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MPO: Key Idea & Contribu5ons

• Novelty: Introduces a novel off-policy RL algorithm using expectation 
maximization (EM) for optimization 

• Paradigm: Uses 'Policy as inference’ for opCmizaCon:
• Instead of: What ac8ons maximize future rewards?,
• Asks: Assuming future success in maximizing rewards, what are the ac8ons

most likely to have been taken?

• Performance: SOTA robust, sample efficient performance on a wide range 
of discrete and continuous controls tasks (MuJoCo, DM-Suite [1, 2])
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Log of sum (intractable)

Background & Preliminaries 
Expectation Maximization (EM) Algorithm
• If we know how to model 𝑝 𝑥 𝑧 - where x, z are observed and latent variables 

respectively, with joint distribution 𝑝(𝑥, 𝑧 ∣ 𝜃) governed by params 𝜃:
• Direct optimization (e.g., MLE) can be applied: 𝑧∗ = arg max

"
𝑝(𝑥 ∣ 𝑧; 𝜃)

• Optimize log-likelihood of x over all possibilities of z (complete data, D):
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• Use EM when direct optimization 𝑝 𝑥 𝜃 is difficult, but optimizing complete data 
likelihood 𝑝 𝑥, 𝑧 𝜃 is easier. Introduce auxiliary 𝑞(𝑧) over z and decompose:  

where,



Background: EM Algorithm

*Source: Bishop, Christopher M. Pattern recognition and machine learning. springer, 2006.

E-Step M-Step

The EM algorithm involves alternately 
computing a lower bound on the log 
likelihood for the current parameter 
values and then maximizing this bound to 
obtain the new parameter values. 
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• Introduces an auxiliary distribution over trajectories: 𝑞(𝜏)
• Define the ELBO on the likelihood of optimality for policy Π as:

• EM can be used to alternately improve 𝒥 w.r.t to (𝑞, 𝜋)
• E-step improves 𝒥 w.r.t to 𝑞
• M-step improves 𝒥 w.r.t to 𝜋! supervised by reweighted 𝑞" samples from E-step 

MPO: Setup as an EM Problem

Goal achieved

ELBO

Trajectory induced by 𝜋(𝑎|𝑠) Auxiliary trajectory dist. q
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[Eq. 1]

[Eq. 2]



• The infinite-horizon analogue with 𝑞(𝜏) factorizaVon similar to 𝑝!, i.e. 𝑞 𝜏 =
𝑝 𝑠" ∏#$"𝑝 𝑠#%& 𝑠#, 𝑎# 𝑞(𝑎#|𝑠#) yields:

• Associated Q-value funcVon: 

MPO: Policy Improvement

Prior over policy parameters
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[Eq. 3]

[Eq. 4]

With 𝐾𝐿 𝑞! 𝜋! = 𝐾𝐿(𝑞 𝑎 𝑠! || 𝜋(𝑎|𝑠! , 𝜃))



Policy Improvement: E-Step
E-step itera*on i: perform parPal maximizaPon of 𝒥 𝑞, 𝜃 w.r.t q given 𝜃 = 𝜃"
SeQng 𝑞 = 𝜋#! , esPmate the unregularized (since 𝐾𝐿 𝑞 𝜋" = 0) acPon-value funcPon 𝑄#!

$ (𝑠, 𝑎)

Improve lower-bound 𝒥 w.r.t to q with 𝑸𝜽𝒊
Expand 𝑄#! (𝑠, 𝑎) using the Bellman operator:

Optimize ‘one-step’ KL-regularized (soft) objective

N.B. Par(al E-Step Maximizing and obtaining 𝑞' = argmax �̅�(𝑞, 𝜃') does not fully op:mize 𝒥 (since 𝑄(! is a constant w.r.t to 𝑞)

Soft KL regularization

s.t. 𝔼)(*) 𝐊𝐋 𝑞 𝑎 𝑠 , 𝜋 𝑎 𝑠, 𝜃' < 𝜖

Final E-step Objec*ve Constrained E-Step
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[Eq. 5]

[Eq. 7]



Policy Improvement: E-Step Variants
To solve this objecPve, we need choose a form for the variaPonal policy 𝒒 𝒂 𝒔 :

Option 1: Use a parametric variational distribution 𝑞(𝑎|𝑠, 𝜃$) with params 𝜃$
(explicit M-step becomes redundant) [see appendix (Alg. 3)]

Option 2: Use a non-parametric representation for 𝑞 𝑎 𝑠 given by sample distribution over (a, s)
Fit a parametric policy in the M-step that generalize across state space  [see appendix (Alg. 1, 2)]

where 𝜂∗ can be minimized by the convex dual funcPon (a2er which we can evaluate 𝑞" 𝑎 𝑠 ):
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Policy Improvement: M-Step
With 𝑞" from the E-step, optimize 𝒥 w.r.t to 𝜃 to obtain updated policy 𝜽𝒊(𝟏= 𝒂𝒓𝒈𝒎𝒂𝒙𝜽 𝓙 𝒒𝒊, 𝜽 :

Essentially, a supervised learning step. With a Gaussian prior around the current policy 𝑝(𝜃)

Then, the generalized M-Step is: 

Corresponding hard-constrained form:

s.t. 𝔼)"(*) 𝐊𝐋 𝜋 𝑎 𝑠, 𝜃' , 𝜋 𝑎 𝑠, 𝜽 < 𝜖

Final M-step Objec*ve
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[Eq. 10]

[Eq. 11]

[Eq. 12]



Policy Evalua5on
• Policy evaluation done in an off-policy setting, using policy evaluation operator 

from the Retrace algorithm (Munos et al. 2016) [5].
• Concretely, a neural network with parameters 𝝓 represents Q-function 
𝑄B!(𝑠, 𝑎, 𝜙), and minimizes the squared loss:

where, 𝑄*# 𝑠, 𝑎 : output of target Q-network,  𝑏 𝑎 𝑠 : probabilities of an arbitrary behaviour policy (replay buffer)
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Experiments
• ConVnuous Control tasks: DM Control suite [7], parkour environments [8]

• Including the classical cart-pole and acrobot dynamical systems, 2D and Humanoid walking

• Discrete Control tasks: ATARI environments [9]
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• Detailed evaluation on three (harder) tasks: Walker-2D, Hopper, Acrobot

Experiments - Results
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Experiments – Results: High Dimensional Continuous Control

• High-dimensional Con0nuous Control - Parkour Walker 2D, Humanoid
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Scope & Limita5ons
• Fairness of the baselines (sample-efficiency) comparison with on-

policy methods (PPO, TRPO). 
• Too many hyperparameters to tune (e.g. two KL constraints, for E and 

M step). Hard to stabilize training.
• Lot of implementation caveats (hacks) that deviate from the main 

motivation (MPO) optimization.
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• OpenAI Gym e.g.:
• LunarLander-v2 (discrete) and LunarLanderConVnuous-v2 

Demo

15Source: https://gym.openai.com/envs/LunarLander-v2/

Landing pad is always at coordinates (0,0). Coordinates are the first two 
numbers in state vector. Reward for moving from the top of the screen to 
landing pad and zero speed is about 100..140 points. If lander moves away from 
landing pad it loses reward back. Episode finishes if the lander crashes or comes 
to rest, receiving additional -100 or +100 points. Each leg ground contact is +10. 
Firing main engine is -0.3 points each frame. Solved is 200 points. Landing 
outside landing pad is possible. Fuel is infinite, so an agent can learn to fly and 
then land on its first attempt. Four discrete actions available: do nothing, fire 
left orientation engine, fire main engine, fire right orientation engine.



Insights
• Similarities with existing RL algorithms
• TRPO, PPO
• REPs

• Training can be treacherous
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Summary

• The paper introduces a new off-policy RL algorithm: MPO

• The algorithm poses policy search as an inference problem and uses 
an alternating coordinate ascent style EM algorithm for policy 
improvement

• MPO empirically shows high data-efficiency, hyperparameter 
robustness and applicability to wide range of complex control 
problems.

17



Ques(ons?
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Appendix
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Implementation Details
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Experiments: Results – Discrete Control and others
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Experiments: Results – Discrete Control and others
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Experiments: Results – Discrete Control and others
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