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This paper introduces a framework of dynamic programming (DP)
algorithms to study the propagation of errors of regularized RL
algorithms, where the greediness is softened by convex regularizers.

Main ideas

• incorporate a larger class of regularizers;

• penalize a divergence between consecutive policies;

• consider the general modified policy iteration.

Key contributions

• propose a general theory of regularized MDPs;

• allow for error propagation analyses of general algorithmic
schemes of which classical algorithms are special cases;

• use tools in constrained convex optimization to analyze
trust-region algorithms in RL.
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Why use regularization in RL algorithms?

• To encourage exploration targeted at high-value actions,
and prevent agents from overfitting to certain actions.
• To increase robustness to stochastic noises and

environment perturbations.
• To improve convergence properties.
• To prevent earlier convergence to sub-optimal policies.
• Some regularizers can be used for sparse and

non-deterministic greedy policies, e.g., Tsallis entropy.
• .......
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Notations

∆X the set of probability distributions over a set X

YX the set of applications from X to a set Y

E expectation

〈·, ·〉 dot product

‖ · ‖p `p-norm

‖ · ‖∞ supremum norm
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Markov Decision Processes (MDPs)

Consider an infinite-horizon discounted MDP (S,A,P, r, γ).
• state space S and action space A
• Markovian transition kernel P ∈ ∆S×AS

P(s′|s, a) is the prob. of transiting to s′ when action a is taken in state s.

• reward function r ∈ RS×A
r(s, a) is the reward when action a is taken in state s.

• discount factor γ ∈ (0, 1)

A policy π ∈ ∆AS associates each state to a distribution over A. π(a|s)
is the prob. of taking action a in state s.
The value function of state s under policy π, is the expected
cumulative discounted reward of starting in s and following π:

vπ(s) = Eπ

[ ∞∑
k=0

γkr(sk, ak)

∣∣∣∣ s0 = s

]
, ∀s ∈ S.
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Bellman operator

The Bellman operator of π applied to a value function v ∈ RS is

[Tπv](s) = Ea∼π(·|s)
[
r(s, a) + γEs′|s,a[v(s′)]

]
, ∀s ∈ S.

Equivalently,
Tπv = rπ + γPπv,

where rπ(s) = Ea∼π(·|s)[r(s, a)] and Pπ(s′|s) = Ea∼π(·|s)[P(s′|s, a)].

• Tπ is a γ-contraction in supremum norm, i.e.,

‖Tπv1 − Tπv2‖∞ 6 γ‖v1 − v2‖∞, ∀v1, v2 ∈ RS .

• The unique fixed point of Tπ is the value function vπ .
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Bellman optimallity operator

The Bellman optimality operator is,

T∗v = max
π

Tπv, ∀v ∈ RS .

• T∗ is also a γ-contraction in supremum norm.
• The fixed point of T∗ is the optimal value function v∗.
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Greedy policy

π′ is called a greedy policy w.r.t. v if

T∗v = Tπ′v,

and denoted as

π′ ∈ G(v) = argmax
π

Tπv.
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Legendre-Fenchel transform

The Legendre-Fenchel transform (or convex conjugate) of a
strongly convex function Ω : ∆A → R, is Ω∗ : RA → R with

Ω∗(qs) = max
πs∈∆A

{〈πs, qs〉 − Ω(πs)} , ∀qs ∈ RA.

Example
• Ω(πs) =

∑
a∈A πs(a) lnπs(a) is the negative entropy, and its

convex conjugate is

Ω∗(qs) = ln
∑
a∈A

exp qs(a),

with the maximizing argument

πs =

(
exp qs(a)∑

a′∈A exp qs(a′)

)
a∈A

.
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Regularized Bellman operator

The core idea is to regularize the Bellman operator by a
strongly convex and differentiable function Ω of policy π.

The regularized Bellman operator is 1

Tπ,Ωv := Tπv− Ω(π), ∀v ∈ RS .

• Tπ,Ω is also a γ-contraction in supremum norm.

1Ω(π) := (Ω(πs))s∈S ∈ RS with a slight abuse of notation.
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Regularized Bellman optimallity operator

To get the optimality operator, perform state-wise maximization over
πs ∈ ∆A which gives the convex conjugate of [Tπ,Ωv](s).

• The regularized Bellman optimality operator is

T∗,Ωv = max
π

Tπ,Ωv = Ω∗(q), ∀v ∈ RS .

• T∗,Ω is also a γ-contraction in supremum norm.

The related maximizing argument defines the greediness.

• For any v ∈ RS , the associated unique greedy policy is

π′ = GΩ(v) = ∇Ω∗(q) ⇐⇒ Tπ′,Ωv = T∗,Ωv.

STA4273 Paper Presentation A Theory of Regularized Markov Decision Processes



Introduction Regularized MDPs Regularized MPI Mirror Descent MPI Error Propagation Summary

Regularized value functions

The regularized operators being contractions, we can define
regularized value functions as their unique fixed points.
• The regularized value function of policy π, vπ,Ω, is the

unique fixed point of Tπ,Ω, i.e.,

vπ,Ω = Tπ,Ωvπ,Ω.

• Alternatively, the regularized value is just the
unregularized value of π for the reward rπ − Ω(π).

vπ,Ω = (I − γPπ)−1 (rπ − Ω(π)) .
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Regularized optimal value functions

Regularized optimality operators are contractions, so we can define
regularized optimal value functions as their unique fixed points.

• The regularized optimal value function v∗,Ω is the unique
fixed point of T∗,Ω, i.e.,

v∗,Ω = T∗,Ωv∗,Ω.

• v∗,Ω is indeed the optimal value function. (see the next theorem)
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Optimal regularized policy

Theorem (Optimal regularized policy)

π∗,Ω = GΩ(v∗,Ω) is the unique optimal regularized policy, i.e.,

vπ∗,Ω,Ω = v∗,Ω > vπ,Ω, ∀π ∈ ∆SA.

• This theorem shows that in a regularized MDP, the policy greedy
w.r.t. the optimal value function is indeed the optimal policy.

• The optimal regularized policy is unique, because of the strong
convexity of Ω. In contrast, there may exist multiple optimal
policies in an unregularized MDP.
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When regularizing the MDP, the optimal policy changes. The
following results relate value functions in (un)regularized MDPs.

Theorem

For any policy π ∈ ∆SA and any state s ∈ S,

LΩ

1− γ
6 vπ(s)− vπ,Ω(s) 6

UΩ

1− γ
,

LΩ

1− γ
6 v∗(s)− v∗,Ω(s) 6

UΩ

1− γ
,

and
0 6 v∗(s)− vπ∗,Ω(s) 6

UΩ − LΩ

1− γ
,

where UΩ = sup Ω and LΩ = inf Ω.
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Modified Policy Iteration (MPI)

MPI is a classical DP algorithm that alternates between policy
improvement and policy evaluation.

Given initial value v0 and m ∈ Z+ ∪ {∞}, at (k + 1)-th iteration,{
πk+1 = G(vk) greedy step,

vk+1 =
(
Tπk+1

)m vk evaluation step.

• Value Iteration (VI, m = 1): Since πk+1 is greedy w.r.t. vk,

vk+1 = Tπk+1vk = T∗vk.

• Policy Iteration (PI, m =∞): Since vk =
(
Tπk

)∞ vk−1 = vπk ,

πk+1 = G(vπk).
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Modified Policy Iteration (MPI)

Figure: evaluation and improvement processes interact1

1Sutton and Barto (2018). Reinforcement Learning: An Introduction.
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Regularized Modified Policy Iteration (Reg-MPI)

Reg-MPI:{
πk+1 = GΩ(vk) regularized greedy step,

vk+1 =
(
Tπk+1,Ω

)m vk regularized evaluation step.

Extreme cases
• If m = 1, then vk+1 = T∗,Ωvk. −→ Regularized VI.

(e.g. Soft Q-Learning)

• If m =∞, then πk+1 = GΩ(vπk,Ω). −→ Regularized PI.
(e.g. Soft Actor Critic)
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Bregman divergence

The Bregman divergence generated by a strongly convex
regularizer Ω, between π and a reference policy π′, is

Ωπ′(π) := DΩ(π||π′) ≡ Ω(π)− Ω(π′)− 〈∇Ω(π′), π − π′〉.

Examples:

• The KL divergence is generated by the negative entropy.

• The Euclidean distance is generated by the `2-norm.

Properties:

• Ωπ′(π) is strongly convex in π;

• Ωπ′(π) > 0 and Ωπ′(π
′) = 0;

• Ωπ′(π) <∞⇐⇒ supp(π) ⊂ supp(π′).
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Mirror Descent (MD)

Mirror Descent (MD) is a first-order optimization method for
solving constrained convex problems. It solves a maximization
problem by iterating as follows1:{

gk = ∇f (xk),

xk+1 = argmax
x
{η〈x, gk〉 −DΩ(x||xk)} .

MD consists at each step in maximizing a linearization of the function
of interest, with the constraint of not moving to far from the previous
iterate, this constraint being quantified by the Bregman divergence.

1Beck and Teboulle. Mirror descent and nonlinear projected subgradient methods
for convex optimization. Operations Research Letters, 2003.
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Mirror Descent MPI (MD-MPI)

The idea of MD-MPI is to regularize the greediness by a
Bregman divergence between π and the previous policy.

At the (k + 1)-th greedy step,

πk+1 = GΩπk
(vk) ≡ argmax

π

{
Tπvk − Ωπk(π)

}
.

• In Reg-MPI, the regularization is fixed across all iterations,
while in MD-MPI it changes at different iterations.
• In each policy improvement step, the output policy won’t

be very far from the previous one.
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Mirror Descent MPI (MD-MPI)

Similarly, in the evaluation step, employ regularization
according to the previous policy1:

vk+1 =
(

Tπk+1,Ωπk

)m
vk.

In summary, MD-MPI is a general algorithmic scheme based
on Bregman divergence: πk+1 = GΩπk

(vk) regularized greedy step,

vk+1 =
(

Tπk+1,Ωπk

)m
vk regularized evaluation step.

1We can also use the current policy πk+1, leading to an unregularized evaluation.
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Error propagation of MD-MPI

Approximation arises from practical settings with large spaces.
Consider evaluation error εk and greedy error ε′k in the k-th step.

Jk(π) = Tπ,Ωπk
vk is the optimization problem corresponding to the

Bregman divergence regularized greediness.

We write πk+1 ∈ G
ε′k+1
Ωπk

(vk) if

〈∇Jk(πk+1), π − πk+1〉 6 ε′k+1, ∀π.

This condition leads to

Tπ,Ωπk
vk − Tπk+1,Ωπk

vk 6 ε′k+1, ∀π,

which implies that πk+1 is ε′k+1-close to the regularized greedy policy.
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Error propagation of MD-MPI

Consider MD-MPI with errors in greedy and evaluation steps:
πk+1 = G

ε′k+1
Ωπk

(vk),

vk+1 =
(

Tπk+1,Ωπk

)m
vk + εk+1.

Regularization generally leads to convergence to a policy different
from the optimal greedy policy of the unregularized problem.

It’s important to control the sub-optimality of regularized optimal
policy, and we’re interested in the loss lk = v∗ − vπk and the regret
LK =

∑K
k=1 lk, measuring the sub-optimality in unregularized MDPs.
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At the k-th iteration, the distance between the optimal value function
and the value before approximation is

dk = v∗ −
(

Tπk,Ωπk−1

)m
vk−1 = v∗ − (vk − εk),

and the Bellman residual is

bk = vk − Tπk+1,Ωπk
vk.

Let ρ and µ be distributions and p, q, q′ > 0 such that 1
q + 1

q′ = 1.
Define the concentrability coefficient

Ci
q :=

1− γ
γi

∞∑
j=i

γj max
π1,...,πj

∥∥∥∥ρPπ1 Pπ2 · · ·Pπj

µ

∥∥∥∥
q,µ
.

Let RΩπ0
:= ‖ supπ Ωπ0(π)‖∞.
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Theorem (weighted `p-bound for the regret)

‖LK‖p,ρ 6
K∑

k=1

k−1∑
i=0

γi

1− γ
(Ci

q)
1
p
{

2‖εk−i‖pq′,µ + ‖ε′k−i‖pq′,µ
}

+

K∑
k=1

2γk

1− γ
(Ck

q)
1
p min

{
‖d0‖pq′,µ, ‖b0‖pq′,µ

}
+

1− γK

(1− γ)2 RΩπ0
.

Regularized optimal policies are more stochastic than their
unregularized counterparts in classical DP, so they can improve
exploration. Stochastic policies induce lower concentrability
coefficients, and hence lower regret bounds.
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Theorem (weighted `1-bound for the loss)

For p > 1 and a distribution ρ, we have

min
16k6K

‖v∗ − vπk‖1,ρ 6
‖LK‖p,ρ

K
.

This result implies that if we can control the average regret, then we
can control the loss of the best policy computed so far. Therefore,
practically we should not use the last policy, but this best policy.
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Theorem (Rate of convergence in the exact case)

If no approximation is done, i.e., εk = ε′k = 0, then

‖LK‖∞ 6
1− γK

(1− γ)2

(
2γ‖v∗ − v0‖∞ + RΩπ0

)
.

In this exact case, we only have a logarithmic convergence rate, while
in classical DP, there is a linear convergence rate ( 2γK

1−γ ‖v∗ − v0‖∞).

We also pay an horizon factor with a quadratic dependency in 1
1−γ

instead of linear.
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Experiment

MDP setting:

• state space S = {s1, s2} and action space A = {a1, a2}
• transition kernel P(s′|a, s):

P(s′|a, s = s1)
next state s′ P(s′|a, s = s2)

next state s′

s1 s2 s1 s2

action a a1 0.3 0.7 action a a1 0.6 0.4
a2 0.8 0.2 a2 0.1 0.9

• reward function r(a, s):

r(a, s) state s
s1 s2

action a a1 0.1 0.3
a2 0.2 0.1

• discount factor γ = 0.9
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Experiment

Algorithm setting:
• MD-MPI with m = 3
• regularizers: KL divergence, Euclidean and Itakura-Saito (IS) distance
• approximation errors: εk = ε′k = 0 (the exact case)
• initial value v0 = (0, 0)

Results: red points for regrets in ‖ · ‖∞ and blue curves for upper bounds

Figure: Regularizers are KL divergence, Euclidean distance and IS distance, resp.
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Why is this framework general?

• negative entropy & KL divergence −→ Bregman divergence
• Value Iteration & Policy Iteration −→Modified Policy Iteration

RL algorithms using regularization

Algorithm Regularizer Scheme
DPP1 KL divergence VI

TRPO2 KL divergence PI
SQL3 negative entropy VI
SAC4 negative entropy PI
CSTE5 Tsallis entropy VI

This Paper Bregman divergence MPI

1
Dynamic Policy Programming (Azar et al., 2012)

2
Trust Region Policy Optimization (Schulman et al., 2015)

3
Soft Q-Learning (e.g. Fox et al., 2016; Schulman et al., 2017)

4
Soft Actor Critic (Haarnoja et al., 2018a)

5
Causal Sparse Tsallis Entropy Regularization (Lee et al., 2018)
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Limitations

1. As the concentrability coefficients Ci
q’s depend on the worst case of

all policies, they may be infinite and lead to meaningless bounds.

2. Require a closed-form relation between policy and optimal value
function, and the knowledge on model dynamics, which may be
intractable or unavailable.

3. Assume access to an oracle that returns the gradient of value
functions for any policy. When parameters are partially known, the
gradients have to be estimated from observations or simulations.

4. Experiment plots show that the regret bounds are not very sharp,
perhaps sacrificing tightness of bounds for generality of analysis.
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Future research

1. Combine the propagation of errors with a finite sample analysis.

2. What specific regularizer should be chosen for what context.

3. Generalize the Bregman divergence regularized MDPs to
multi-agent settings like Markov games and mean-field games.

4. Connect links between approximate DP and proximal convex
optimization, going beyond mirror descent.

5. Study Bregman divergence regularized policy search methods.

6. Use the proposed scheme to analyze inverse RL approaches.

. . . . . .
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Summary

This paper proposes a general theory of regularized MDPs,
where the Bellman operator is modified by fixed convex
functions or Bregman divergence between consecutive policies.

For both cases, it proposes a general algorithmic scheme based
on MPI, which generalizes both value and policy-based
regularized methods. It shows this algorithmic scheme
incorporates many variations of existing algorithms for
approximate planning under regularized notions of optimality.

This paper also analyzes the propagation of errors, and
provides provable average case guarantees for the regret.
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Thanks!
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