MOPO: Model-based Offline Policy Optimization

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon,
James Zou1, Sergey Levine, Chelsea Finn, Tengyu Ma

Claas A Voelcker

STA 4273 - University of Toronto

- The title says it all

- Model-based: learning environment models
- Offline: learning with offline (precollected) data
- Policy Optimization: learning a policy

- Review the background
- Review the theory
- Review the algorithm

- Poke at the weak spots

Introduction

The challenge: Offline data

P

Figure 1: A crude visualization of offline RL (left online, right offline)

The challenge: Offline data

Challenges:
- Might not contain correct solution
- Intermediate policies could lead outside of data covered region

- Generalization of RL algorithms unclear

Solutions:

- Inverse reinforcement learning

- Regularization towards data distribution
- Hope for generalization

- Model-based RL?

An answer? Model learning

Why model learning?

- Supervised: more hopes of
generalization

- Model can cover region of low data Figure 2: Comic from
- We can estimate model uncertainty Ha, Schmidhuber:
"World Models”,

Classic algorithm: Dyna (https:

//arxiv.org/pdf/
1803.10122. pdf)

https://arxiv.org/pdf/1803.10122.pdf
https://arxiv.org/pdf/1803.10122.pdf
https://arxiv.org/pdf/1803.10122.pdf

Dyna based RL

/N

| Policynvalue functions |

planning update

direct RL simulated
update experience
real
experience
search
learning control
Model

[Environment]

Figure 3: Diagram from Sutton, Barto: "Reinforcement Learning: An
Introduction”, p.163, MIT Press 2018

MBPO as offline-learning

D4RL halfcheetah-mixed halfcheetah-jump
4k
6k |
2k
T
5 ok
§ _buffermean T _______ | -~=------- f-------
- i)
N o -
SAC MBPO no ens. MBPO SAC MBPO no ens. MBPO

Figure 4: Comparison of previous methods on offline benchmarks, diagram
from paper

Offline optimized model-based RL

When to trust your model (revisited)

Disclaimer: Compressed notation for intuition, not rigorous

Try to quantify the error when executing policies 7 from one model T
in another T

Expected discounted return :

7’]7(7‘() = ET |:Z ’yt/’(St, at):|
Difference in value function :
G"(s,q) := ES,Nf(S,a)[V-;T(S/)] —]ES/NT(&O)[V?(S/)]

How good are we sure to be?

Estimate expected return under true dynamics T
n3(m) — nr(m) =7EF {Z 7 GE(st, Gr)}
=ET {Zy r(st, ar) ng(St,at))]
>E] [27 r(st, at) 7|G$(st,at)|)}

Need [G™(s, a)| = [Eg 35 q) [V (S)] = Esinrs.ap [V (S]]

G (s, a)| < 522|Es'~T[V(S’|S7 a)] ~ E,:[V(s'ls, a)l| = d=(T(s,),T(s,a))

- For F bounded: Total variation distance

- For F Lipschitz-smooth: Wasserstein distance

How good are we sure to be?

Idea: expected return in T is lower bounded by:

Er [D2 (st a0) = 7 (F(se,), T(se,ar))| (1)

- new MDP with F(s, a) = r(s,a) — vd=(T(s, a), T(s, a))

- optimize policy here

- by previous, return will underestimate true return (achieve
conservative learning)

Big problem: don’t know T and therefore also not d=(T(s, a), T(s, a))

Idea: Find function u(s,a) > dx(7(s,a), T(s,a) and define
f(s,a) =r(s,a) — u(s,a)

Making it work in practice

Uncertainty in ensemble NN

How do we get u?
Core idea (reuses model from PETS, MBPO):

- Take n identical neural networks

+ Encode p(ylx) = N(ui(s), Z(s))

« Train independently to minimize —1 3" log p(y|x)|x,y ~ D
- Each network captures intrinsic randomness (aleatoric)

- Whole ensemble captures data uncertainty (epistemic)

Measure uncertainty with these

Uncertainty in ensemble NN - Visualization

Code available at https://colab.research.google.com/drive/ !

https://colab.research.google.com/drive/1X1zl2CBYsIC2Q3a4uK3f-_kvrewzvaOW#scrollTo=iP14_HZcrP2a&uniqifier=1
https://colab.research.google.com/drive/1X1zl2CBYsIC2Q3a4uK3f-_kvrewzvaOW#scrollTo=iP14_HZcrP2a&uniqifier=1
https://colab.research.google.com/drive/1X1zl2CBYsIC2Q3a4uK3f-_kvrewzvaOW#scrollTo=iP14_HZcrP2a&uniqifier=1

Implementation of a practical algorithm

Require:), rollout horizon h, rollout batch size b.
1: Train on batch data Deny an ensemble of N probabilistic
dynamics {T/(s’, r|s,a) = N(g/(s, a), Z'(s, a)) }I',.
2. Initialize policy = and empty replay buffer Dyogel < 2.
3: for epoch 1,2,... do
4 for1,2,...,b(in parallel) do
5 Sample state s; from Dy, for init
6 forj=1,2,...,hdo
7: Sample an action a; ~ 7(s;).
8 Pick T from {7}, and sample sj 4,1 ~ T(s}, ;).
9: Compute 7; = ri—Amax", || Z/(s;, a)]Ir.
10: Add sample (s;, a;,Tj, Sj11) t0 Dodel

1 Drawing samples from Deny U Dinodel, Update .

Does this work with the theory

We have:
N probabilistic dynamics {T'(s’, r|s, a) = N (u'(s, a), £'(s, a))}",
We estimate T as

fi=r—X max IZ'(sj, @)l = r(s, @) — yu(s, a)

Reminder:

A

65(s, 0)| < d=(T(s,0), T(s,)) = Amax | Z'(s},)]s

Fixing bits and pieces

Uncertainty estimate proposed in paper and tested:
u(s, a) = Amax|| (s}, @))]le
=
u(s,a) = A GEK i = will2

In experiments, max variance performed better then disagreement...

What about (alternative proposal):

u(s,a) = Avar(ensemble)(s,a) =
(ZJSG—FZLL,SCI (Z/lSCI))
Open question: Relationship of uncertainty and divergence measure

14

What do we take away?

- Interesting theory, solid foundation

- Model-based RL can shine in offline settings
- Clear connection between model error and expected return

- Empirically very strong algorithm
- Works very well when requiring OOD data for optimal policy
- Results mostly skipped here because there were no nice graphs
- Very little connection between theory and empirical work (also
noted by reviewers)
- Uncertainty measurement drives even larger gaps between
theory and empirical algorithm

	Introduction
	Offline optimized model-based RL
	Making it work in practice
	What do we take away?

