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Summary

• The title says it all
• Model-based: learning environment models
• Offline: learning with offline (precollected) data
• Policy Optimization: learning a policy

• Review the background
• Review the theory
• Review the algorithm
• Poke at the weak spots
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Introduction



The challenge: Offline data

Figure 1: A crude visualization of offline RL (left online, right offline)
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The challenge: Offline data

Challenges:

• Might not contain correct solution
• Intermediate policies could lead outside of data covered region
• Generalization of RL algorithms unclear

Solutions:

• Inverse reinforcement learning
• Regularization towards data distribution
• Hope for generalization
• Model-based RL?
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An answer? Model learning

Why model learning?
• Supervised: more hopes of
generalization

• Model can cover region of low data
• We can estimate model uncertainty

Classic algorithm: Dyna

Figure 2: Comic from
Ha, Schmidhuber:
”World Models”,
(https:
//arxiv.org/pdf/
1803.10122.pdf)
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Dyna based RL

Figure 3: Diagram from Sutton, Barto: ”Reinforcement Learning: An
Introduction”, p.163, MIT Press 2018
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MBPO as offline-learning

Figure 4: Comparison of previous methods on offline benchmarks, diagram
from paper
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Offline optimized model-based RL



When to trust your model (revisited)

Disclaimer: Compressed notation for intuition, not rigorous

Try to quantify the error when executing policies π from one model T̂
in another T

Expected discounted return :

ηT(π) := ET
[∑

γtr(st,at)
]

Difference in value function :

Gπ(s,a) := Es′∼T̂(s,a)[V
π
T (s′)]− Es′∼T(s,a)[Vπ

T (s′)]
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How good are we sure to be?

Estimate expected return under true dynamics T

ηT̂(π)− ηT(π) =γEπ
T̂

[∑
γtGπ

T̂ (st,at)
]

ηT(π) =Eπ
T̂

[∑
γt

(
r(st,at)− γGπ

T̂ (st,at)
)]

≥Eπ
T̂

[∑
γt

(
r(st,at)− γ|Gπ

T̂ (st,at)|
)]

Need |Gπ(s,a)| = |Es′∼T̂(s,a)[Vπ(s′)]− Es′∼T(s,a)[Vπ(s′)]|

|Gπ
T̂ (s,a)| ≤ sup

V∈F

∣∣Es′∼T [V(s′|s,a)]− Es′∼T̂ [V(s
′|s,a)]

∣∣ = dF (T̂(s,a), T(s,a))

• For F bounded: Total variation distance

• For F Lipschitz-smooth: Wasserstein distance
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How good are we sure to be?

Idea: expected return in T is lower bounded by:

ET̂
[∑

γt
(
r(st,at)− γdF (T̂(st,at), T(st,at)

)]
(1)

• new MDP with r̃(s,a) = r(s,a)− γdF (T̂(s,a), T(s,a))
• optimize policy here
• by previous, return will underestimate true return (achieve
conservative learning)

Big problem: don’t know T and therefore also not dF ( ˆT(s,a), T(s,a))

Idea: Find function u(s,a) ≥ dF (T̂(s,a), T(s,a) and define
r̃(s,a) = r(s,a)− u(s,a)
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Making it work in practice



Uncertainty in ensemble NN

How do we get u?

Core idea (reuses model from PETS, MBPO):

• Take n identical neural networks
• Encode p(y|x) = N (µi(s),Σi(s))
• Train independently to minimize − 1

n
∑

log p(y|x)|x, y ∼ D
• Each network captures intrinsic randomness (aleatoric)
• Whole ensemble captures data uncertainty (epistemic)

Measure uncertainty with these
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Uncertainty in ensemble NN – Visualization

Code available at https://colab.research.google.com/drive/
1X1zl2CBYsIC2Q3a4uK3f-_kvrewzvaOW#scrollTo=iP14_HZcrP2a&
uniqifier=1
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Implementation of a practical algorithm

Require: λ, rollout horizon h, rollout batch size b.
1: Train on batch data Denv an ensemble of N probabilistic
dynamics {T̂ i(s′, r|s,a) = N (µi(s,a),Σi(s,a))}Ni=1.

2: Initialize policy π and empty replay buffer Dmodel ← ∅.
3: for epoch 1, 2, . . . do
4: for 1, 2, . . . ,b (in parallel) do
5: Sample state s1 from Denv for init
6: for j = 1, 2, . . . ,h do
7: Sample an action aj ∼ π(sj).
8: Pick T̂ from {T̂ i}Ni=1 and sample sj+1, rj ∼ T̂(sj,aj).
9: Compute r̃j = rj−λmaxNi=1 ‖Σ

i(sj,aj)‖F.
10: Add sample (sj,aj, r̃j, sj+1) to Dmodel
11: Drawing samples from Denv ∪ Dmodel, update π.
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Does this work with the theory

We have:

Nprobabilistic dynamics {T̂ i(s′, r|s,a) = N (µi(s,a),Σi(s,a))}Ni=1

We estimate r̃ as

r̃j = rj−λmax
i
‖Σi(sj,aj)‖F = r(s,a)− γu(s,a)

Reminder:

|Gπ
T̂ (s,a)| ≤ dF (T̂(s,a), T(s,a))

?
= λmax

i
‖Σi(sj,aj)‖F
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Fixing bits and pieces

Uncertainty estimate proposed in paper and tested:

u(s,a) = λmax
i=1
‖Σi(sj,aj)‖F

u(s,a) = λmax
i,j
||µi − µj||2

In experiments, max variance performed better then disagreement...

What about (alternative proposal):

u(s,a) = λVar(ensemble)(s,a) =

λ

(∑
σ2i (s,a) +

∑
µ2i (s,a)−

(∑
µi(s,a)

)2)

Open question: Relationship of uncertainty and divergence measure
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What do we take away?



Summary

• Interesting theory, solid foundation
• Model-based RL can shine in offline settings
• Clear connection between model error and expected return

• Empirically very strong algorithm
• Works very well when requiring OOD data for optimal policy
• Results mostly skipped here because there were no nice graphs

• Very little connection between theory and empirical work (also
noted by reviewers)

• Uncertainty measurement drives even larger gaps between
theory and empirical algorithm
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