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A Common Problem
• Consider a probabilistic model 𝑝(𝑧, 𝑥) over latent variables 𝑧 and observed data 𝑥

• We are interested in computing the posterior distribution

𝑝 𝑧 𝑥 =
𝑝(𝑧, 𝑥)
𝑝(𝑥)

=
𝑝(𝑧, 𝑥)

∫ 𝑝 𝑧, 𝑥 d𝑧

• This is often intractable to compute!

• Solution: variational inference



Variational Inference
• Cast approximate inference as an optimization problem

𝑞⋆ ⋅ = argmin
"∈$

𝐷 𝑝 ⋅ 𝑥 , 𝑞 ⋅

• The solution 𝑞⋆ ⋅ can be used as a surrogate to 𝑝 ⋅ 𝑥

• Typically, the exclusive KL divergence is used

KL(𝑞 ⋅ ||𝑝 ⋅ |𝑥 ) = 6𝑞 𝑧 log
𝑞 𝑧
𝑝 𝑧 𝑥

d𝑧

• This choice yields a convenient optimization problem; e.g. SGD



Inclusive vs. Exclusive KL Divergence
• Consider the following toy problem:

• Given a bimodal Gaussian mixture model 𝑝 𝑧 , find the 
Gaussian distribution 𝑞(𝑧; 𝜇, 𝜎!) that best approximates it.

• If we use the exclusive KL divergence to measure fit, 
then VI will yield a mode-seeking behavior.

• If we use the inclusive KL divergence to measure fit, 
then VI will yield a mode-covering behavior.

KL(𝑝 ⋅ |𝑥 ||𝑞 ⋅ ) = 6𝑝 𝑧|𝑥 log
𝑝 𝑧|𝑥
𝑞(𝑧)

d𝑧

If this is 0, the KL may explode!



Contribution
• A method for minimizing the inclusive KL divergence using SGD

• Prior methods use high variance or biased gradient estimates

• In contrast, this method provably converges to a local minima

• Key idea: Use MCMC to estimate gradients for SGD

• This is called Markovian Score Climbing



Optimizing the Inclusive KL with SGD
• We want to minimize the following objective with SGD

min
%
6𝑝 𝑧|𝑥 log

𝑝 𝑧|𝑥
𝑞 𝑧; 𝜆 d𝑧

• The gradient of this objective is

𝑔&' 𝜆 = −E(∼*((|-)[∇ log 𝑞 𝑧; 𝜆 ]

• If we can estimate 𝑔&' 𝜆 , we can just apply SGD!

• Unfortunately, we don’t know 𝑝(𝑧|𝑥)



Importance Sampling (IS)
• Re-write the expectation in terms of 𝑞 𝑧; 𝜆

𝑔&' 𝜆 = −
1

𝑝(𝑥)
E(∼"((;%)

𝑝(𝑧, 𝑥)
𝑞 𝑧; 𝜆

∇ log 𝑞 𝑧; 𝜆

∝ −E(∼" (;%
* (,-
" (;% ∇ log 𝑞 𝑧; 𝜆

• Estimate 𝑔&' 𝜆 with Monte-Carlo estimation

C𝑔&' 𝜆 = −
1
𝑚
E

123

4 𝑝(𝑧1, 𝑥)
𝑞 𝑧1; 𝜆

∇ log 𝑞 𝑧1; 𝜆

• Unbiased but high variance



Self-normalized Importance Sampling (SIS)

• Normalize importance weights to trade-off bias for variance

C𝑔&' 𝜆 = −
∑1234 𝑝(𝑧1, 𝑥)

𝑞 𝑧1; 𝜆
∇ log 𝑞 𝑧1; 𝜆

∑1234 𝑝(𝑧1, 𝑥)
𝑞 𝑧1; 𝜆

• Biased but lower variance

• It is also consistent; i.e., E C𝑔&' 𝜆 ∝ 𝑔&' 𝜆 when 𝑚 → ∞



Toy Example: SIS Estimator

• Recall our toy problem:

• Given a bimodal Gaussian mixture model 𝑝 𝑧 , find the 
Gaussian distribution 𝑞(𝑧; 𝜇, 𝜎!) that best approximates it.

• For each iteration of SGD

• Sample 𝑧", … , 𝑧# ∼ 𝑞 𝑧; 𝜆$%"

• Compute the SIS gradient estimate -𝑔&' 𝜆$%"

• Run SGD 𝜆$ ← 𝜆$%" − 𝜖$ -𝑔&'(𝜆$ %")



Toy Example: SIS Estimator (cont.)



Markovian Score Climbing (MSC)
• Key idea: Use MCMC to estimate gradients for SGD

• For each iteration of SGD

• Sample 𝑧[𝑘] ∼ 𝑝 𝑧|𝑥 using MCMC

• Compute -𝑔&' 𝜆$%" = −∇ log 𝑞 𝑧 𝑘 ; 𝜆$%"

• Run SGD 𝜆$ ← 𝜆$%" − 𝜖$ -𝑔&'(𝜆$ %")

• We do not re-initialize the Markov chain at each iteration of SGD

• Under certain technical conditions, MSC provably converges to a local minima



MCMC in a Nutshell

• Class of algorithms to sample from an arbitrary 
distribution whose density is known proportionally

• Build a Markov chain whose stationary distribution is 𝑝(𝑧|𝑥)

• Starting from 𝑧 0 , traverse the chain until steady state

• Output new states as samples 𝑧 1 , … , 𝑧 𝑚

• The key is to design the Markov chain; i.e. the 
transition kernel

Figure from: Andrieu, De Freitas, Doucet, and Jordan. An Introduction to MCMC for Machine Learning



Conditional Importance Sampling (CIS)
• SIS-based Markov kernel with 𝑝 𝑧 𝑥 as its stationary distribution

• For each iteration of SGD

• Set 𝑧" = 𝑧 𝑘 − 1 and sample 𝑧!, … , 𝑧# ∼ 𝑞(𝑧; 𝜆$%")

• Compute self-normalized importance weights 𝑤( ∝
) *!,,

-(*!;0"#$)

• Sample 𝑧 𝑘 − 1 from 𝑧", … , 𝑧# with proportional to 𝑤", … , 𝑤#



Example: Conditional Importance Sampling



Putting Everything Together

• Recall our toy problem:

• Given a bimodal Gaussian mixture model 𝑝 𝑧 , find the 
Gaussian distribution 𝑞(𝑧; 𝜇, 𝜎!) that best approximates it.

• For each iteration of SGD

• Sample 𝑧 𝑘 ∼ 𝑀 ⋅ 𝑧 𝑘 − 1 ; 𝜆$%") using CIS

• Compute -𝑔&' 𝜆$%" = −∇ log 𝑞 𝑧 𝑘 ; 𝜆$%"

• Run SGD 𝜆$ ← 𝜆$%" − 𝜖$ -𝑔&'(𝜆$ %")



Putting Everything Together (cont.)



Putting Everything Together (cont.)



Extension: Maximum Likelihood Estimation
• Suppose our probabilistic model has unknown parameters 𝑝(𝑧, 𝑥; 𝜃)

• To fit the unknown parameters using maximum likelihood

• Sample 𝑧 𝑘 ∼ 𝑀 ⋅ 𝑧 𝑘 − 1 ; 𝜆$%") using CIS

• Compute -𝑔&' 𝜆$%" = −∇ log 𝑞 𝑧 𝑘 ; 𝜆$%"

• Run SGD 𝜆$ ← 𝜆$%" − 𝜖$ -𝑔&'(𝜆$ %")

• Compute -𝑔2' 𝜃$%" = −∇ log 𝑝 𝑧 𝑘 , 𝑥; 𝜃$%"

• Run SGD 𝜃$ ← 𝜃$%" − 𝜖$ -𝑔2'(𝜃$ %")



Other Extensions
• Extension to state-space models using Sequential Monte Carlo (SMC)

• Key idea: Replace CIS with conditional SMC (CSMC)

• At each iteration, resample 𝑚− 1 particles and set the retained particle as the 𝑚-th one

• Extension to large-scale datasets

• If the observed data 𝑥!, … , 𝑥" are IID, consider minimizing the expected inclusive KL instead

min#∈% E&!∼( &! [KL 𝑝 ⋅ |𝑥) 𝑞 ⋅

• Gradients can be estimated as

2𝑔*+ 𝜆 = −
1
𝑚
6
),!

"

E-∼((-|&!) ∇ log 𝑞 𝑧; 𝜆 𝑥)



Related Work
• Other variational objectives

• Renyi 𝛼-divergences (Li and Turner, 2016)

• (Langevin-Stein) operator variational objective (Ranganath et al., 2016)

• 𝜒-divergences (Dieng et al., 2017)

• Thermodynamic variational objectives (Masrani et al., 2019)

• Variational contrastive divergence (Ruiz and Titsias, 2019)

• Other work minimizing the inclusive KL

• Expectation propagation (Minka, 2001) 

• Reweighted Wake-Sleep (Bornschein and Bengio, 2015)

• Neural Adaptive Sequential Monte Carlo (Gu et al., 2015)  
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Discussion
• Markovian Score Climbing for minimizing the inclusive KL divergence using SGD

• Key idea: Use MCMC to estimate gradients for SGD

• But:

• Applications to large-scale datasets has not been explored

• Conditions for convergence is difficult to verify in general

• Unclear how fast MSC converges in practice

• Questions?


