
CSC236 winter 2020, week 12: (non-)regularity
Recommended reading: Chapter 7 Vassos course notes, section 7.6.3—

Colin Morris
colin@cs.toronto.edu

http://www.cs.toronto.edu/~colin/236/W20/

March 30, 2020

http://www.cs.toronto.edu/~colin/236/W20/

Reminders

I A3 due Thursday @ 15:00
I It’s short!
I Extra office hours available by request

I One last tutorial + quiz this Friday
I Also, final Q&A session Wednesday 12:00-14:00

I These are really worth attending!

I Marking scheme changes
I Course website will be updated when vote officially closes on Monday

I Exam-like final assessment (worth 20%) to be written April 7-9

https://piazza.com/class/k4xo4w48g2u35e?cid=313

Regular languages

A language L is regular iff

I L is denoted by a regular expression

I L is accepted by a deterministic FSA

I L is accepted by a non-deterministic FSA

(We now know that all of these criteria are equivalent.)

Proving regularity

A few options to prove that L is regular:

1. Construct an RE, or a DFSA, or an NFSA that matches L.

2. Use closure properties of regular languages. Show that L can be formed by
application of union/intersection/complement/Kleene star to some languages that
are known to be regular.

3. Use the fact that all finite languages are regular

Example: proving regularity

L1 = strings over {0, 1} of length 236. Prove L1 is regular.

L2 = strings over {0, 1} where length is a multiple of 236. Prove L2 is regular.

Example: proving regularity

L1 = strings over {0, 1} of length 236. Prove L1 is regular.

L2 = strings over {0, 1} where length is a multiple of 236. Prove L2 is regular.

Are all languages regular?
Big if true

Detour: probing the limits of FSAs

Suppose M is a DFSA such that L(M) = {an | ∃k ∈ N, n = 3k}.
What is the minimum number of states M can have?

Proving lower bounds on states
Recall, L(M) = {an | ∃k ∈ N, n = 3k}.

Consider

I δ∗(s, a) = q1
I δ∗(s, aa) = q2
I δ∗(s, aaa) = q3

Claim: q1, q2, and q3 are distinct.
Proof: Show that each of the following possibilities leads to a contradiction

I q3 = q1
I q3 = q2
I q2 = q1

Pigeonhole principle

Figure: 10 pigeons > 9 pigeonholes =⇒ pigeon cohabitation

Recipe: proving lower bound on DFSA states

To prove that any DFSA M that accepts L must have at least n states

1. Prove that n is sufficient, by demonstrating an accepting n-state DFSA
I (May or may not be necessary, depending on how question is worded)

2. Find n distinct prefixes x1, x2, . . . xn, and matching suffixes1 y1, y2, . . . yn, such
that

I xjyk ∈ L ⇐⇒ j = k
I i.e. for each prefix, exactly one of the suffixes can be concatenated to it to form a

string in L

3. Prove minimum of n states by contradiction

3.1 Assume, for sake of contradiction, that |Q| < n.
3.2 By the pigeonhole principle, there must be two different prefixes, xj and xk that go

to the same state, q
3.3 So δ∗(q, yj) must be accepting and non-accepting. ⇒⇐

1It’s actually sufficient to find just n− 1 suffixes, i.e. we can get away with having one prefix x that
doesn’t have a matching suffix. See steps 3.2 and 3.3 for the reason why.

Another (worked out) lower bound example
Find the minimum number of states for a
DFSA that accepts
L = {w ∈ {0, 1}∗ | w ends with ‘011’}.
Below, we give a 4-state DFSA for L.

q0 q1 q2 q3
0

1

1

0

1

0

0

1

So 4 is sufficient. Is it necessary?

Consider

I x0 = ε

I x1 = 0, y1 = 11

I x2 = 01, y2 = 1

I x3 = 011, y3 = ε

By inspection, each suffix yj has exactly
one prefix xj such that xjyj ∈ L.
Suppose FSOC a DFSA with < 4 states
accepts L. By the pigeonhole principle,
there must be a distinct pair, xj , xk , such
that δ∗(s, xj) = δ∗(s, xk) = q for some
state q.
WLOG, suppose j 6= 0. Then δ∗(q, yj)
must be accepting. But that would mean
we also accept, xkyj /∈ L. ⇒⇐

Another (worked out) lower bound example
Find the minimum number of states for a
DFSA that accepts
L = {w ∈ {0, 1}∗ | w ends with ‘011’}.
Below, we give a 4-state DFSA for L.

q0 q1 q2 q3
0

1

1

0

1

0

0

1

So 4 is sufficient. Is it necessary?
Consider

I x0 = ε

I x1 = 0, y1 = 11

I x2 = 01, y2 = 1

I x3 = 011, y3 = ε

By inspection, each suffix yj has exactly
one prefix xj such that xjyj ∈ L.
Suppose FSOC a DFSA with < 4 states
accepts L. By the pigeonhole principle,
there must be a distinct pair, xj , xk , such
that δ∗(s, xj) = δ∗(s, xk) = q for some
state q.
WLOG, suppose j 6= 0. Then δ∗(q, yj)
must be accepting. But that would mean
we also accept, xkyj /∈ L. ⇒⇐

Another (worked out) lower bound example
Find the minimum number of states for a
DFSA that accepts
L = {w ∈ {0, 1}∗ | w ends with ‘011’}.
Below, we give a 4-state DFSA for L.

q0 q1 q2 q3
0

1

1

0

1

0

0

1

So 4 is sufficient. Is it necessary?
Consider

I x0 = ε

I x1 = 0, y1 = 11

I x2 = 01, y2 = 1

I x3 = 011, y3 = ε

By inspection, each suffix yj has exactly
one prefix xj such that xjyj ∈ L.
Suppose FSOC a DFSA with < 4 states
accepts L. By the pigeonhole principle,
there must be a distinct pair, xj , xk , such
that δ∗(s, xj) = δ∗(s, xk) = q for some
state q.
WLOG, suppose j 6= 0. Then δ∗(q, yj)
must be accepting. But that would mean
we also accept, xkyj /∈ L. ⇒⇐

An infinite flock of pigeons

Prove that L = {0n1n | n ∈ N} is non-regular.

Recipe: proving non-regularity via pigeonhole principle
Very similar to recipe for proving lower bound on number of states

To prove that L is non-regular

1. Find a infinite family of distinct prefixes x1, x2, . . ., and corresponding suffixes
y1, y2, . . ., such that

I xjyk ∈ L ⇐⇒ j = k
I i.e. for each prefix, exactly one of the suffixes can be concatenated to it to form a

string in L

2. Prove non-existence of DFSA for L by contradiction

2.1 Assume, for sake of contradiction, that there is a DFSA M such that L(M) = L. Let
n be its number of states.

2.2 By the pigeonhole principle, there must be two different prefixes, xj and xk that go
to the same state, q

2.3 So δ∗(q, yj) must be accepting and non-accepting. ⇒⇐

Another approach: the Pumping Lemma
Use whichever approach you prefer. We’ll ask you to prove non-regularity, but won’t force you to use one
approach or the other.

Let L be a regular language. Then there exists n ∈ N, such that for every x ∈ L where
|x | ≥ n, x satisfies the following property:

I ∃y , v ,w ∈ Σ∗, x = uvw ∧ v 6= ε ∧ |uv | ≤ n, and uvkw ∈ L for all k ∈ N

i.e.

If L is regular, then every sufficiently long string in L contains a (non-empty) part that
can be repeated (“pumped”) any number of times, to keep getting more strings in L.

Another approach: the Pumping Lemma
Use whichever approach you prefer. We’ll ask you to prove non-regularity, but won’t force you to use one
approach or the other.

Let L be a regular language. Then there exists n ∈ N, such that for every x ∈ L where
|x | ≥ n, x satisfies the following property:

I ∃y , v ,w ∈ Σ∗, x = uvw ∧ v 6= ε ∧ |uv | ≤ n, and uvkw ∈ L for all k ∈ N

i.e.

If L is regular, then every sufficiently long string in L contains a (non-empty) part that
can be repeated (“pumped”) any number of times, to keep getting more strings in L.

Pumping Lemma proof sketch
The pigeonhole principle returns

Using Pumping Lemma to prove non-regularity: example

WTS: PAL = {x ∈ {0, 1}∗ | x is a palindrome} is non-regular.
Assume, for sake of contradiction, that PAL is regular. Then the Pumping Lemma
applies for some value n ∈ N.

