MOPO: Model-based Offline Policy Optimization

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou1, Sergey Levine, Chelsea Finn, Tengyu Ma

Claas A Voelcker

STA 4273 - University of Toronto
• The title says it all
 • Model-based: learning environment models
 • Offline: learning with offline (precollected) data
 • Policy Optimization: learning a policy

• Review the background
• Review the theory
• Review the algorithm
• Poke at the weak spots
Introduction
The challenge: Offline data

Figure 1: A crude visualization of offline RL (left online, right offline)
The challenge: Offline data

Challenges:
 • Might not contain correct solution
 • Intermediate policies could lead outside of data covered region
 • Generalization of RL algorithms unclear

Solutions:
 • Inverse reinforcement learning
 • Regularization towards data distribution
 • Hope for generalization
 • Model-based RL?
An answer? Model learning

Why model learning?

• Supervised: more hopes of generalization
• Model can cover region of low data
• We can estimate model uncertainty

Classic algorithm: Dyna

Figure 2: Comic from Ha, Schmidhuber: ”World Models”, (https://arxiv.org/pdf/1803.10122.pdf)
Dyna based RL

Figure 3: Diagram from Sutton, Barto: "Reinforcement Learning: An Introduction", p.163, MIT Press 2018
Figure 4: Comparison of previous methods on offline benchmarks, diagram from paper
Offline optimized model-based RL
When to trust your model (revisited)

Disclaimer: Compressed notation for intuition, not rigorous

Try to quantify the error when executing policies \(\pi \) from one model \(\hat{T} \) in another \(T \)

Expected discounted return:

\[
\eta_T(\pi) := \mathbb{E}_T \left[\sum \gamma^t r(s_t, a_t) \right]
\]

Difference in value function:

\[
G^\pi(s, a) := \mathbb{E}_{s' \sim \hat{T}(s, a)}[V^\pi_T(s')] - \mathbb{E}_{s' \sim T(s, a)}[V^\pi_T(s')]
\]
How good are we sure to be?

Estimate expected return under true dynamics T

$$\eta_{\hat{T}}(\pi) - \eta_T(\pi) = \gamma \mathbb{E}_{\hat{T}}^\pi \left[\sum \gamma^t G_T^\pi (s_t, a_t) \right]$$

$$\eta_T(\pi) = \mathbb{E}_{\hat{T}}^\pi \left[\sum \gamma^t (r(s_t, a_t) - \gamma G_T^\pi (s_t, a_t)) \right]$$

$$\geq \mathbb{E}_{\hat{T}}^\pi \left[\sum \gamma^t (r(s_t, a_t) - \gamma |G_T^\pi (s_t, a_t)|) \right]$$

Need $|G^\pi(s, a)| = |\mathbb{E}_{s' \sim \hat{\pi}(s, a)}[V^\pi(s')] - \mathbb{E}_{s' \sim T(s, a)}[V^\pi(s')]|$

$$|G_T^\pi(s, a)| \leq \sup_{V \in \mathcal{F}} \left| \mathbb{E}_{s' \sim T}[V(s'|s, a)] - \mathbb{E}_{s' \sim \hat{T}}[V(s'|s, a)] \right| = d_{\mathcal{F}}(\hat{T}(s, a), T(s, a))$$

- For \mathcal{F} bounded: Total variation distance
- For \mathcal{F} Lipschitz-smooth: Wasserstein distance
How good are we sure to be?

Idea: expected return in T is lower bounded by:

$$\mathbb{E}_{\hat{T}} \left[\sum \gamma^t (r(s_t, a_t) - \gamma d_{\mathcal{F}}(\hat{T}(s_t, a_t), T(s_t, a_t))) \right]$$ \hspace{1cm} (1)

- new MDP with $\tilde{r}(s, a) = r(s, a) - \gamma d_{\mathcal{F}}(\hat{T}(s, a), T(s, a))$
- optimize policy here
- by previous, return will underestimate true return (achieve conservative learning)

Big problem: don’t know T and therefore also not $d_{\mathcal{F}}(T(\hat{s}, a), T(s, a))$

Idea: Find function $u(s, a) \geq d_{\mathcal{F}}(\hat{T}(s, a), T(s, a)$ and define $\tilde{r}(s, a) = r(s, a) - u(s, a)$
Making it work in practice
How do we get u?

Core idea (reuses model from PETS, MBPO):

- Take n identical neural networks
- Encode $p(y|x) = \mathcal{N}(\mu^i(s), \Sigma^i(s))$
- Train independently to minimize $-\frac{1}{n} \sum \log p(y|x) | x, y \sim D$
- Each network captures intrinsic randomness (aleatoric)
- Whole ensemble captures data uncertainty (epistemic)

Measure uncertainty with these
Uncertainty in ensemble NN – Visualization

Code available at https://colab.research.google.com/drive/
Implementation of a practical algorithm

Require: λ, rollout horizon h, rollout batch size b.

1. Train on batch data \mathcal{D}_{env} an ensemble of N probabilistic dynamics $\{\hat{T}_i(s', r|s, a) = \mathcal{N}(\mu_i(s, a), \Sigma_i(s, a))\}_{i=1}^N$.
2. Initialize policy π and empty replay buffer $\mathcal{D}_{\text{model}} \leftarrow \emptyset$.
3. **for** epoch 1, 2, \ldots **do**
4. **for** 1, 2, \ldots, b (in parallel) **do**
5. Sample state s_1 from \mathcal{D}_{env} for init
6. **for** $j = 1, 2, \ldots, h$ **do**
7. Sample an action $a_j \sim \pi(s_j)$.
8. Pick \hat{T} from $\{\hat{T}_i\}_{i=1}^N$ and sample $s_{j+1}, r_j \sim \hat{T}(s_j, a_j)$.
9. Compute $\tilde{r}_j = r_j - \lambda \max_{i=1}^N \|\Sigma_i(s_j, a_j)\|_F$.
10. Add sample $(s_j, a_j, \tilde{r}_j, s_{j+1})$ to $\mathcal{D}_{\text{model}}$
11. **Drawing samples from** $\mathcal{D}_{\text{env}} \cup \mathcal{D}_{\text{model}}$, update π.
Does this work with the theory

We have:

\[N \text{ probabilistic dynamics } \{ \hat{T}^i(s', r|s, a) = \mathcal{N}(\mu^i(s, a), \Sigma^i(s, a)) \}_{i=1}^N \]

We estimate \(\tilde{r} \) as

\[\tilde{r}_j = r_j - \lambda \max_i \left\| \Sigma^i(s_j, a_j) \right\|_F = r(s, a) - \gamma u(s, a) \]

Reminder:

\[|G_\pi^\pi(s, a)| \leq d_{\mathcal{F}}(\hat{T}(s, a), T(s, a)) \overset{?}{=} \lambda \max_i \left\| \Sigma^i(s_j, a_j) \right\|_F \]
Fixing bits and pieces

Uncertainty estimate proposed in paper and tested:

\[u(s, a) = \lambda \max_{i=1} \|\Sigma^i(s, a)\|_F \]

\[u(s, a) = \lambda \max_{i,j} \|\mu_i - \mu_j\|_2 \]

In experiments, max variance performed better then disagreement...

What about (alternative proposal):

\[u(s, a) = \lambda \text{Var(ensemble)}(s, a) = \]

\[\lambda \left(\sum \sigma_i^2(s, a) + \sum \mu_i^2(s, a) - \left(\sum \mu_i(s, a) \right)^2 \right) \]

Open question: Relationship of uncertainty and divergence measure
What do we take away?
• Interesting theory, solid foundation
 • Model-based RL can shine in offline settings
 • Clear connection between model error and expected return
• Empirically very strong algorithm
 • Works very well when requiring OOD data for optimal policy
 • Results mostly skipped here because there were no nice graphs
• Very little connection between theory and empirical work (also noted by reviewers)
• Uncertainty measurement drives even larger gaps between theory and empirical algorithm