
Maximum A Posteriori Policy Op2misa2on
Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R., Heess, N., &

Riedmiller, M. (2018). Maximum a posteriori policy optimisation.
preprint: arXiv:1806.06920 (2018).

Presented by: Raeid Saqur
STA4273 L7: Policy Optimization I

March 4, 2021

MPO: Key Idea & Contribu5ons

• Novelty: Introduces a novel off-policy RL algorithm using expectation
maximization (EM) for optimization

• Paradigm: Uses 'Policy as inference’ for opCmizaCon:
• Instead of: What ac8ons maximize future rewards?,
• Asks: Assuming future success in maximizing rewards, what are the ac8ons

most likely to have been taken?

• Performance: SOTA robust, sample efficient performance on a wide range
of discrete and continuous controls tasks (MuJoCo, DM-Suite [1, 2])

2

Log of sum (intractable)

Background & Preliminaries
Expectation Maximization (EM) Algorithm
• If we know how to model 𝑝 𝑥 𝑧 - where x, z are observed and latent variables

respectively, with joint distribution 𝑝(𝑥, 𝑧 ∣ 𝜃) governed by params 𝜃:
• Direct optimization (e.g., MLE) can be applied: 𝑧∗ = arg max

"
𝑝(𝑥 ∣ 𝑧; 𝜃)

• Optimize log-likelihood of x over all possibilities of z (complete data, D):

3

• Use EM when direct optimization 𝑝 𝑥 𝜃 is difficult, but optimizing complete data
likelihood 𝑝 𝑥, 𝑧 𝜃 is easier. Introduce auxiliary 𝑞(𝑧) over z and decompose:

where,

Background: EM Algorithm

*Source: Bishop, Christopher M. Pattern recognition and machine learning. springer, 2006.

E-Step M-Step

The EM algorithm involves alternately
computing a lower bound on the log
likelihood for the current parameter
values and then maximizing this bound to
obtain the new parameter values.

4

• Introduces an auxiliary distribution over trajectories: 𝑞(𝜏)
• Define the ELBO on the likelihood of optimality for policy Π as:

• EM can be used to alternately improve 𝒥 w.r.t to (𝑞, 𝜋)
• E-step improves 𝒥 w.r.t to 𝑞
• M-step improves 𝒥 w.r.t to 𝜋! supervised by reweighted 𝑞" samples from E-step

MPO: Setup as an EM Problem

Goal achieved

ELBO

Trajectory induced by 𝜋(𝑎|𝑠) Auxiliary trajectory dist. q

5

[Eq. 1]

[Eq. 2]

• The infinite-horizon analogue with 𝑞(𝜏) factorizaVon similar to 𝑝!, i.e. 𝑞 𝜏 =
𝑝 𝑠" ∏#$"𝑝 𝑠#%& 𝑠#, 𝑎# 𝑞(𝑎#|𝑠#) yields:

• Associated Q-value funcVon:

MPO: Policy Improvement

Prior over policy parameters

6

[Eq. 3]

[Eq. 4]

With 𝐾𝐿 𝑞! 𝜋! = 𝐾𝐿(𝑞 𝑎 𝑠! || 𝜋(𝑎|𝑠! , 𝜃))

Policy Improvement: E-Step
E-step itera*on i: perform parPal maximizaPon of 𝒥 𝑞, 𝜃 w.r.t q given 𝜃 = 𝜃"
SeQng 𝑞 = 𝜋#! , esPmate the unregularized (since 𝐾𝐿 𝑞 𝜋" = 0) acPon-value funcPon 𝑄#!

$ (𝑠, 𝑎)

Improve lower-bound 𝒥 w.r.t to q with 𝑸𝜽𝒊
Expand 𝑄#! (𝑠, 𝑎) using the Bellman operator:

Optimize ‘one-step’ KL-regularized (soft) objective

N.B. Par(al E-Step Maximizing and obtaining 𝑞' = argmax �̅�(𝑞, 𝜃') does not fully op:mize 𝒥 (since 𝑄(! is a constant w.r.t to 𝑞)

Soft KL regularization

s.t. 𝔼)(*) 𝐊𝐋 𝑞 𝑎 𝑠 , 𝜋 𝑎 𝑠, 𝜃' < 𝜖

Final E-step Objec*ve Constrained E-Step

7

[Eq. 5]

[Eq. 7]

Policy Improvement: E-Step Variants
To solve this objecPve, we need choose a form for the variaPonal policy 𝒒 𝒂 𝒔 :

Option 1: Use a parametric variational distribution 𝑞(𝑎|𝑠, 𝜃$) with params 𝜃$
(explicit M-step becomes redundant) [see appendix (Alg. 3)]

Option 2: Use a non-parametric representation for 𝑞 𝑎 𝑠 given by sample distribution over (a, s)
Fit a parametric policy in the M-step that generalize across state space [see appendix (Alg. 1, 2)]

where 𝜂∗ can be minimized by the convex dual funcPon (a2er which we can evaluate 𝑞" 𝑎 𝑠):

8

Policy Improvement: M-Step
With 𝑞" from the E-step, optimize 𝒥 w.r.t to 𝜃 to obtain updated policy 𝜽𝒊(𝟏= 𝒂𝒓𝒈𝒎𝒂𝒙𝜽 𝓙 𝒒𝒊, 𝜽 :

Essentially, a supervised learning step. With a Gaussian prior around the current policy 𝑝(𝜃)

Then, the generalized M-Step is:

Corresponding hard-constrained form:

s.t. 𝔼)"(*) 𝐊𝐋 𝜋 𝑎 𝑠, 𝜃' , 𝜋 𝑎 𝑠, 𝜽 < 𝜖

Final M-step Objec*ve

9

[Eq. 10]

[Eq. 11]

[Eq. 12]

Policy Evalua5on
• Policy evaluation done in an off-policy setting, using policy evaluation operator

from the Retrace algorithm (Munos et al. 2016) [5].
• Concretely, a neural network with parameters 𝝓 represents Q-function
𝑄B!(𝑠, 𝑎, 𝜙), and minimizes the squared loss:

where, 𝑄*# 𝑠, 𝑎 : output of target Q-network, 𝑏 𝑎 𝑠 : probabilities of an arbitrary behaviour policy (replay buffer)

10

Experiments
• ConVnuous Control tasks: DM Control suite [7], parkour environments [8]

• Including the classical cart-pole and acrobot dynamical systems, 2D and Humanoid walking

• Discrete Control tasks: ATARI environments [9]

11

• Detailed evaluation on three (harder) tasks: Walker-2D, Hopper, Acrobot

Experiments - Results

12

Experiments – Results: High Dimensional Continuous Control

• High-dimensional Con0nuous Control - Parkour Walker 2D, Humanoid

13

Scope & Limita5ons
• Fairness of the baselines (sample-efficiency) comparison with on-

policy methods (PPO, TRPO).
• Too many hyperparameters to tune (e.g. two KL constraints, for E and

M step). Hard to stabilize training.
• Lot of implementation caveats (hacks) that deviate from the main

motivation (MPO) optimization.

14

• OpenAI Gym e.g.:
• LunarLander-v2 (discrete) and LunarLanderConVnuous-v2

Demo

15Source: https://gym.openai.com/envs/LunarLander-v2/

Landing pad is always at coordinates (0,0). Coordinates are the first two
numbers in state vector. Reward for moving from the top of the screen to
landing pad and zero speed is about 100..140 points. If lander moves away from
landing pad it loses reward back. Episode finishes if the lander crashes or comes
to rest, receiving additional -100 or +100 points. Each leg ground contact is +10.
Firing main engine is -0.3 points each frame. Solved is 200 points. Landing
outside landing pad is possible. Fuel is infinite, so an agent can learn to fly and
then land on its first attempt. Four discrete actions available: do nothing, fire
left orientation engine, fire main engine, fire right orientation engine.

Insights
• Similarities with existing RL algorithms
• TRPO, PPO
• REPs

• Training can be treacherous

16

Summary

• The paper introduces a new off-policy RL algorithm: MPO

• The algorithm poses policy search as an inference problem and uses
an alternating coordinate ascent style EM algorithm for policy
improvement

• MPO empirically shows high data-efficiency, hyperparameter
robustness and applicability to wide range of complex control
problems.

17

Ques(ons?

18

Reference
1. Todorov, Emanuel, Tom Erez, and Yuval Tassa. "Mujoco: A physics engine for model-based control." 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems. IEEE, 2012.

2. Tassa, Yuval, et al. "Deepmind control suite." arXiv preprint arXiv:1801.00690 (2018).

3. J. Andreas, M. Rohrbach, T. Darrell, and D. Klein, “Neural module networks,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-
Decem.

4. J. A. Fodor et al., “Connectionism and Cognitive Architecture Connectionism and Cognitive Architecture: 1 A Critical Analysis.”

5. Schulman, John, et al. "Trust region policy optimization." International conference on machine learning. PMLR, 2015.

6. Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017).

7. Munos, Rémi, et al. "Safe and efficient off-policy reinforcement learning." arXiv preprint arXiv:1606.02647 (2016).

8. Peters, Jan, Katharina Mulling, and Yasemin Altun. "Relative entropy policy search. (REPS)" Proceedings of the AAAI Conference on Artificial Intelligence. Vol.
24. No. 1. 2010.

9. Tassa, Yuval, et al. "Deepmind control suite." arXiv preprint arXiv:1801.00690 (2018).

10. Heess, Nicolas, et al. "Emergence of locomotion behaviours in rich environments." arXiv preprint arXiv:1707.02286 (2017).

11. Brockman, Greg, et al. "Openai gym." arXiv preprint arXiv:1606.01540 (2016).

19

Appendix

20

Implementation Details

21

Experiments: Results – Discrete Control and others

22

Experiments: Results – Discrete Control and others

23

Experiments: Results – Discrete Control and others

24

