Reinforcement Learning via Fenchel-Rockafellar Duality

Authors: Ofir Nachum, Bo Dai

Presenters: Dami Choi, Chris Zhang

Nachum, Ofir, and Bo Dai. "Reinforcement learning via fenchel-rockafellar duality." arXiv preprint arXiv:2001.01866 (2020).

This paper shows ...

- How a number RL problems can be expressed as a convex optimization problem
- An overview of how convex duality can be used to transform a problem to be more amenable to optimization
- How recent offline RL algorithms can be derived from this framework

This paper does not show...

- A new algorithm
- New theoretical or experimental results

Outline

- 1. Background on convex duality
- 2. Background on reinforcement learning
- 3. How to apply duality to offline policy evaluation
- 4. Offline policy optimization teaser
- 5. Colab notebook

Fenchel conjugates

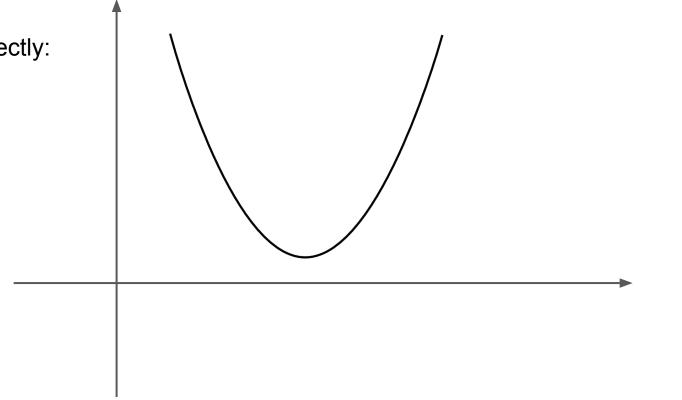
For some function $f: \Omega \to \mathbb{R}$

The Fenchel conjugate is given as $f_*(y) := \max_{x \in \Omega} \langle x, y \rangle - f(x)$

Under some conditions, we have the **duality** $f_{**} = f$

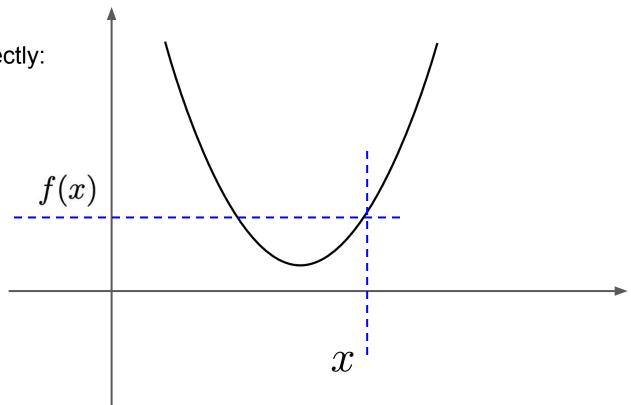
What's the intuition here?

Describe a function directly:



Describe a function directly:

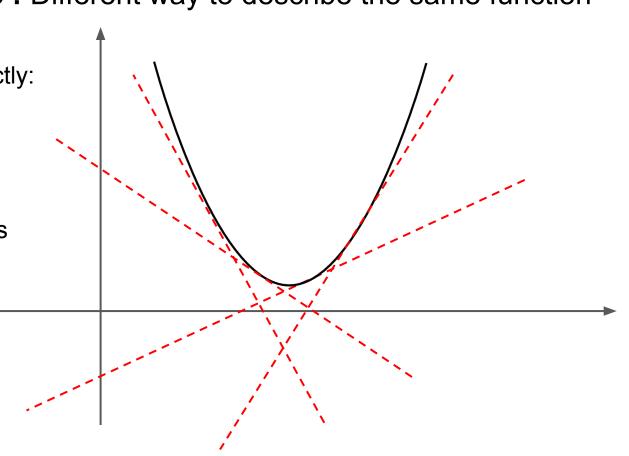
- You give me x
- I give you f(x)



Describe a function directly:

- You give me *x*
- I give you f(x)

Describe a function by its hyperplanes:

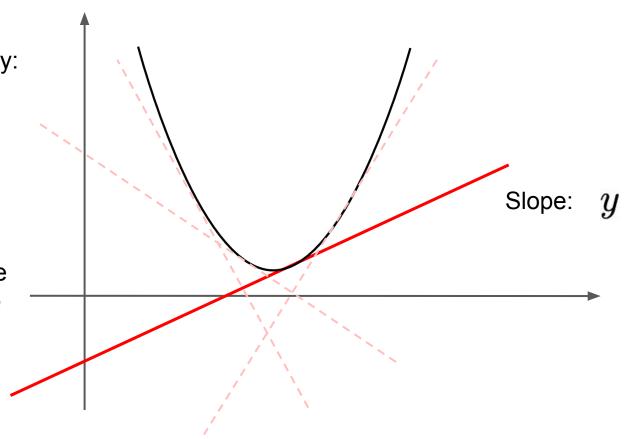


Describe a function directly:

- You give me *x*
- I give you f(x)

Describe a function by its hyperplanes:

• You give me the slope y of some hyperplane

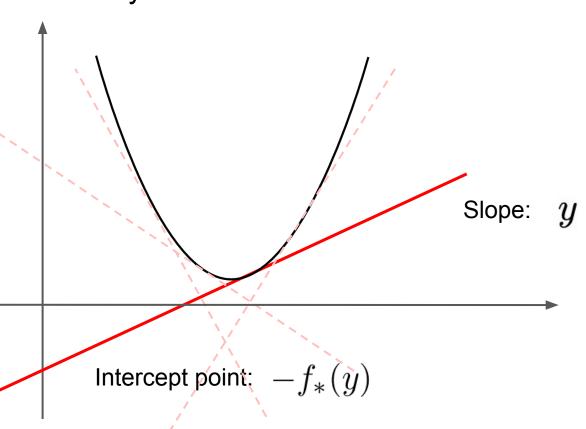


Describe a function directly:

- You give me *x*
- I give you f(x)

Describe a function by its hyperplanes:

- You give me the slope y of some hyperplane
- I give you that plane's intercept f_{*} (y)



Some common functions and their conjugates

Function	Conjugate	Notes
$rac{1}{2}x^2$	$rac{1}{2}y^2$	
$rac{1}{p} x ^p$	$ rac{1}{q} y ^q$	For $p, q > 0$ and $\frac{1}{p} + \frac{1}{q} = 1$.
$\delta_{\{a\}}(x)$	$\langle a,y angle$	$\delta_C(x)$ is 0 if $x \in C$ and ∞ otherwise.
$\delta_{\mathbb{R}_+}(x)$	$\delta_{\mathbb{R}}(y)$	$\mathbb{R}_{\pm} := \{ x \in \mathbb{R} \mid \pm x \ge 0 \}.$
$\langle a, x \rangle + b \cdot f(x)$	$b \cdot f_*\left(rac{y-a}{b} ight)$	
$D_f(x \ p)$	$\mathbb{E}_{z \sim p}[f_*(y(z))]$	For $x : \mathbb{Z} \to \mathbb{R}$ and p a distribution over \mathbb{Z} .
$D_{ m KL}(x p)$	$\log \mathbb{E}_{z \sim p}[\exp y(z)]$	For $x \in \Delta(\mathcal{Z})$, <i>i.e.</i> , a normalized distribution over \mathcal{Z} .

What's the use though?

Fenchel-Rockafellar Duality

Consider the primal problem

$$\min_{x \in \Omega} J_{\mathcal{P}}(x) := f(x) + g(Ax)$$

Where $f, g: \Omega \to \mathbb{R}$ are convex and lower semi-continuous, A is a linear map

The corresponding dual problem is

$$\max_{y\in\Omega^*} J_{\mathrm{D}} := -f_*(-A_*y) - g_*(y)$$

Where A_* is the adjoint (transpose) of A, i.e. satisfying $\langle y, Ax \rangle = \langle A_*y, x \rangle$

Fenchel-Rockafellar Duality

$$\min_{x \in \Omega} J_{\mathcal{P}}(x) := f(x) + g(Ax)$$
Primal

$$\max_{y\in\Omega^*}J_{\mathrm{D}}:=-f_*(-A_*y)-g_*(y)$$
Dual

Under mild conditions, we have duality

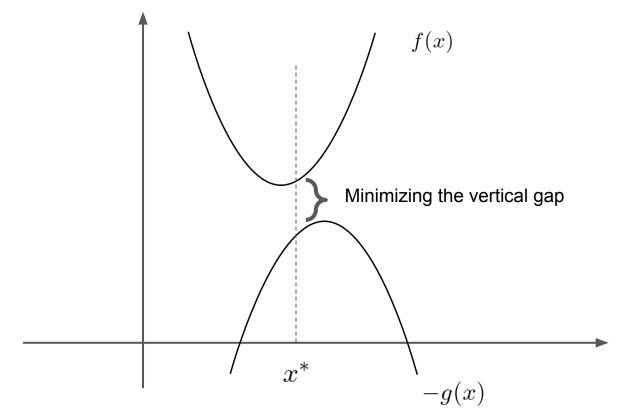
$$\min_{x\in\Omega} J_{\mathrm{P}}(x) = \max_{y\in\Omega^*} J_{\mathrm{D}}(y)$$

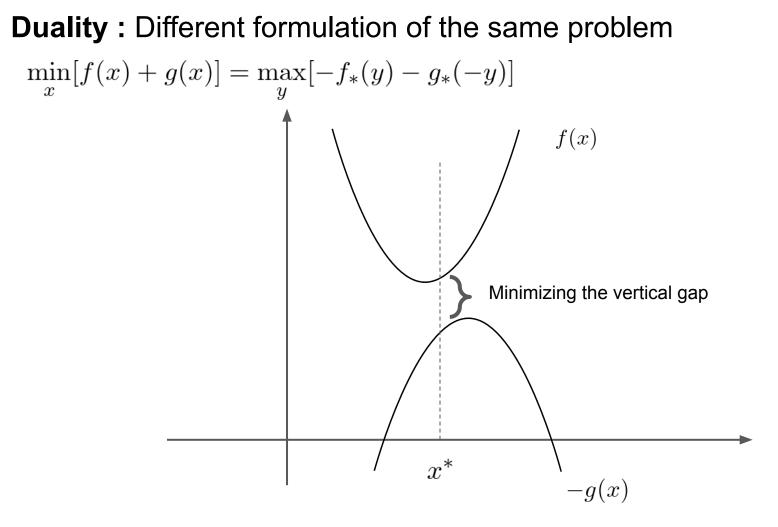
Furthermore, the solution to the dual can recover the solution to the primal

$$y^* := rg \max_y J_{\mathrm{D}}(y)$$

 $x^* = f'_*(-A_*y^*)$

Duality : Different formulation of the same problem $\min_{x} [f(x) + g(x)]$





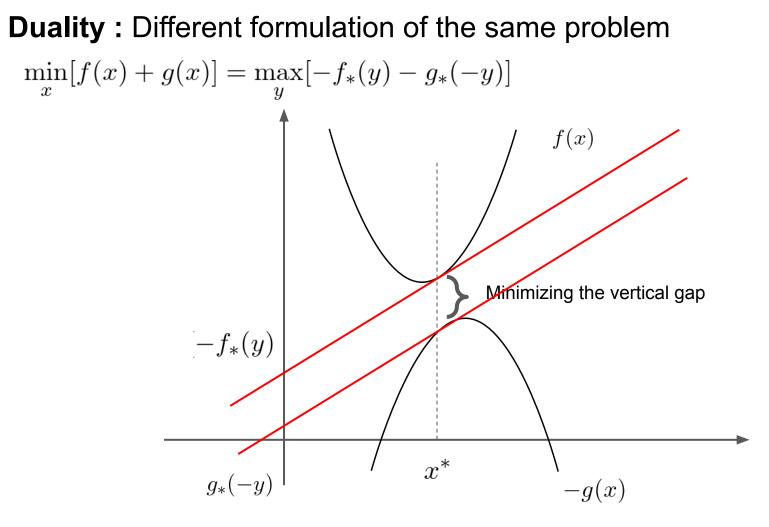
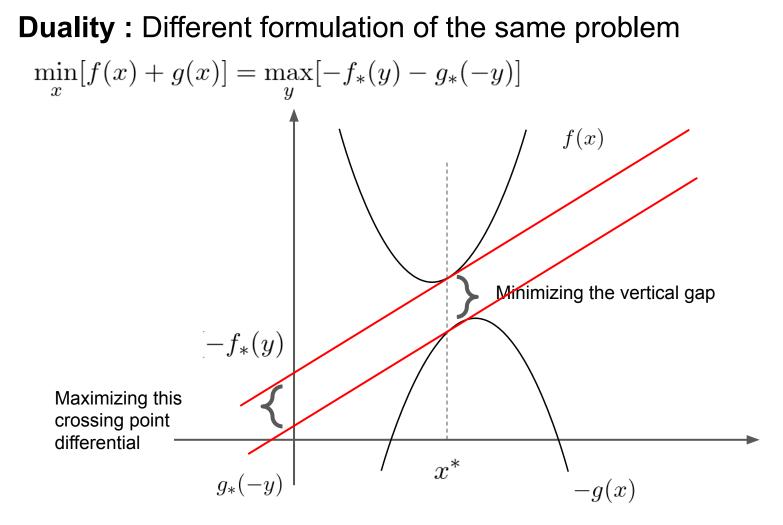


Figure inspired by: D. Bertsekas, "6.253 Convex Analysis and Optimization, Complete Lecture Notes"



Summary

The Fenchel conjugate is another way of describing a function

• Given some slope value, return the crossing point of the corresponding bounding hyperplane

Fenchel-Rockafellar duality allows us to describe an optimization problem in different (possibly more computational friendly) manner.

• This is done by changing the form of the problem to be expressed using the conjugate of a function

Reinforcement Learning

Given an MDP $\mathcal{M} = \langle S, A, R, T, \mu_0, \gamma \rangle$

we are interested in the value of policies w.r.t. to the MDP

$$\rho(\pi) = (1 - \gamma) \cdot \mathbb{E}_{\substack{s_0 \sim \mu_0, \ a_t \sim \pi(s_t) \\ s_{t+1} \sim T(s_t, a_t)}} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) \right]$$

Reinforcement Learning

Given an MDP $\mathcal{M} = \langle S, A, R, T, \mu_0, \gamma \rangle$

we are interested in the value of policies w.r.t. to the MDP

$$\rho(\pi) = (1 - \gamma) \cdot \mathbb{E}_{\substack{s_0 \sim \mu_0, a_t \sim \pi(s_t) \\ s_{t+1} \sim T(s_t, a_t)}} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) \right]$$

• Estimating $\rho(\pi)$ of a given policy π

<= policy evaluation

Reinforcement Learning

Given an MDP $\mathcal{M} = \langle S, A, R, T, \mu_0, \gamma \rangle$

we are interested in the value of policies w.r.t. to the MDP

$$\rho(\pi) = (1 - \gamma) \cdot \mathbb{E}_{\substack{s_0 \sim \mu_0, a_t \sim \pi(s_t) \\ s_{t+1} \sim T(s_t, a_t)}} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) \right]$$

- Estimating $\rho(\pi)$ of a given policy π <= policy evaluation
- Maximizing $\rho(\pi)$ w.r.t. π ($\pi^* := \arg \max_{\pi} \rho(\pi)$) <= policy optimization

Offline RL

This paper focuses on the offline RL setting, where the goal is to estimate $\rho(\pi)$

Using a static dataset of logged experience

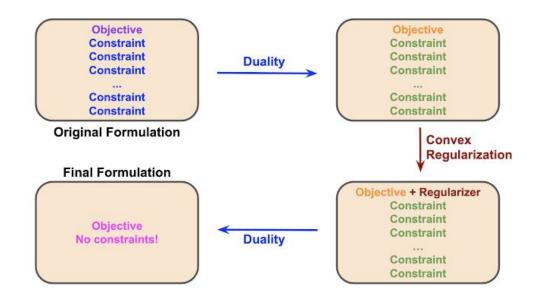
$$\mathcal{D} = \{(s^{(i)}, a^{(i)}, r^{(i)}, s^{(i)'})\}_{i=1}^{N}$$

$$(s^{(i)}, a^{(i)}) \sim d^{\mathcal{D}} \text{ and } s^{(i)'} \sim T(s^{(i)}, a^{(i)})$$

$$(unknown distribution)$$

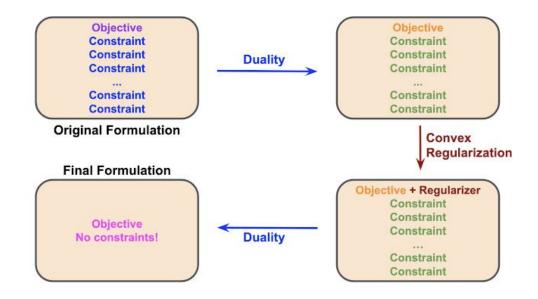
Outline of the paper

- 1. Formulate RL problems as constrained optimization problems
- 2. Apply various techniques to make the problem easier to solve



Outline of the paper

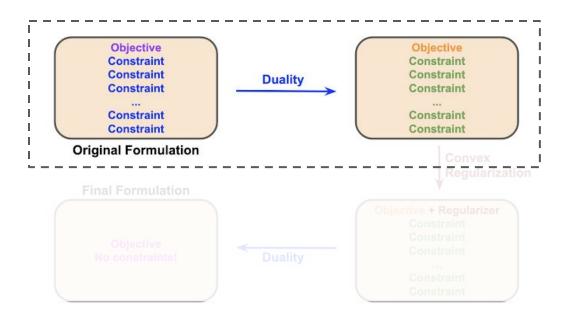
- 1. Formulate RL problems as constrained optimization problems
- 2. Apply various techniques to make the problem easier to solve



Policy evaluation

First step

Introduce linear programming formulation of policy evaluation



$$\rho(\pi) = (1-\gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}}[Q(s_0, a_0)]$$

$$\rho(\pi) = \mathbb{E}_{(s,a)\sim d^{\pi}}[R(s,a)]$$

$$\rho(\pi) = (1-\gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}}[Q(s_0, a_0)]$$

 $\rho(\pi) = \mathbb{E}_{(s,a)\sim d^{\pi}}[R(s,a)]$

$$\rho(\pi) = (1-\gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} [Q(s_0, a_0)]$$
$$Q^{\pi}(s, a) = \mathbb{E}_{\substack{a_t \sim \pi(s_t) \\ s_{t+1} \sim T(s_t, a_t)}} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) \mid s_0 = s, a_0 = a \right]$$

Future discounted sum of rewards of following $\,\pi\,$ starting at $\,s,a\,$

 $\rho(\pi) = \mathbb{E}_{(s,a)\sim d^{\pi}}[R(s,a)]$

$$\rho(\pi) = (1 - \gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} [Q^{\pi}(s_0, a_0)]$$
$$Q^{\pi}(s, a) = R(s, a) + \gamma \cdot \mathcal{P}^{\pi} Q^{\pi}(s, a)$$

 $\rho(\pi) = \mathbb{E}_{(s,a)\sim d^{\pi}}[R(s,a)]$

$$\rho(\pi) = (1 - \gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} [Q^{\pi}(s_0, a_0)]$$
$$Q^{\pi}(s, a) = R(s, a) + \gamma \cdot \mathcal{P}^{\pi} Q^{\pi}(s, a)$$

 $\mathcal{P}^{\pi}Q(s,a) := \mathbb{E}_{s' \sim T(s,a), a' \sim \pi(s')}[Q(s',a')]$

$$\rho(\pi) = \mathbb{E}_{(s,a)\sim d^{\pi}}[R(s,a)]$$

$$\rho(\pi) = \min_{Q} (1 - \gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} [Q(s_0, a_0)]$$

s.t. $Q(s, a) \ge R(s, a) + \gamma \cdot \mathcal{P}^{\pi}Q(s, a),$
 $\forall (s, a) \in S \times A.$

 $\rho(\pi) = \mathbb{E}_{(s,a) \sim d^{\pi}}[R(s,a)]$

 $\rho(\pi) = \mathbb{E}_{(s,a)\sim d^{\pi}}[R(s,a)]$

$$\rho(\pi) = \min_{Q} (1 - \gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} [Q(s_0, a_0)]$$

s.t. $Q(s, a) \ge R(s, a) + \gamma \cdot \mathcal{P}^{\pi}Q(s, a),$
 $\forall (s, a) \in S \times A.$

Solution

 $Q^*(s,a) = Q^{\pi}(s,a)$

$$\rho(\pi) = \min_{Q} (1 - \gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} [Q(s_0, a_0)]$$

s.t. $Q(s, a) \ge R(s, a) + \gamma \cdot \mathcal{P}^{\pi}Q(s, a),$
 $\forall (s, a) \in S \times A.$

Solution

 $Q^*(s,a) = Q^{\pi}(s,a)$

$$\rho(\pi) = \mathbb{E}_{(s,a)\sim d^{\pi}}[R(s,a)]$$

$$\rho(\pi) = \min_{Q} (1 - \gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} [Q(s_0, a_0)]$$

s.t. $Q(s, a) \ge R(s, a) + \gamma \cdot \mathcal{P}^{\pi}Q(s, a),$
 $\forall (s, a) \in S \times A.$

Solution

 $Q^*(s,a) = Q^{\pi}(s,a)$

$$\rho(\pi) = \mathbb{E}_{(s,a)\sim d^{\pi}}[R(s,a)]$$
$$d^{\pi}(s,a) = (1-\gamma)\sum_{t=0}^{\infty}\gamma^{t}\Pr(s_{t}=s,a_{t}=a|\pi)$$

Measures how likely π is to encounter s,a when interacting with the MDP

$$\rho(\pi) = \min_{Q} (1 - \gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} [Q(s_0, a_0)]$$

s.t. $Q(s, a) \ge R(s, a) + \gamma \cdot \mathcal{P}^{\pi}Q(s, a),$
 $\forall (s, a) \in S \times A.$

Solution

 $Q^*(s,a) = Q^{\pi}(s,a)$

 $\rho(\pi) = \mathbb{E}_{(s,a)\sim d^{\pi}}[R(s,a)]$ $d^{\pi}(s,a) = (1-\gamma)\mu_0(s)\pi(a|s) + \gamma \cdot \mathcal{P}_*^{\pi}d^{\pi}(s,a)$

$$\rho(\pi) = \min_{Q} (1 - \gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} [Q(s_0, a_0)]$$

s.t. $Q(s, a) \ge R(s, a) + \gamma \cdot \mathcal{P}^{\pi}Q(s, a),$
 $\forall (s, a) \in S \times A.$

Solution

 $Q^*(s,a) = Q^{\pi}(s,a)$

$$\rho(\pi) = \mathbb{E}_{(s,a)\sim d^{\pi}}[R(s,a)]$$

$$d^{\pi}(s,a) = (1-\gamma)\mu_0(s)\pi(a|s) + \gamma \cdot \mathcal{P}_*^{\pi}d^{\pi}(s,a)$$

$$\mathcal{P}_*^{\pi}d(s,a) := \pi(a|s)\sum_{\tilde{s},\tilde{a}}T(s|\tilde{s},\tilde{a})d(\tilde{s},\tilde{a})$$

$$\rho(\pi) = \min_{Q} (1 - \gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} [Q(s_0, a_0)]$$

s.t. $Q(s, a) \ge R(s, a) + \gamma \cdot \mathcal{P}^{\pi}Q(s, a),$
 $\forall (s, a) \in S \times A.$

Solution

 $Q^*(s,a) = Q^{\pi}(s,a)$

$$\rho(\pi) = \mathbb{E}_{(s,a)\sim d^{\pi}} [R(s,a)]$$

$$d^{\pi}(s,a) = (1-\gamma)\mu_0(s)\pi(a|s) + \gamma \cdot \mathcal{P}_*^{\pi}d^{\pi}(s,a)$$

$$\mathcal{P}_*^{\pi}d(s,a) := \pi(a|s)\sum_{\tilde{s},\tilde{a}} T(s|\tilde{s},\tilde{a})d(\tilde{s},\tilde{a})$$

Adjoint / transpose relationship! $\langle y, \mathcal{P}^{\pi}x\rangle = \langle \mathcal{P}_{*}^{\pi}y, x\rangle$

The value $\rho(\pi)$ can be expressed in two different ways

$$\rho(\pi) = \min_{Q} (1 - \gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} [Q(s_0, a_0)]$$

s.t. $Q(s, a) \ge R(s, a) + \gamma \cdot \mathcal{P}^{\pi}Q(s, a),$
 $\forall (s, a) \in S \times A.$

Solution

 $Q^*(s,a) = Q^{\pi}(s,a)$

$$\rho(\pi) = \max_{d \ge 0} \mathbb{E}_{(s,a) \sim d^{\pi}} [R(s,a)]$$

s.t. $d(s,a) = (1-\gamma)\mu_0(s)\pi(a|s) + \gamma \cdot \mathcal{P}^{\pi}_* d(s,a)$
 $\forall s \in S, a \in A.$

The value $\rho(\pi)$ can be expressed in two different ways

$$\rho(\pi) = \min_{Q} (1 - \gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} [Q(s_0, a_0)]$$

s.t. $Q(s, a) \ge R(s, a) + \gamma \cdot \mathcal{P}^{\pi}Q(s, a),$
 $\forall (s, a) \in S \times A.$

Solution

 $Q^*(s,a) = Q^{\pi}(s,a)$

$$\rho(\pi) = \max_{d \ge 0} \mathbb{E}_{(s,a) \sim d^{\pi}} [R(s,a)]$$

s.t. $d(s,a) = (1-\gamma)\mu_0(s)\pi(a|s) + \gamma \cdot \mathcal{P}^{\pi}_* d(s,a)$
 $\forall s \in S, a \in A.$

Solution

 $d^*(s,a) = d^{\pi}(s,a)$

Primal (Q-values perspective)

$$\rho(\pi) = \min_{Q} (1 - \gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} [Q(s_0, a_0)]$$

s.t. $Q(s, a) \ge R(s, a) + \gamma \cdot \mathcal{P}^{\pi}Q(s, a),$
 $\forall (s, a) \in S \times A.$

Solution

 $Q^*(s,a) = Q^{\pi}(s,a)$

Dual (visitation perspective)

$$\rho(\pi) = \max_{d \ge 0} \mathbb{E}_{(s,a) \sim d^{\pi}} [R(s,a)]$$

s.t. $d(s,a) = (1-\gamma)\mu_0(s)\pi(a|s) + \gamma \cdot \mathcal{P}^{\pi}_* d(s,a)$
 $\forall s \in S, a \in A.$

Solution

$$d^*(s,a) = d^{\pi}(s,a)$$

Primal (Q-values perspective)

$$\rho(\pi) = \min_{Q} (1 - \gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} [Q(s_0, a_0)]$$

s.t. $Q(s, a) \ge R(s, a) + \gamma \cdot \mathcal{P}^{\pi}Q(s, a),$
 $\forall (s, a) \in S \times A.$

Solution

 $Q^*(s,a) = Q^{\pi}(s,a)$

Dual (visitation perspective)

$$p(\pi) = \max_{d \ge 0} \mathbb{E}_{(s,a) \sim d^{\pi}} [R(s,a)]$$

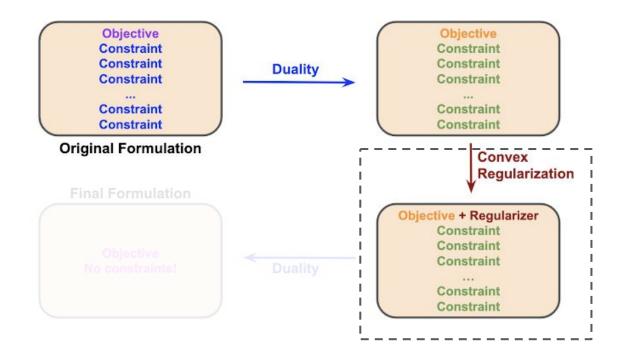
s.t. $d(s,a) = (1-\gamma)\mu_0(s)\pi(a|s) + \gamma \cdot \mathcal{P}^{\pi}_* d(s,a)$
 $\forall s \in S, a \in A.$

Solution $d^*(s, a) = d^{\pi}(s, a)$

For both problems, number of constraints equal to the product of state and action space!

Second step

Change the dual problem



Changing the problem

Our current dual LP

$$d^* = \underset{d \ge 0}{\operatorname{arg\,max}} \sum_{s,a} d(s,a) \cdot R(s,a)$$

s.t. $d(s,a) = (1 - \gamma)\mu_0(s)\pi(a|s) + \gamma \cdot \mathcal{P}^{\pi}_* d(s,a),$
 $\forall s \in S, a \in A.$

is over-constrained-- equality constraints uniquely determine d regardless of the objective.

Changing the problem

Our current dual LP

$$d^* = \underset{d \ge 0}{\operatorname{arg\,max}} \sum_{s,a} d(s,a) \quad R(s,a) \quad h(d)$$

s.t. $d(s,a) = (1-\gamma)\mu_0(s)\pi(a|s) + \gamma \cdot \mathcal{P}^{\pi}_* d(s,a),$
 $\forall s \in S, a \in A.$

is over-constrained-- equality constraints uniquely determine d regardless of the objective.

Idea: Replace original objective with some other function h(d) such that the dual of this problem is easy to optimize.

Changing the problem

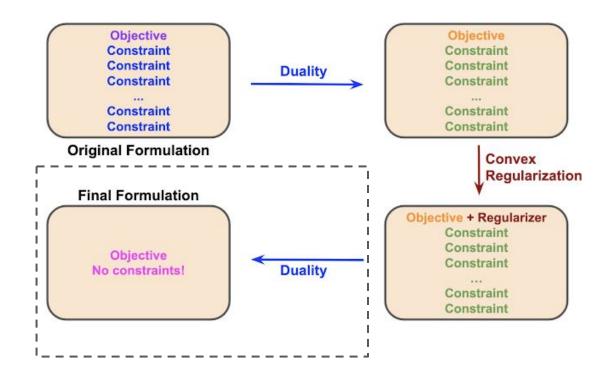
Choosing $h(d) = -D_f(d||d^D)$ reproduces results from DualDICE (Nachum et al. 2019):

$$\max_{d} - D_f(d \| d^{\mathcal{D}})$$

s.t. $d(s, a) = (1 - \gamma) \mu_0(s) \pi(a | s) + \gamma \cdot \mathcal{P}^{\pi}_* d(s, a),$
 $\forall s \in S, a \in A.$

Last step

Apply duality once more



Apply duality once more

$$\max_{d} - D_f(d \| d^{\mathcal{D}})$$

s.t. $d(s, a) = (1 - \gamma) \mu_0(s) \pi(a | s) + \gamma \cdot \mathcal{P}^{\pi}_* d(s, a),$
 $\forall s \in S, a \in A.$

We can write the above problem into a form that we can apply Fenchel-Rockafellar duality to:

$$\max_{\substack{d \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}} \min_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}} \min_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}} \min_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}} \min_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}} \min_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}} \min_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}} \min_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}} \min_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}} \min_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}} \min_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}} \min_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}} \min_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}} \min_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}} \min_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}} \min_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}}} \max_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}}} \max_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}}} \max_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}}} \max_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}}} \max_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}}} \max_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}}} \max_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \pi\}} \text{ and } A := \gamma \cdot \mathcal{P}^{\pi}_* - I}}} \max_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0}}} \max_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0}}} \max_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0}}} \max_{\substack{Q \\ g := \delta_{\{(1-\gamma)\mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0}}} \max_{\substack{Q \\ g \in \{(1-\gamma)\mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0}}} \max_{\substack{Q \\ g \in \{(1-\gamma)\mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0}}} \max_{\substack{Q \\ g \in \{(1-\gamma)\mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0} \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0 \times \mu_0}$$

Final Form

$$\min_{Q} (1-\gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} [Q(s_0, a_0)] + \mathbb{E}_{(s,a) \sim d^{\mathcal{D}}} [f_*(\gamma \cdot \mathcal{P}^{\pi}Q(s, a) - Q(s, a))]$$

• Using the f-divergence w.r.t $d^{\mathcal{D}}$ naturally led to an offline problem with expectations over offline data.

Final Form

$$\min_{Q} (1-\gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} [Q(s_0, a_0)] + \mathbb{E}_{(s,a) \sim d^{\mathcal{D}}} [f_*(\gamma \cdot \mathcal{P}^{\pi}Q(s, a) - Q(s, a))]$$

- Using the f-divergence w.r.t $d^{\mathcal{D}}$ naturally led to an offline problem with expectations over offline data.
- There are no constraints! More amenable to optimization
 - \circ Can use standard gradient-based techniques to find Q^*

Final Form

$$\min_{Q} (1-\gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} [Q(s_0, a_0)] + \mathbb{E}_{(s,a) \sim d^{\mathcal{D}}} [f_*(\gamma \cdot \mathcal{P}^{\pi}Q(s, a) - Q(s, a))]$$

- Using the f-divergence w.r.t $d^{\mathcal{D}}$ naturally led to an offline problem with expectations over offline data.
- There are no constraints! More amenable to optimization
 - \circ Can use standard gradient-based techniques to find Q^*
- We can show that $f'_*(\gamma \cdot \mathcal{P}^{\pi}Q^*(s,a) Q^*(s,a)) = \frac{d^{\pi}(s,a)}{d^{\mathcal{D}}(s,a)}$

Which allows us to compute the value of π with offline data:

$$\rho(\pi) = \mathbb{E}_{(s,a)\sim d^{\mathcal{D}}} \left[\frac{d^{\pi}(s,a)}{d^{\mathcal{D}}(s,a)} R(s,a) \right]$$

If we set $f(x) = \frac{1}{2}x^2$ we can obtain:

$$Q^* = \arg\min_{Q} (1-\gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} [Q(s_0, a_0)] + \frac{1}{2} \mathbb{E}_{(s,a) \sim d^{\mathcal{D}}} [(\gamma \cdot \mathcal{P}^{\pi} Q(s, a) - Q(s, a))^2]$$
$$\Rightarrow \gamma \cdot \mathcal{P}^{\pi} Q^*(s, a) - Q^*(s, a) = \frac{d^{\pi}(s, a)}{d^{\mathcal{D}}(s, a)}, \quad \forall s \in S, a \in A.$$

Optimal Bellman residuals are exactly equal to $\frac{d^{\pi}(s,a)}{d^{\mathcal{D}}(s,a)}$ when we

If we set $f(x) = \frac{1}{2}x^2$ we can obtain:

$$Q^* = \arg\min_{Q} (1 - \gamma) \cdot \mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} [Q(s_0, a_0)] + \frac{1}{2} \mathbb{E}_{(s, a) \sim d^{\mathcal{D}}} [(\gamma \cdot \mathcal{P}^{\pi} Q(s, a) - Q(s, a))^2]$$

$$\Rightarrow \gamma \cdot \mathcal{P}^{\pi} Q^*(s, a) - Q^*(s, a) = \frac{d^{\pi}(s, a)}{d^{\mathcal{D}}(s, a)}, \quad \forall s \in S, a \in A.$$

Optimal Bellman residuals are exactly equal to $\frac{d^{\pi}(s,a)}{d^{\mathcal{D}}(s,a)}$ when we

Minimize the squared Bellman residuals w.r.t. zero reward and

If we set $f(x) = \frac{1}{2}x^2$ we can obtain:

$$Q^* = \arg\min_{Q} (1-\gamma) \cdot \left[\mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} [Q(s_0, a_0)] + \frac{1}{2} \mathbb{E}_{(s,a) \sim d^{\mathcal{D}}} [(\gamma \cdot \mathcal{P}^{\pi} Q(s, a) - Q(s, a))^2] \right]$$
$$\Rightarrow \gamma \cdot \mathcal{P}^{\pi} Q^*(s, a) - Q^*(s, a) = \frac{d^{\pi}(s, a)}{d^{\mathcal{D}}(s, a)}, \quad \forall s \in S, a \in A.$$

Optimal Bellman residuals are exactly equal to $\frac{d^{\pi}(s,a)}{d^{\mathcal{D}}(s,a)}$ when we

- Minimize the squared Bellman residuals w.r.t. zero reward and
- Minimize the initial Q-values

If we set $f(x) = \frac{1}{2}x^2$ we can obtain:

$$Q^* = \arg\min_{Q} (1-\gamma) \cdot \left[\mathbb{E}_{\substack{a_0 \sim \pi(s_0) \\ s_0 \sim \mu_0}} \left[Q(s_0, a_0) \right] + \frac{1}{2} \mathbb{E}_{(s,a) \sim d^{\mathcal{D}}} \left[(\gamma \cdot \mathcal{P}^{\pi} Q(s, a) - Q(s, a))^2 \right] \\ \Rightarrow \gamma \cdot \mathcal{P}^{\pi} Q^*(s, a) - Q^*(s, a) = \frac{d^{\pi}(s, a)}{d^{\mathcal{D}}(s, a)}, \quad \forall s \in S, a \in A.$$

Optimal Bellman residuals are exactly equal to $\frac{d^{\pi}(s,a)}{d^{\mathcal{D}}(s,a)}$ when we

- Minimize the squared Bellman residuals w.r.t. zero reward and
- Minimize the initial Q-values

We verify this in our Colab notebook!

Summary of Policy Evaluation

- Policy evaluation can be expressed as LPs
 - Primal solution is Q^{π}
 - \circ Dual solution is d^{π}
- Changing the objective of the dual does not affect the solution
- Using f-divergence as the new dual objective and applying Fenchel-Rockafellar duality results in a more easy problem to optimize
- Solution to problem can be used for offline policy evaluation

Policy Optimization Teaser

- Can apply many of the same techniques used for policy evaluation
- Caveat: In this setting, modifying the objective changes the solution
 - However, solution to a regularized problem can still be valuable
- Depending on exact form of regularization, we can get a method reminiscent of offline actor critic algorithms
- However, the more principled formulation allows us to get true on-policy policy gradients using only offline data

If any of this sounds interesting, you can learn more from the paper!

Conclusion

- When presented with a problem that appears difficult to solve, we can write the problem as a constrained convex optimization problem and solve its Fenchel-Rockafellar dual
- If the dual is still difficult to solve, we can modify the original objective by either replacing it (policy evaluation) or applying a convex regularizer (policy optimization)

Limitations:

- Gap between theory and practice
- Importance weights $\frac{d^{\pi}(s,a)}{d^{\mathcal{D}}(s,a)}$ are not reliable when $d^{\mathcal{D}}$ is too different from d^{π}