Maximum A Posteriori Policy Optimisation

Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R., Heess, N., &
Riedmiller, M. (2018). Maximum a posteriori policy optimisation.

preprint: arXiv:1806.06920 (2018).

Presented by: Raeid Saqur

STA4273 L7: Policy Optimization |
March 4, 2021

MPO: Key |dea & Contributions

* Novelty: Introduces a novel off-policy RL algorithm using expectation
maximization (EM) for optimization

* Paradigm: Uses 'Policy as inference’ for optimization:
* Instead of: What actions maximize future rewards?,

* Asks: Assuming future success in maximizing rewards, what are the actions
most likely to have been taken?

* Performance: SOTA robust, sample efficient performance on a wide range
of discrete and continuous controls tasks (MuJoCo, DM-Suite [1, 2])

Background & Preliminaries

Expectation Maximization (EM) Algorithm

* If we know how to model p(x | z) - where x, z are observed and latent variables
respectively, with joint distribution p(x, z | 8) governed by params 6:

 Direct optimization (e.g., MLE) can be applied: z* = arg max p(x | z; 9)
Z
* Optimize log-likelihood of x over all possibilities of z (complete data, D):

logp(D) =Y logp(z) =) log (Zp(m | z)p(Z)>

xzeD zeD

Log of sum (intractable)

* Use EM when direct optimization p(x|8) is difficult, but optimizing complete data
likelihood p(x, z|8) is easier. Introduce auxiliary g(z) over z and decompose:

L(g,0) = Zq(z)ln{p(x’z)|9)}
Inp(X | 8) = L(q,0) + KL(q||p) where, Z

q(Z
ki) = - Yoz {2EL0

KL(q||p)
X 'y
L(q,0) In p(X|6)
A 4 4
KL(q|[p) =0
KL(qllp) L
I R e
L(q,6°) In p(X]6°')
£(q,6™) Inp(X|0™")

E-Step

*Source: Bishop, Christopher M. Pattern recognition and machine learning. springer, 2006.

Background: EM Algorithm

Inp(X|6)

Hold enew

The EM algorithm involves alternately
computing a lower bound on the log
likelihood for the current parameter
values and then maximizing this bound to
obtain the new parameter values.

MPO: Setup as an EM Problem

* Introduces an auxiliary distribution over trajectories: g(7)
* Define the ELBO on the likelihood of optimality for policy II as:

Trajectory induced by m(als) Auxiliary trajectory dist. q

l
108 (0 = 1) = log [pe(1)p(0 =11 7)dr 2 [() |log p(0 = 117) + log
Y}

Goal achieved

Pr(7)
q(7)

]d‘t‘ [Eq. 1]

= Eq[Zere/a] — KL(q(D) Il p (7)) = m [Eq. 2]

ELBO
* EM can be used to alternately improve J w.r.t to (g,)
* E-step improves JJ w.r.tto q
* M-step improves J w.r.t to my supervised by reweighted g; samples from E-step

MPO: Policy Improvement

* The infinite-horizon analogue with q(7) factorization similar to p, i.e. q(7) =
p(so) [0 P(St41lse, ar)q(aclse) yields:

J(0.8) = E, [S20v![re — aKL (q(a | 50) I n(a | 5,,0))]| +1og p(6) fea.

Prior over policy parameters

e Associated Q-value function:
Qg (s,a) =1y + lEq(‘r),s(,:s,ao:a[Zglyt[rt — aKL (g¢ |l T[t)]] [Eq. 4]

With KL(q, ||) = KL(q(als,) || m(als:, 6))

Policy Improvement: E-Step

E-step iteration i: perform partial maximization of J(q, 8) w.r.t g given 8 = 6;

Setting q = g, , estimate the (since

) action-value function Qgi(s, a)

Qgi(S, a) = Qei(s» a) = IEr,ri,s(,:s,aO:a[Zgoytrt] [Eq. 5]

Improve lower-bound J w.r.t to g with Qg,

Expand Qg, (s, a) using the Bellman operator: T™9 = Eg(qs) [r(s, a) —aKL (g |) + YE (¢ 15.0) [Vgi(S,)]]

Optimize ‘one-step’ KL-regularized (soft) objective

man (7—5 (CI: 01) — man Tn’qQBi(Sr a')
= maxg Ey5)|Eq(15)| o, (5,)] — aKL(q Il m))]

Final E-step Objective Constrained E-Step

max,Js(q,0;) = max,E, []Eq(als) [Qa,(s, a)]]
s.t. IEM(S)[KL(q(aIs),n(aIs, Qi))] <e€

[Eq. 7]

N.B. Partial E-Step Maximizing and obtaining gq; = argmax J(q, ;) does not fully optimize J (since Qg, is a constant w.r.t to q)

Policy Improvement: E-Step Variants

To solve this objective, we need choose a form for the variational policy g(als):

Final E-step Objective Constrained E-Step

maqu_S(q, 0;) = max, E,) [lEq(als) [Qei(s, a)]]
s.t. IE#(S)[KL(q(aIs),n(als, Gi))] <e€

Option 1: Use a parametric variational distribution g(a|s, 89) with params 4
(explicit M-step becomes redundant) [see appendix (Alg. 3)]

Option 2: Use a non-parametric representation for g(a|s) given by sample distribution over (a, s)
Fit a parametric policy in the M-step that generalize across state space [see appendix (Alg. 1, 2)]

(s,a
q;(als) xm(als,0;)exp (M)
where 17* can be minimized by the convex dual function (after which we can evaluate q;(a|s)):

g =ne+nf u(s)log [n(als,0;)exp (M) dads

Policy Improvement: M-Step

With g; from the E-step, optimize J w.r.t to 6 to obtain updated policy 8;,1= argmax8 J(q;, 0):

maxg J(q;, 6) = maxg IEuq(s) [lEq(a|S)[log w(als, 0)]] + log p(0) [Eg. 10]
Essentially, a supervised learning step. With a Gaussian prior around the current policy p(60)

Then, the generalized M-Step is:

maxg J (q;,0) = max; By () [Eqcaisy[log m(a | s,8)] — AKL (n(a | 5,0,),m(a |s,0))] [Eq. 11]

Final M-step Objective

Corresponding hard-constrained form: maxg J(q;, 8) = maxnE, (s []Eq(als) [log m(a |s, 9)]]
[Eqg. 12]
s.t.]Euq(s)[KL(7(als, 0,),m(als, 0))] < e

Policy Evaluation

* Policy evaluation done in an off-policy setting, using policy evaluation operator
from the Retrace algorithm (Munos et al. 2016) [5].

* Concretely, a neural network with parameters ¢ represents Q-function
Qp,(s,a, ¢), and minimizes the squared loss:

R . 2
ming L(¢) = mingE,, 5)p(als) [(Qei(st; as, §) — Qrt)]

&= 0Qy (e ar) + Zﬁt}’j—t(nizztﬂck) [T‘(Sj, a;) + Er(aisjsa) [Q¢'(Sj+1’ a)] = Qd’,(sj’ aj)]

n(ay | sk)
"b(ay | sx)

Cr = min (1

where, Q¢r(s, a): output of target Q-network, b(als): probabilities of an arbitrary behaviour policy (replay buffer)

Experiments

* Continuous Control tasks: DM Control suite [7], parkour environments [8]
. Including the classical cart-pole and acrobot dynamical systems, 2D and Humanoid walking

Z

Figure 1: Control Suite domains used for benchmarking. Top: Acrobot, Ball-in-cup, Cart-pole,
Cheetah, Finger, Fish, Hopper. Bottom: Humanoid, Manipulator, Pendulum, Point-mass, Reacher,
Swimmers (6 and 15 links), Walker.

* Discrete Control tasks: ATARI environments [9]

11

mean_return

Experiments- Results

» Detailed evaluation on three (harder) tasks: Walker-2D, Hopper, Acrobot

task_name=run, domain_name=walker task_name=stand, domain_name=hopper task_name=swingup, domain_name=acrobot
1000
800
600
400
200
o =< o O s A
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
training_steps le6 training_steps le6 training_steps le6
_ _ agent=PG + retrace + entropy
—— agent=DDPG — agent=MPO _ ~ (optimized)
agent=EPG + retrace + entropy — agent=MPO (parametric) agent=PPO
" (optimized) gent=

12

Experiments — Results: High Dimensional Continuous Control

* High-dimensional Continuous Control - Parkour Walker 2D, Humanoid

mean return

Parkour Walker2D

task_name=run, domain_name=humanoid

60 1000
50 800
=
+0 2 600
30 =
G 400
20 [}
= 200
10
0 0
0 1 2 3 4 5 6 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
ini le7
total steps le8 training_steps
— agent=MPO — agent=ppo —— agent=DDPG —— agent=MPO
agent=EPG + retrace + entropy —— agent=PPO

(optimized)
—— agent=MPO (parametric)

13

Scope & Limitations

* Fairness of the baselines (sample-efficiency) comparison with on-
policy methods (PPO, TRPO).

* Too many hyperparameters to tune (e.g. two KL constraints, for E and
M step). Hard to stabilize training.

Lot of implementation caveats (hacks) that deviate from the main
motivation (MPO) optimization.

D.4 PARAMETRIC VARIATIONAL DISTRIBUTION
In this case we assume our variational distribution also uses a Gaussian distribution over the action
space and use the same structure as our policy 7.

Similar to the non-parametric case for a Gaussian distribution in the M-step we also use a decoupled
KL but this time in the E-step for a Gaussian variational distribution. Using the same reasoning as
in the previous section we can obtain the following generalized Lagrangian equation:

L@, 1s71%) = [(o) [alalsi 07 Ai(a, $)dads + (e — Co) + ms(es — Cs).

Where 7, and 7x are Lagrangian multipliers. And where we use the advantage function A(a, s)
instead of the Q function Q(a, s), as it empirically gave better performance. Please note that the

14

Demo

* OpenAl Gym e.g.:

e LunarLander-v2 (discrete) and LunarLanderContinuous-v2

Landing pad is always at coordinates (0,0). Coordinates are the first two
numbers in state vector. Reward for moving from the top of the screen to
landing pad and zero speed is about 100..140 points. If lander moves away from
landing pad it loses reward back. Episode finishes if the lander crashes or comes
to rest, receiving additional -100 or +100 points. Each leg ground contact is +10.
Firing main engine is -0.3 points each frame. Solved is 200 points. Landing
outside landing pad is possible. Fuel is infinite, so an agent can learn to fly and
then land on its first attempt. Four discrete actions available: do nothing, fire

left orientation engine, fire main engine, fire right orientation engine.

Source: https://gym.openai.com/envs/LunarLander-v2/

Insights

* Similarities with existing RL algorithms
* TRPO, PPO o
* REPs “

* Training can be treacherous

[}

rrrrrr

Summary

* The paper introduces a new off-policy RL algorithm: MPO

* The algorithm poses policy search as an inference problem and uses
an alternating coordinate ascent style EM algorithm for policy
Improvement

* MPO empirically shows high data-efficiency, hyperparameter
robustness and applicability to wide range of complex control
problems.

Questions?

w

© N o a &

10.
11.

Reference

Todorov, Emanuel, Tom Erez, and Yuval Tassa. "Mujoco: A physics engine for model-based control." 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2012.

Tassa, Yuval, et al. "Deepmind control suite." arXiv preprint arXiv:1801.00690 (2018).

J. Andreas, M. Rohrbach, T. Darrell, and D. Klein, “Neural module networks,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-
Decem.

J. A. Fodor et al., “Connectionism and Cognitive Architecture Connectionism and Cognitive Architecture: 1 A Critical Analysis.”
Schulman, John, et al. "Trust region policy optimization." International conference on machine learning. PMLR, 2015.
Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017).

Munos, Rémi, et al. "Safe and efficient off-policy reinforcement learning." arXiv preprint arXiv:1606.02647 (2016).

Peters, Jan, Katharina Mulling, and Yasemin Altun. "Relative entropy policy search. (REPS)" Proceedings of the AAAI Conference on Artificial Intelligence. Vol.
24. No. 1. 2010.

Tassa, Yuval, et al. "Deepmind control suite." arXiv preprint arXiv:1801.00690 (2018).
Heess, Nicolas, et al. "Emergence of locomotion behaviours in rich environments." arXiv preprint arXiv:1707.02286 (2017).

Brockman, Greg, et al. "Openai gym." arXiv preprint arXiv:1606.01540 (2016).

Appendix

Implementation Details

Algorithm 1 MPO (chief)

1: Input G number of gradients to average
2: while True do

w2

initialize N=0
initialize gradient store s, = {}, s, = {}, sy,
while N < G do

receive next gradient from worker w

sp = 56 + [00"]
sy = sg + [66v]
S = 8y + [6n"]

Snu = Sn, + [67;7]
Sng = Sny + [6773']
update parameters with average gradient from

S¢s Sns Snus Sns S
send new parameters to workers

={hsm={s=1{}

Algorithm 2 MPO (worker) - Non parametric variational distribution

1: Input = €, €x, €, Linax
2:1=0,Ler=0

3: Initialise Q. (a, s), 7(a|s, 8:), 9, Ny, 1=
4: for each worker do

5
6:
7A
8

9:
10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

while Ly > Ly, do

update replay buffer B with L trajectories from the environment

// Find better policy by gradient descent
while £ < 1000 do

sample a mini-batch B of N (s, a, r) pairs from replay
sample M additional actions for each state from B, (als, 8;) for estimating integrals
compute gradients, estimating integrals using samples

/I Q-function gradient:

0y = 0sLy(0)

/I E-Step gradient:

bn = dng(n) ,
Let: g(als) o m(als, ;) exp(Lc(%222)
/ M-Step gradient:

[5)7,.) an] = aa”pynﬂL(Gk’ My 7’2)

dg = 80L(0a77uk+1»772k+1)

send gradients to chief worker

wait for gradient update by chief

fetch new parameters ¢, 8,1, 7,,1x

k=k+1
i=i+1, Lowr = Lo + L
0:=0,¢'=9¢

Algorithm 3 MPO (worker) - parametric variational distribution

12:
13:
14:
15:
16:
17:
18:

19:
20:
21:
22:
23:
24:

10:

1
2
3
4
5
6:
‘7.
8
9
0
11:

: Input = €5, €, Lnax
1 =0,Lyy=0
: Initialise Q,, (a, s), m(als, 8;), n, Ny, 1=
: for each worker do
while Loy < Liax do
update replay buffer 3 with L trajectories from the environment
k=0
// Find better policy by gradient descent
while & < 1000 do
sample a mini-batch B of N (s, a, r) pairs from replay
sample M additional actions for each state from B, m(a|s, 8}) for estimating inte-
grals
compute gradients, estimating integrals using samples
/I Q-function gradient:
55 = DoLly(6)
/I E-Step gradient:
(0.5 0ns] = @On,, .y L(Bk; Ny M52)
g = 00 L(0,Muy 1, M5k 41)
/I M-Step gradient: In practice there is no M-step in this case as policy and variatinal
distribution ¢ use a same structure.
send gradients to chief worker
wait for gradient update by chief
fetch new parameters ¢, 0, n, 1,,7s
k=k+1
i=t+1,Loyr =L+ L
91’- = 01 ¢' = ¢

21

Experiments: Results — Discrete Control and others

mean_return

mean_return

task_name=balance, domain_name=cartpole

1000

800

600

400

200

1000

800

600

400

200

task_name=easy, domain_name=reacher

agent=DDPG
agent=EPG + retrace + entropy

agent=MPO
agent=PPO
task_name=bring_ball,
domain_name=manipulator task_name=catch, domain_name=Dball_in_cup task_name=easy, domain_name=point_mass

task_name=hard, domain_name=reacher task_name=hop, domain_name=hopper task_name=run, domain_name=walker

22

agent=DDPG

agent=EPG + retrace + entropy
agent=MPO

agent=PPO

Experiments: Results — Discrete Control and others

task_name=spin, domain_name=finger task_names=stand, domain_name=hopper task_names=stand, domain_name=walker task_name=swim, domain_name=fish

1000 * W

task_name=swimmerl5, domain_name=swimmer task_name=swimmer6, domain_name=swimmer task_name=swingup, domain_name=acrobot task_name=swingup, domain_name=cartpole

) 'sso

8

mean_return
8

o
|

1000

8

mean_return
8

o

23

Experiments: Results — Discrete Control and others

task_name=swingup, domain_name=pendulum

1000

8

mean_return
FY

task_name=upright, domain_name=fish

1000

3
S

mean_return
g

0.5

1.0 15
training_steps

2.0

25
le6

*

task_name=swingup_sparse,
domain_name=acrobot

task_name=walk, domain_name=cheetah

0.0 0.5 1.0 15 2.0 2.5
training_steps 1e6

task_name=turn_easy, domain_name=finger task_name=turn_hard, domain_name=finger

agent=DDPG

agent=EPG + retrace + entropy
agent=MPO

agent=PPO

0.0 0.5 1.0 1.5 2.0 2.5
training_steps le6

24

