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Abstract
We study the problem of building generative
models of natural source code (NSC); that is,
source code written by humans and meant to
be understood by humans. Our primary con-
tribution is to describe new generative models
that are tailored to NSC. The models are based
on probabilistic context free grammars (PCFGs)
and neuro-probabilistic language models (Mnih
& Teh, 2012), which are extended to incorporate
additional source code-specific structure. These
models can be efficiently trained on a corpus
of source code and outperform a variety of less
structured baselines in terms of predictive log
likelihoods on held-out data.

1. Introduction
Source code is ubiquitous, and a great deal of human ef-
fort goes into developing it. An important goal is to de-
velop tools that make the development of source code eas-
ier, faster, and less error-prone, and to develop tools that
are able to better understand pre-existing source code. To
date this problem has largely been studied outside of ma-
chine learning. Many problems in this area do not appear
to be well-suited to current machine learning technologies.
Yet, source code is some of the most widely available data
with many public online repositories. Additionally, mas-
sive open online courses (MOOCs) have begun to collect
source code homework assignments from tens of thousands
of students (Huang et al., 2013). At the same time, the soft-
ware engineering community has recently observed that it
is useful to think of source code as natural—written by hu-
mans and meant to be understood by other humans (Hindle
et al., 2012). This natural source code (NSC) has a great
deal of statistical regularity that is ripe for study in machine
learning.
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The combination of these two observations—the avail-
ability of data, and the presence of amenable statisti-
cal structure—has opened up the possibility that machine
learning tools could become useful in various tasks related
to source code. At a high level, there are several poten-
tial areas of contributions for machine learning. First, code
editing tasks could be made easier and faster. Current au-
tocomplete suggestions rely primarily on heuristics devel-
oped by an Integrated Development Environment (IDE) de-
signer. With machine learning methods, we might be able
to offer much improved completion suggestions by leverag-
ing the massive amount of source code available in public
repositories. Indeed, Hindle et al. (2012) have shown that
even simple n-gram models are useful for improving code
completion tools, and Nguyen et al. (2013) have extended
these ideas. Other related applications include finding bugs
(Kremenek et al., 2007), mining and suggesting API us-
age patterns (Bruch et al., 2009; Nguyen et al., 2012; Wang
et al., 2013), as a basis for code complexity metrics (Al-
lamanis & Sutton, 2013), and to help with enforcing cod-
ing conventions (Allamanis et al., 2014). Second, machine
learning might open up whole new applications such as au-
tomatic translation between programming languages, auto-
matic code summarization, and learning representations of
source code for the purposes of visualization or discrim-
inative learning. Finally, we might hope to leverage the
large amounts of existing source code to learn improved
priors over programs for use in programming by example
(Halbert, 1984; Gulwani, 2011) or other program induction
tasks.

One approach to developing machine learning tools for
NSC is to improve specific one-off tasks related to source
code. Indeed, much of the work cited above follows in
this direction. An alternative, which we pursue here, is to
develop a generative model of source code with the aim
that many of the above tasks then become different forms
of query on the same learned model (e.g., code comple-
tion is conditional sampling; bug fixing is model-based de-

†Work done primarily while author was an intern at Mi-
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for (m[canplace] = -0; i[0] <= temp; m++) {

co.nokori = Dictionary;

continue;

} (a) Log-bilinear PCFG

for (int i = words; i < 4; ++i) {

for (int j = 0; j < i; ++j) {

if (words.Length % 10 == 0) {

Math.Max(j+j, i*2 + Math.Abs(i+j));

}

}

}

(b) Our Model

Figure 1. Samples of for loops generated by learned models. Our
model captures hierarchical structure and other patterns of vari-
able usage and local scoping rules. Whitespace edited to improve
readability.

noising; representations may be derived from latent vari-
ables (Hinton & Salakhutdinov, 2006) or from Fisher vec-
tors (Jaakkola & Haussler, 1998)). We believe that build-
ing a generative model focuses attention on the challenges
that source code presents. It forces us to model all aspects
of the code, from the high level structure of classes and
method declarations, to constraints imposed by the pro-
gramming language, to the low level details of how vari-
ables and methods are named. We believe building good
models of NSC to be a worthwhile modelling challenge for
machine learning research to embrace.

In Section 2 we introduce notation and motivate the re-
quirements of our models—they must capture the sequen-
tial and hierarchical nature of NSC, naturalness, and code-
specific structural constraints. In Sections 3 and 4 we in-
troduce Log-bilinear Tree-Traversal models (LTTs), which
combine natural language processing models of trees with
log-bilinear parameterizations, and additionally incorpo-
rate compiler-like reasoning. In Section 5 we discuss
how efficiently to learn these models, and in Section 7 we
show empirically that they far outperform the standard NLP
models that have previously been applied to source code.
As an introductory result, Fig. 1 shows samples generated
by a Probabilistic Context Free Grammar (PCFG)-based
model (Fig. 1 (b)) versus samples generated by the full ver-
sion of our model (Fig. 1 (b)). Although these models ap-
ply to any common imperative programming language like
C/C++/Java, we focus specifically on C#. This decision is
based on (a) the fact that large quantities of data are read-
ily available online, and (b) the recently released Roslyn
C# compiler (MSDN, 2011) exposes APIs that allow easy
access to a rich set of internal compiler data structures and
processing results.

2. Modelling Source Code
In this section we discuss the challenges in building a gen-
erative model of code. In the process we motivate our
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Figure 2. Example Roslyn AST. Rectangles are internal nodes and
shaded circles are tokens.

choice of representation and model and introduce termi-
nology that will be used throughout.

Hierarchical Representation. The first step in compila-
tion is to lex code into a sequence of tokens, (at)T

t=1 = a .
Tokens are strings such as “sum”, “.”, or “int” that serve as
the atomic syntactic elements of a programming language.
However, representing code as a flat sequence leads to very
inefficient descriptions. For example, in a C# for loop,
there must be a sequence containing the tokens for, (, an
initializer statement, a condition expression, an increment
statement, the token ), then a body block. A representation
that is fundamentally flat cannot compactly represent this
structure, because for loops can be nested. Instead, it is
more efficient to use the hierarchical structure that is native
to the programming language. Indeed, most source code
processing is done on tree structures that encode this struc-
ture. These trees are called abstract syntax trees (ASTs)
and are constructed either explicitly or implicitly by com-
pilers after lexing valid sequences of code. The leaf nodes
of the AST are the tokens produced by the lexer. The inter-
nal nodes {ni}N

i=1 are specific to a compiler and correspond
to expressions, statements or other high level syntactic el-
ements such as Block or ForStatement. The children
tuple Ci of an internal node ni is a tuple of nodes or to-
kens. An example AST is shown in Fig. 2. Note how the
EqualsValueClause node has a subtree corresponding to
the code = sum. Because many crucial properties of the
source code can be derived from an AST, they are a pri-
mary data structure used to reason about source code. For
example, the tree structure is enough to determine which
variables are in scope at any point in the program. For this
reason we choose the AST as the representation for source
code and consider generative models that define distribu-
tions over ASTs.

Modelling Context Dependence. A PCFG seems like a
natural choice for modelling ASTs. PCFGs generate ASTs
from the root to the leaves by repeatedly sampling children



Structured Generative Models of Natural Source Code

Algorithm 1 Sampling from LTTs.
1: initialize empty stack S
2: sample (n,h0)⇠ p(n,h0)
3: push n onto S
4: (i, t) (1,1)
5: while S is not empty do
6: pop the top node n from S
7: if n is an internal node then
8: ni n
9: sample hi ⇠ p(hi |hi�1)

10: sample Ci ⇠ p(Ci |ni,hi)
11: push n for n 2 REVERSED(Ci) onto S
12: i i+1
13: else
14: at  n
15: t t +1
16: end if
17: end while

tuples given a parent node. The procedure recurses until
all leaves are tokens producing nodes ni in a depth-first
traversal order and sampling children tuples independently
of the rest of the tree. Unfortunately this independence as-
sumption produces a weak model; Fig. 1 (a) shows samples
from such a model. While basic constraints like match-
ing of parentheses and braces are satisfied, most important
contextual dependencies are lost. For example, identifier
names (variable and method names) are drawn indepen-
dently of each other given the internal nodes of the AST,
leading to nonsense code constructions.

The first source of context dependence in NSC comes from
the naturalness of software. People have many stylistic
habits that significantly limit the space of programs that we
might expect to see. For example, when writing nested for
loops, it is common to name the outer loop variable i and
the inner loop variable j. The second source of context de-
pendence comes from additional constraints inherent in the
semantics of code. Even if the syntax is context free, the
fact that a program conforms to the grammar does not en-
sure that a program compiles. For example, variables must
be declared before they are used.

Our approach to dealing with dependencies beyond what
a PCFG can represent will be to introduce traversal vari-
ables {hi}N

i=0 that evolve sequentially as the nodes ni are
being generated. Traversal variables modulate the distribu-
tion over children tuples by maintaining a representation of
context that depends on the state of the AST generated so
far.

3. Log-bilinear Tree-Traversal Models
LTTs are a family of probabilistic models that generate
ASTs in a depth-first order (Algorithm 1). First, the stack is
initialized and the root is pushed (lines 1-4). Elements are
popped from the stack until it is empty. If an internal node

ni is popped (line 6), then it is expanded into a children
tuple and its children are pushed onto the stack (lines 10-
11). If a token at is popped, we label it and continue (line
14). This procedure has the effect of generating nodes in a
depth-first order. In addition to the tree that is generated in
a recursive fashion, traversal variables hi are updated when-
ever an internal node is popped (line 9). Thus, they traverse
the tree, evolving sequentially, with each hi corresponding
to some partial tree of the final AST. This sequential view
will allow us to exploit context, such as variable scoping,
at intermediate stages of the process (see Section 4).

Algorithm 1 produces a sequence of internal nodes (ni)N
i=1,

traversal variables (hi)N
i=0, and the desired tokens {at}T

t=1.
It is defined by three distributions: (a) the prior over the
root node and traversal variables, p(n,h); (b) the distribu-
tion over children tuples conditioned on the parent node
and h, denoted p(C |n,h); and (c) the transition distribution
for the hs, denoted p(hi |hi�1). The joint distribution over
the elements produced by Algorithm 1 is

p(n1,h0)
N

’
i=1

p(Ci |ni,hi)p(hi |hi�1) (1)

Thus, LTTs can be viewed as a Markov model equipped
with a stack—a special case of a Probabilistic Pushdown
Automata (PPDA) (Abney et al., 1999). Because depth-
first order produces tokens in the same order that they are
observed in the code, it is particularly well-suited. We note
that other traversal orders produce valid distributions over
trees such as right-left or breadth-first. Because we com-
pare to sequential models, we consider only depth-first.

Parameterizations. Most of the uncertainty in generation
comes from generating children tuples. In order to avoid an
explosion in the number of parameters for the children tu-
ple distribution p(C |n,h), we use a log-bilinear form. For
all distributions other than p(C |n,h) we use a simple tabu-
lar parameterization.

The log-bilinear form consists of a real-valued vector rep-
resentation of (ni,hi) pairs, Rcon(ni,hi), a real-valued vec-
tor representation for the children tuple, Rch(Ci), and a bias
term for the children, bch(Ci). These are combined via an
inner product, which gives the negative energy of the chil-
dren tuple

�E(Ci;ni,hi) = Rch(Ci)
T Rcon(ni,hi)+bch(Ci)

As is standard, this is then exponentiated and normalized to
give the probability of sampling the children: p(Ci |ni,hi)µ
exp{�E(Ci;ni,hi)} . We take the support over which to
normalize this distribution to be the set of children tuples
observed as children of nodes of type ni in the training set.

The representation functions rely on the notion of an R ma-
trix that can be indexed into with objects to look up D di-
mensional real-valued vectors. Rx denotes the row of the R
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(a) pop n1, sample h1
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(b) sample children, and
push left-right
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(c) pop n2, sample h2
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(d) sample children tuple,
and push left-right
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(e) pop a1,a2, and n3, sam-
ple h3
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(f) sample children tuple,
and push left-right

Figure 3. Example sampling run from an LTT. Rectangles are in-
ternal nodes, shaded circles are tokens, circles are traversal vari-
ables, and stack S is shown in the state after the computations de-
scribed in subcaption. Parentheses indicate tuples of nodes and ar-
rows indicate conditioning. Popping of tokens omitted for brevity,
but note that they are labelled in the order encountered.

matrix corresponding to any variable equal to x. For exam-
ple, if ni = int and n j = int, then Rni = Rn j . These ob-
jects may be tuples and in particular (type, int) 6= int.
Similarly, bx looks up a real number. In the simple vari-
ant, each unique C sequence receives the representation
Rch(Ci) = RCi and bch(Ci) = bCi . The representations for
(n,h) pairs are defined as sums of representations of their
components. If hi is a collection of variables (hi j represent-
ing the jth variable at the ith step) then

Rcon(ni,hi) =W con
0 Rni +

H

Â
j=1

W con
j Rhi j (2)

The W cons are matrices (diagonal for computational effi-
ciency) that modulate the contribution of a variable in a
position-dependent way. In other variants the children tuple
representations will also be defined as sums of their com-
ponent representations. The log-bilinear parameterization
has the desirable property that the number of parameters

grows linearly in the dimension of h, so we can afford to
have high dimensional traversal variables without worry-
ing about exponentially bad data fragmentation.

4. Extending LTTs
The extensions of LTTs in this section allow (a) certain
traversal variables to depend arbitrarily on previously gen-
erated elements of the AST; (b) annotating nodes with
richer types; and (c) letting Rch be compositionally defined,
which becomes powerful when combined with determinis-
tic reasoning about variable scoping.

We distinguish between deterministic and latent traversal
variables. The former can be computed deterministically
from the current partial tree (the tree nodes and tokens that
have been instantiated at step i) that has been generated
while the latter cannot. To refer to a collection of both de-
terministic and latent traversal variables we continue to use
the unqualified “traversal variables” term.

Deterministic Traversal Variables. In the basic genera-
tive procedure, traversal variables hi satisfy the first-order
Markov property, but it is possible to condition on any part
of the tree that has already been produced. That is, we
can replace p(hi |hi�1) by p(hi |h0:i�1,n1:i,a1:t) in Eq. 1.
Inference becomes complicated unless these variables are
deterministic traversal variables (inference is explained in
Section 5) and the unique value that has support can be
computed efficiently. Examples of these variables include
the set of node types that are ancestors of a given node,
and the last n tokens or internal nodes that have been gen-
erated. Variable scoping, a more elaborate deterministic
relationship, is considered later.

Annotating Nodes. Other useful features may not be
deterministically computable from the current partial tree.
Consider knowing that a BinaryExpression will evaluate
to an object of type int. This information can be encoded
by letting nodes take values in the cross-product space of
the node type space and the annotation space. For exam-
ple, when adding type annotations we might have nodes
take value (BinaryExpression, int) where before they
were just BinaryExpression. This can be problematic,
because the cardinality of the parent node space increases
exponentially as we add annotations. Because the annota-
tions are uncertain, this means there are more choices of
node values at each step of the generative procedure, and
this incurs a cost in log probabilities when evaluating a
model. Experimentally we found that simply annotating
expression nodes with type information led to worse log
probabilities of generating held out data: the cost of gen-
erating tokens decreased because the model had access to
type information, the increased cost of generating type an-
notations along with nodetypes outweighed the improve-
ment.
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Identifier Token Scoping. The source of greatest
uncertainty when generating a program are children of
IdentifierToken nodes. IdentifierToken nodes are
very common and are parents of all tokens (e.g. vari-
able and method names) that are not built-in language key-
words (e.g., IntKeyword or EqualsToken) or constants
(e.g., StringLiterals). Knowing which variables have
previously been declared and are currently in scope is
one of the most powerful signals when predicting which
IdentifierToken will be used at any point in a program.
Other useful cues include how recently the variable was de-
clared and what the type the variable is. In this section we
a scope model for LTTs.

Scope can be represented as a set of variable feature vectors
corresponding to each to a variable that is in scope.1 Thus,
each feature vector contains a string identifier correspond-
ing to the variable along with other features as (key, value)
tuples, for example (type,int). A variable is “in scope”
if there is a feature vector in the scope set that has a string
identifier that is the same as the variable’s identifier.

When sampling an identifier token, there is a two step pro-
cedure. First, decide whether this identifier token will be
sampled from the current scope. This is accomplished by
annotating each IdentifierToken internal node with a
binary variable that has the states global or local. If
local, proceed to use the local scope model defined next.
If global, sample from a global identifier token model that
gives support to all identifier tokens. Note, we consider
the global option a necessary smoothing device, although
ideally we would have a scope model complete enough to
have all possible identifier tokens.

The scope set can be updated deterministically as we tra-
verse the AST by recognizing patterns that correspond to
when variables should be added or removed from the scope.
We implemented this logic for three cases: parameters of
a method, locally declared variables, and class fields that
have been defined prior in the class definition. We do
not include class fields defined after the current point in
the code, and variables and methods available in included
namespaces. This incompleteness necessitates the global
option described above, but these three cases are very com-
mon and cover many interesting cases.

Given the scope set which contains variable feature vec-
tors {va} and parent node (IdentifierToken, local),
the probability of selecting token child a is proportional
to p(a |ni,hi) µ exp{�E(a;ni,hi)}, where we normalize
only over the variables currently in scope. Specifically, we

1Technically, we view the scope as a deterministic traversal
variable, but it does not contribute to Rcon.

let Rch(a) and bch(a) be defined as follows:

Rch(a) =
V

Â
u=1

W ch
u Rvau bch(a) =

V

Â
u=1

bvau . (3)

For example, if a variable in scope has feature vector
(numNodes, (type, int) , (recently-declared, 0)),
then its corresponding Rch would be a context matrix-
modulated sum of representations R

numNodes

, R(type,int),
and R(recently-declared,0). This representation will then be
combined with the context representation as in the basic
model. The string identifier feature numNodes is the same
object as token nodes of the same string, thus they share
their representation.

5. Inference and Learning in LTTs
In this section we briefly consider how to compute gradi-
ents and probabilities in LTTs.

Only Deterministic Traversal Variables. If all traver-
sal variables hi can be computed deterministically from the
current partial tree, we use the compiler to compute the
full AST corresponding to program am. From the AST we
compute the only valid setting of the traversal variables.
Because both the AST and the traversal variables can be de-
terministically computed from the token sequence, all vari-
ables in the model can be treated as observed. Since LTTs
are directed models, this means that the total log probability
is a sum of log probabilities at each production, and learn-
ing decomposes into independent problems at each produc-
tion. Thus, we can simply stack all productions into a sin-
gle training set and follow standard gradient-based proce-
dures for training log-bilinear models. More details will be
described in Section 7, but generally we follow the Noise-
Contrastive Estimation (NCE) technique employed in Mnih
& Teh (2012).

Latent Traversal Variables. In the second case, we al-
low latent traversal variables that are not deterministically
computable from the AST. In this case, the traversal vari-
ables couple the learning across different productions from
the same tree. For simplicity and to allow efficient exact
inference, we restrict these latent traversal variables to just
be a single discrete variable at each step (although this re-
striction could easily be lifted if one was willing to use
approximate inference). Because the AST is still a deter-
ministic function of the tokens, computing log probabil-
ities corresponds to running the forward-backward algo-
rithm over the latent states in the depth-first traversal of
the AST. We can formulate an EM algorithm adapted to
the NCE-based learning of log-bilinear models for learning
parameters. The details of this can be found in the Supple-
mentary Material.
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6. Related Work
The LTTs described here are closely related to several ex-
isting models. Firstly, a Hidden Markov Model (HMM)
can be recovered by having all children tuples contain a
token and a Next node, or just a token (which will ter-
minate the sequence), and having a single discrete latent
traversal variable. If the traversal variable has only one
state and the children distributions all have finite support,
then an LTT becomes equivalent to a Probabilistic Context
Free Grammar (PCFG). PCFGs and their variants are com-
ponents of state-of-the-art parsers of English (McClosky
et al., 2006), and many variants have been explored: inter-
nal node annotation Charniak (1997) and latent annotations
Matsuzaki et al. (2005). Aside from the question of the
order of the traversals, the traversal variables make LTTs
special cases of Probabilistic Pushdown Automata (PPDA)
(for definition and weak equivalence to PCFGs, see Abney
et al. (1999)). Log-bilinear parameterizations have been
applied widely in language modeling, for n-gram models
(Saul & Pereira, 1997; Mnih & Hinton, 2007; Mnih &
Teh, 2012) and PCFG models (Charniak, 2000; Klein &
Manning, 2002; Titov & Henderson, 2007; Henderson &
Titov, 2010). To be clear, our claim is not that general Tree
Traversal models or the log-bilinear paremeterizations are
novel; however, we believe that the full LTT construction,
including the tree traversal structure, log-bilinear param-
eterization, and incorporation of deterministic logic to be
novel and of general interest.

The problem of modeling source code is relatively under-
studied in machine learning. We previously mentioned
Hindle et al. (2012) and Allamanis & Sutton (2013), which
tackle the same task as us but with simple NLP models.
Very recently, Allamanis & Sutton (2014) explores more
sophisticated nonparametric Bayesian grammar models of
source code for the purpose of learning code idioms. Liang
et al. (2010) use a sophisticated non-parametric model to
encode the prior that programs should factorize repeated
computation, but there is no learning from existing source
code, and the prior is only applicable to a functional pro-
gramming language with quite simple syntax rules. Our
approach builds a sophisticated and learned model and sup-
ports the full language specification of a widely used imper-
ative programming language.

7. Experimental Analysis
In all experiments, we used a dataset that we collected from
TopCoder.com. There are 2261 C# programs which make
up 140k lines of code and 2.4M parent nodes in the col-
lective abstract syntax trees. These programs are solutions
to programming competitions, and there is some overlap
in programmers and in problems across the programs. We
created training splits based on the user identity, so the set
of users in the test set are disjoint from those in the training

or validation sets (but the training and validation sets share
users). The overall split proportions are 20% test, 10% val-
idation, and 70% train. The evaluation measure that we use
throughout is the log probability under the model of gener-
ating the full program. All logs are base 2. To make this
number more easily interpretable, we divide by the num-
ber of tokens in each program, and report the average log
probability per token.

Experimental Protocol. All experiments use a valida-
tion set to choose hyperparameter values. These include
the strength of a smoothing parameter and the epoch at
which to stop training (if applicable). We did a coarse grid
search in each of these parameters and the numbers we re-
port (for train, validation, and test) are all for the settings
that optimized validation performance. For the gradient-
based optimization, we used AdaGrad (Duchi et al., 2011)
with stochastic minibatches. Unless otherwise specified,
the dimension of the latent representation vectors was set
to 50. Occasionally the test set will have tokens or children
tuples unobserved in the training set. In order to avoid as-
signing zero probability to the test set, we locally smoothed
every children distribution with a default model that gives
support to all children tuples. The numbers we report are
a lower bound on the log probability of data under for a
mixture of our models with this default model. Details of
this smoothed model, along with additional experimental
details, appear in the Supplementary Materials. There is an
additional question of how to represent novel identifiers in
the scope model. We set the representations of all features
in the variable feature vectors that were unobserved in the
training set to the all zeros vector.

Baselines and Basic Log-bilinear Models. The natural
choices for baseline models are n-gram models and PCFG-
like models. In the n-gram models we use additive smooth-
ing, with the strength of the smoothing hyperparameter
chosen to optimize validation set performance. Similarly,
there is a smoothing parameter in the PCFG-like models
that is chosen to optimize validation set performance. We
explored the effect of the log-bilinear parameterization in
two ways. First, we trained a PCFG model that was iden-
tical to the first PCFG model but with the parameteriza-
tion defined using the standard log-bilinear parameteriza-
tion. This is the most basic LTT model, with no traversal
variables (LTT- /0). The result was nearly identical to the
standard PCFG. Next, we trained a 10-gram model with
a standard log-bilinear parameterization, which is equiva-
lent to the models discussed in (Mnih & Teh, 2012). This
approach dominates the basic n-gram models, allowing
longer contexts and generalizing better. Results appear in
Fig. 4.

Deterministic Traversal Variables. Next, we augmented
LTT-/0 model with deterministic traversal variables that in-
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Method Train Valid Test
2-gram -4.28 -4.98 -5.13
3-gram -2.94 -5.05 -5.25
4-gram -2.70 -6.05 -6.31
5-gram -2.68 -7.22 -7.45
PCFG -3.67 -4.04 -4.23
LTT-/0 -3.67 -4.04 -4.24

LBL 10-gram -3.19 -4.62 -4.87

Figure 4. Baseline model log probabilities per token.

Method Train Valid Test
LTT- /0 -3.67 -4.04 -4.24

LTT-Seq -2.54 -3.25 -3.46
LTT-Hi -2.28 -3.30 -3.53

LTT-HiSeq -2.10 -3.06 -3.28

Figure 5. LTT models augmented with determistically deter-
minable latent variables.

clude hierarchical and sequential information. The hier-
archical information is the depth of a node, the kind of a
node’s parent, and a sequence of 10 ancestor history vari-
ables, which store for the last 10 ancestors, the kind of the
node and the index of the child that would need to be re-
cursed upon to reach the current point in the tree. The se-
quential information is the last 10 tokens that were gener-
ated.

In Fig. 5 we report results for three variants: hierarchy
only (LTT-Hi), sequence only (LTT-Seq), and both (LTT-
HiSeq). The hierarchy features alone perform better than
the sequence features alone, but that their contributions are
independent enough that the combination of the two pro-
vides a substantial gain over either of the individuals.

Latent Traversal Variables. Next, we considered latent
traversal variable LTT models trained with EM learning.
In all cases, we used 32 discrete latent states. Here, results
were more mixed. While the latent-augmented LTT (LTT-
latent) outperforms the LTT- /0 model, the gains are smaller
than achieved by adding the deterministic features. As a
baseline, we also trained a log-bilinear-parameterized stan-
dard HMM, and found its performance to be far worse than
other models. We also tried a variant where we added la-
tent traversal variables to the LTT-HiSeq model from the
previous section, but the training was too slow to be prac-
tical due to the cost of computing normalizing constants in
the E step. See Fig. 6.

Scope Model. The final set of models that we trained
incorporate the scope model from Section 4 (LTT-HiSeq-
Scope). The features of variables that we use are the iden-
tifier string, the type, where the variable appears in a list
sorted by when the variable was declared (also known as
a de Bruijn index), and where the variable appears in a
list sorted by when the variable was last assigned a value.

Method Train Valid Test
LTT- /0 -3.67 -4.04 -4.24

LTT-latent -3.23 -3.70 -3.91
LBL HMM -9.61 -9.97 -10.10

Figure 6. LTT-latent models augmented with latent variables and
learned with EM.

Method Train Valid Test
LTT-HiSeq (50) -2.10 -3.06 -3.28

LTT-HiSeq-Scope (2) -2.28 -2.65 -2.78
LTT-HiSeq-Scope (10) -1.83 -2.29 -2.44
LTT-HiSeq-Scope (50) -1.54 -2.18 -2.33

LTT-HiSeq-Scope (200) -1.48 -2.16 -2.31
LTT-HiSeq-Scope (500) -1.51 -2.16 -2.32

Figure 7. LTT models with deterministic traversal variables and
scope model. Number in parenthesis is the dimension of the rep-
resentation vectors.

Here, the additional structure provides a large additional
improvement over the previous best model (LTT-HiSeq).
See Fig. 7.

Analysis. To understand better where the improvements in
the different models come from, and to understand where
there is still room left for improvement in the models, we
break down the log probabilities from the previous exper-
iments based on the value of the parent node. The results
appear in Fig. 8. In the first column is the total log prob-
ability number reported previously. In the next columns,
the contribution is split into the cost incurred by generat-
ing tokens and trees respectively. We see, for example, that
the full scope model pays a slightly higher cost to generate
the tree structure than the Hi&Seq model, which is due to
it having to properly choose whether IdentifierTokens are
drawn from local or global scopes, but that it makes up for
this by paying a much smaller cost when it comes to gen-
erating the actual tokens.

In the Supplementary Materials, we go further into the
breakdowns for the best performing model, reporting the
percentage of total cost that comes from the top parent
kinds. IdentifierTokens from the global scope are the
largest cost (30.1%), with IdentifierTokens covered by
our local scope model (10.9%) and Blocks (10.6%) next.
This suggests that there would be value in extending our
scope model to include more IdentifierTokens and an
improved model of Block sequences.

Samples. Finally, we qualitatively evaluate the different
methods by drawing samples from the models. Samples of
for loops appear in Fig. 1. To generate these samples, we
ask (b) the PCFG and (c) the LTT-HiSeq-Scope model to
generate a ForStatement. For (a) the LBL n-gram model,
we simply insert a for token as the most recent token. We
also initialize the traversal variables to reasonable values:
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Method Total Token Tree
LTT- /0 -4.23 -2.78 -1.45

LTT-Seq -3.53 -2.28 -1.25
LTT-Hi -3.46 -2.18 -1.28

LTT-HiSeq -3.28 -2.08 -1.20
LTT-HiSeq-Scope -2.33 -1.10 -1.23

Figure 8. Breakdowns of test log probabilities by whether the
cost came from generating the tree structure or tokens. For all
models D = 50.

e.g., for the LTT-HiSeq-Scope model, we initialize the lo-
cal scope to include string[] words. We also provide
samples of full source code files (CompilationUnit) from
the LTT-HiSeq-Scope model in the Supplementary Mate-
rial, and additional for loops. Notice the structure that the
model is able to capture, particularly related to high level
organization, and variable use and re-use. It also learns
quite subtle things, like int variables often appear inside
square brackets.

8. Discussion
Natural source code is a highly structured source of data
that has been largely unexplored by the machine learning
community. We have built probabilistic models that cap-
ture some of the structure that appears in NSC. A key to
our approach is to leverage the great deal of work that has
gone into building compilers. The result is models that
not only yield large improvements in quantitative measures
over baselines, but also qualitatively produce far more re-
alistic samples.

There are many remaining modeling challenges. One ques-
tion is how to encode the notion that the point of source
code is to do something. Relatedly, how do we represent
and discover high level structure related to trying to ac-
complish such tasks? There are also a number of specific
sub-problems that are ripe for further study. Our model of
Block statements is naive, and we see that it is a significant
contributor to log probabilities. It would be interesting to
apply more sophisticated sequence models to children tu-
ples of Blocks. Also, applying the compositional repre-
sentation used in our scope model to other children tuples
would interesting. Similarly, it would be interesting to ex-
tend our scope model to handle method calls. Another high
level piece of structure that we only briefly experimented
with is type information. We believe there to be great po-
tential in properly handling typing rules, but we found that
the simple approach of annotating nodes to actually hurt
our models.

More generally, this work’s focus was on generative mod-
eling. An observation that has become popular in machine
learning lately is that learning good generative models can
be valuable when the goal is to extract features from the
data. It would be interesting to explore how this might be

applied in the case of NSC.

In sum, we argue that probabilistic modeling of source code
provides a rich source of problems with the potential to
drive forward new machine learning research, and we hope
that this work helps illustrate how that research might pro-
ceed forward.
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