =¢



An infinite flock of pigeons

Prove that L = {0"1" | n € N} is non-regular.
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Recipe: proving non-regularity via pigeonhole principle

Very similar to recipe for proving lower bound on number of states

To prove that L is non-regular

1. Find a infinite family of distinct prefixes xi, x2, .. ., and corresponding suffixes
Y1, Y2, ..., such that
> Xy €L <= j=k
» i.e. for each prefix, exactly one of the suffixes can be concatenated to it to form a
string in L
2. Prove non-existence of DFSA for L by contradiction
2.1 Assume, for sake of contradiction, that there is a DFSA M such that L(M) = L. Let
n be its number of states.
2.2 By the pigeonhole principle, there must be two different prefixes, x; and xi that go
to the same state, g

2.3 So ¢*(q,y;) must be accepting and non-accepting. =<«
=



Another approach: the Pumping Lemma
Use whichever approach you prefer. We'll ask you to prove non-regularity, but won't force you to use one
approach or the other.
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A
Let L be a regular language. Then there exists n € N, such that for every x € L where
|x| > n, x satisfies the following property:

» dy,v,w X, x=uwAv#eAluv| <n, and uvkw € L forall k € N
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Another approach: the Pumping Lemma
Use whichever approach you prefer. We'll ask you to prove non-regularity, but won't force you to use one
approach or the other.

Let L be a regular language. Then there exists n € N, such that for every x € L where
|x| > n, x satisfies the following property:

» dy,v,w e, x=uwAv#eAluv| <n, and uwkw € L forall k € N

i.e.

If L is regular, then every sufficiently long string in L contains a (non-empty) part that
can be repeated (“pumped”) any number of times, to keep getting more strings in L.



Pumping Lemma proof sketch

The pigeonhole principle returns
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Using Pumping Lemma to prove non-regularity: example 10 (o < py_

WTS: PAL = {x € {0,1}* | x is a palindrome} is non-regular.
Assume, for sake of contradiction, that PAL is regular. Then the Pumping Lemma
applies for some value n € N.

Consider K= oot e
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