Maximum Entropy Monte-Carlo Planning

Chenjun Xiao, Jincheng Mei, Ruitong Huang, Dale Schuurmans, Martin Müller

Presented by Sourav Bhattacharjee and Andrew Jung STA 4273 Winter 2021 - Minimizing Expectations March 25, 2021

Xiao, C., Huang, R., Mei, J., Schuurmans, D., and Müller, M. Maximum entropy monte-carlo planning. In Advances in Neural Information Processing Systems, pp. 9516–9524, 2019.

Augment Monte Carlo Tree Search (MCTS) with maximum entropy policy optimization to improve the worst case efficiency of UCT

Online planning problem: finding the optimal policy at a given state (s_0)

- An MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, p(\cdot|s, a), r(s, a) \rangle$
- \bullet Generative model of ${\cal M}$ used to simulate state-action trajectories within a sampling budget

Online planning problem: finding the optimal policy at a given state (s_0)

- An MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, p(\cdot|s, a), r(s, a) \rangle$
- Generative model of *M* used to simulate state-action trajectories within a sampling budget
- From the simulation, an optimal action is proposed for the input state, s₀

Online planning problem: finding the optimal policy at a given state (s_0)

- An MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, p(\cdot|s, a), r(s, a) \rangle$
- Generative model of *M* used to simulate state-action trajectories within a sampling budget
- From the simulation, an optimal action is proposed for the input state, *s*₀
- The paper considers episodic and deterministic MDP for simplicity

• At the end of the iteration, node statistics updated from the backup (often Q(s, a) and N(s)).

- At the end of the iteration, node statistics updated from the backup (often Q(s, a) and N(s)).
- MCTS iterations run until the budget

- At the end of the iteration, node statistics updated from the backup (often Q(s, a) and N(s)).
- MCTS iterations run until the budget
- Best action for the root node, s_0 , chosen based on the node statistics

- At the end of the iteration, node statistics updated from the backup (often Q(s, a) and N(s)).
- MCTS iterations run until the budget
- Best action for the root node, s_0 , chosen based on the node statistics
- <u>Selectively</u> sampling actions can improve the performance, especially in large search space

- At the end of the iteration, node statistics updated from the backup (often Q(s, a) and N(s)).
- MCTS iterations run until the budget
- Best action for the root node, s_0 , chosen based on the node statistics
- <u>Selectively</u> sampling actions can improve the performance, especially in large search space
- Tree policy needs to balance exploitation with exploration

Upper Confidence Bound (UCB) Applied to Trees (UCT)

UCT uses UCB1 from the bandits literature as a tree policy

- Consider the choice of child node as a multi-armed bandit problem
- In K-bandits, the goal is to choose sequence of K actions to maximize the long-term expected rewards

- Consider the choice of child node as a multi-armed bandit problem
- In K-bandits, the goal is to choose sequence of K actions to maximize the long-term expected rewards

UCB1

At time *t*, choose action $a \in \{1, ..., K\}$ with the largest upper confidence bound (*UCB*):

$$UCB(a) = \hat{r}_t(a) + c \sqrt{\frac{\ln t}{n_{t,a}}}$$

where $\hat{r}_t(a)$ is empirical estimate of the reward from action a, $n_{t,a}$ is the number of times action a was played, and c > 0 is a constant.

- Consider the choice of child node as a multi-armed bandit problem
- In K-bandits, the goal is to choose sequence of K actions to maximize the long-term expected rewards

UCB1

At time *t*, choose action $a \in \{1, ..., K\}$ with the largest upper confidence bound (*UCB*):

$$UCB(a) = \hat{r}_t(a) + c \sqrt{\frac{\ln t}{n_{t,a}}}$$

where $\hat{r}_t(a)$ is empirical estimate of the reward from action a, $n_{t,a}$ is the number of times action \overline{a} was played, and c > 0 is a constant.

- Consider the choice of child node as a multi-armed bandit problem
- In K-bandits, the goal is to choose sequence of K actions to maximize the long-term expected rewards

UCB1

At time *t*, choose action $a \in \{1, ..., K\}$ with the largest upper confidence bound (*UCB*):

$$UCB(a) = \hat{r}_t(a) + c \sqrt{\frac{\ln t}{n_{t,a}}}$$

where $\hat{r}_t(a)$ is empirical estimate of the reward from action a, $n_{t,a}$ is the number of times action \overline{a} was played, and c > 0 is a constant.

- Consider the choice of child node as a multi-armed bandit problem
- In K-bandits, the goal is to choose sequence of K actions to maximize the long-term expected rewards

UCB1

At time *t*, choose action $a \in \{1, ..., K\}$ with the largest upper confidence bound (*UCB*):

$$UCB(a) = \hat{r}_t(a) + c \sqrt{\frac{\ln t}{n_{t,a}}}$$

where $\hat{r}_t(a)$ is empirical estimate of the reward from action a, $n_{t,a}$ is the number of times action \overline{a} was played, and c > 0 is a constant.

UCT

At node *s*, choose action *a* with the largest UCB(s, a):

$$UCB(s, a) = Q(s, a) + c \sqrt{rac{\ln N(s)}{N(s, a)}}$$

where Q(s, a), N(s), and N(s, a) are the node statistics for action-value and visitation counts.

UCT

At node s, choose action a with the largest UCB(s, a):

$$UCB(s,a) = Q(s,a) + c \sqrt{rac{\ln N(s)}{N(s,a)}}$$

where Q(s, a), N(s), and N(s, a) are the node statistics for action-value and visitation counts.

• Asymptotically optimal: $Q(s, a) \xrightarrow{p} Q^*(s, a), \forall s \in S, \forall a \in A$

UCT

At node s, choose action a with the largest UCB(s, a):

$$UCB(s,a) = Q(s,a) + c \sqrt{rac{\ln N(s)}{N(s,a)}}$$

where Q(s, a), N(s), and N(s, a) are the node statistics for action-value and visitation counts.

- Asymptotically optimal: $Q(s, a) \xrightarrow{p} Q^*(s, a), \forall s \in S, \forall a \in A$
- Probability of proposing a suboptimal action at the root after t iterations, P(at ≠ a*), converges to zero at O(¹/_t)

$$V^* = \max_{\pi} \left\{ \pi \cdot \boldsymbol{r} \right\}$$

$$\pi^* = \arg\max_{\pi} \left\{ \pi \cdot \mathbf{r} \right\}$$

$$V^{*} = \max_{\pi} \{ \pi \cdot \boldsymbol{r} \}$$
$$V_{sft}^{*} = \max_{\pi} \{ \pi \cdot \boldsymbol{r} + \tau \mathcal{H}(\pi) \}$$

$$\pi^{*} = \arg \max_{\pi} \left\{ \pi \cdot \boldsymbol{r} \right\}$$
$$\pi_{sft}^{*} = \arg \max_{\pi} \left\{ \pi \cdot \boldsymbol{r} + \tau \mathcal{H}(\pi) \right\}$$

$$V^{*} = \max_{\pi} \left\{ \pi \cdot \boldsymbol{r} \right\}$$
$$V_{sft}^{*} = \max_{\pi} \left\{ \pi \cdot \boldsymbol{r} + \boldsymbol{\tau} \mathcal{H}(\pi) \right\}$$

$$\pi^{*} = \arg \max_{\pi} \left\{ \pi \cdot \boldsymbol{r} \right\}$$
$$\pi_{sft}^{*} = \arg \max_{\pi} \left\{ \pi \cdot \boldsymbol{r} + \tau \mathcal{H}(\pi) \right\}$$

$$V^* = \max_{\pi} \{\pi \cdot \mathbf{r}\}$$

$$V^*_{sft} = \max_{\pi} \{\pi \cdot \mathbf{r} + \tau \mathcal{H}(\pi)\} = \tau \log \sum_{a} \exp\{r(a)/\tau\}$$

$$= (\text{smooth approximation to max})$$

$$\pi^* = \arg \max_{\pi} \{\pi \cdot \mathbf{r}\}$$

$$\pi^*_{sft} = \arg \max_{\pi} \{\pi \cdot \mathbf{r} + \tau \mathcal{H}(\pi)\} = \exp\{(\mathbf{r} - V^*_{sft}))/\tau\}$$

$$= (\text{smooth approximation to argmax})$$

Simplify the notation by introducing $\mathcal{F}_{\tau}(\mathbf{r}) = \tau \log \sum_{a} \exp(r(a)/\tau)$ and $\mathbf{f}_{\tau}(\mathbf{r}) = \exp\{(\mathbf{r} - \mathcal{F}_{\tau}(\mathbf{r}))/\tau\}$:

Solving the regularized problem:

 $V_{sft}^* = \mathcal{F}_{\tau}(\mathbf{r}),$ $\pi_{sft}^* = \mathbf{f}_{\tau}(\mathbf{r})$

Augment MCTS with maximum entropy policy optimization to improve the worst case efficiency of UCT

- Apply entropy regularization to bandit problem
- Apply regularized bandit to MCTS

Softmax Value Estimation in Bandit

Apply maximum entropy regularization to bandit problem (softmax bandit)

• The new entropy regularized objective: estimate the optimal softmax value $V^*_{sft} = \mathcal{F}_{\tau}(\mathbf{r})$ for some $\tau > 0$

Softmax Value Estimation in Bandit

Apply maximum entropy regularization to bandit problem (softmax bandit)

- The new entropy regularized objective: estimate the optimal softmax value $V_{sft}^* = \mathcal{F}_{\tau}(\mathbf{r})$ for some $\tau > 0$
- To achieve this, find a sequential sampling algorithm to minimize mean squared error $\mathcal{E}_t = \mathbb{E}\left[(U^* U_t)^2\right]$ where $U^* = \sum_a \exp\left\{r(a)/\tau\right\} = e^{V_{sft}^*/\tau}, U_t = \sum_a \exp\left\{\hat{r}_t(a)/\tau\right\} = e^{(V_{sft})_t/\tau},$ and \hat{r}_t is the empirical estimate of r at time t

- The new entropy regularized objective: estimate the optimal softmax value $V_{sft}^* = \mathcal{F}_{\tau}(\mathbf{r})$ for some $\tau > 0$
- To achieve this, find a sequential sampling algorithm to minimize mean squared error $\mathcal{E}_t = \mathbb{E}\left[(U^* U_t)^2\right]$ where $U^* = \sum_a \exp\left\{r(a)/\tau\right\} = e^{V_{sft}^*/\tau}, U_t = \sum_a \exp\left\{\hat{r}_t(a)/\tau\right\} = e^{(V_{sft})_t/\tau},$ and \hat{r}_t is the empirical estimate of r at time t
- Propose an optimal algorithm for softmax bandit problem and show this is optimal by two theorems: 1) there is a lower bound for *E_t* and 2) the proposed algorithm achieves the lower bound asymptotically

- The new entropy regularized objective: estimate the optimal softmax value $V_{sft}^* = \mathcal{F}_{\tau}(\mathbf{r})$ for some $\tau > 0$
- To achieve this, find a sequential sampling algorithm to minimize mean squared error $\mathcal{E}_t = \mathbb{E}\left[(U^* U_t)^2\right]$ where $U^* = \sum_a \exp\{r(a)/\tau\} = e^{V_{sft}^*/\tau}, U_t = \sum_a \exp\{\hat{r}_t(a)/\tau\} = e^{(V_{sft})_t/\tau},$ and \hat{r}_t is the empirical estimate of r at time t
- Propose an optimal algorithm for softmax bandit problem and show this is optimal by two theorems: 1) there is a lower bound for *E_t* and 2) the proposed algorithm achieves the lower bound asymptotically

Empirical Exponential Weight (E2W)

$$\pi_t \left(\mathsf{a}
ight) = \left(1 - \lambda_t
ight) \mathbf{f}_{\tau} \left(\hat{\mathbf{f}}_t
ight) \left(\mathsf{a}
ight) + \lambda_t rac{1}{|\mathcal{A}|},$$

where $\lambda_t = \epsilon \left| \mathcal{A} \right| / \log(t+1)$ is decay rate for exploration and $\epsilon > 0$

- The new entropy regularized objective: estimate the optimal softmax value $V_{sft}^* = \mathcal{F}_{\tau}(\mathbf{r})$ for some $\tau > 0$
- To achieve this, find a sequential sampling algorithm to minimize mean squared error $\mathcal{E}_t = \mathbb{E}\left[(U^* U_t)^2\right]$ where $U^* = \sum_a \exp\{r(a)/\tau\} = e^{V_{sft}^*/\tau}, U_t = \sum_a \exp\{\hat{r}_t(a)/\tau\} = e^{(V_{sft})_t/\tau},$ and \hat{r}_t is the empirical estimate of r at time t
- Propose an optimal algorithm for softmax bandit problem and show this is optimal by two theorems: 1) there is a lower bound for *E_t* and 2) the proposed algorithm achieves the lower bound asymptotically

Empirical Exponential Weight (E2W)

$$\pi_t(\mathbf{a}) = (1 - \lambda_t) \mathbf{f}_{\tau}(\mathbf{\hat{r}}_t)(\mathbf{a}) + \lambda_t \frac{1}{|\mathcal{A}|},$$

where $\lambda_t = \epsilon \left| \mathcal{A} \right| / \log(t+1)$ is decay rate for exploration and $\epsilon > 0$

- The new entropy regularized objective: estimate the optimal softmax value $V_{sft}^* = \mathcal{F}_{\tau}(\mathbf{r})$ for some $\tau > 0$
- To achieve this, find a sequential sampling algorithm to minimize mean squared error $\mathcal{E}_t = \mathbb{E}\left[(U^* U_t)^2\right]$ where $U^* = \sum_a \exp\{r(a)/\tau\} = e^{V_{sft}^*/\tau}, U_t = \sum_a \exp\{\hat{r}_t(a)/\tau\} = e^{(V_{sft})_t/\tau},$ and \hat{r}_t is the empirical estimate of r at time t
- Propose an optimal algorithm for softmax bandit problem and show this is optimal by two theorems: 1) there is a lower bound for *E_t* and 2) the proposed algorithm achieves the lower bound asymptotically

Empirical Exponential Weight (E2W)

$$\pi_t(\mathbf{a}) = (1 - \lambda_t) \mathbf{f}_{\tau}(\hat{\mathbf{r}}_t)(\mathbf{a}) + \lambda_t \frac{1}{|\mathcal{A}|},$$

where $\lambda_t = \epsilon \left| \mathcal{A} \right| / \log(t+1)$ is decay rate for exploration and $\epsilon > 0$

- The new entropy regularized objective: estimate the optimal softmax value $V_{sft}^* = \mathcal{F}_{\tau}(\mathbf{r})$ for some $\tau > 0$
- To achieve this, find a sequential sampling algorithm to minimize mean squared error $\mathcal{E}_t = \mathbb{E}\left[(U^* U_t)^2\right]$ where $U^* = \sum_a \exp\{r(a)/\tau\} = e^{V_{sft}^*/\tau}, U_t = \sum_a \exp\{\hat{r}_t(a)/\tau\} = e^{(V_{sft})_t/\tau},$ and \hat{r}_t is the empirical estimate of r at time t
- Propose an optimal algorithm for softmax bandit problem and show this is optimal by two theorems: 1) there is a lower bound for *E_t* and 2) the proposed algorithm achieves the lower bound asymptotically

Empirical Exponential Weight (E2W)

$$\pi_t\left(a\right) = \left(1 - \frac{\lambda_t}{\lambda_t}\right) \boldsymbol{f}_{\tau}\left(\hat{\boldsymbol{r}}_t\right)\left(a\right) + \frac{\lambda_t}{|\mathcal{A}|},$$

where $\lambda_t = \epsilon |\mathcal{A}| / \log(t+1)$ is decay rate for exploration and $\epsilon > 0$

Optimal Sequential Sampling Strategy: E2W

Show E2W is optimal by demonstrating E2W achieves the lower bound of \mathcal{E}_t asymptotically

Optimal Sequential Sampling Strategy: E2W

Show E2W is optimal by demonstrating E2W achieves the lower bound of \mathcal{E}_t asymptotically

Theorem 1: lower bound on \mathcal{E}_t

In the stochastic softmax bandit problem, for any algorithm that achieves $\mathcal{E}_t = O\left(\frac{1}{t}\right)$, there exists a problem setting such that

$$\lim_{t \to \infty} t \mathcal{E}_t \geq \frac{\sigma^2}{\tau^2} \left(\sum_{a} \exp\left(r(a) / \tau \right) \right)^2$$

assuming all reward distributions are $\sigma^2\text{-subgaussian}$

Optimal Sequential Sampling Strategy: E2W

Show E2W is optimal by demonstrating E2W achieves the lower bound of \mathcal{E}_t asymptotically

Theorem 1: lower bound on \mathcal{E}_t

In the stochastic softmax bandit problem, for any algorithm that achieves $\mathcal{E}_t = O\left(\frac{1}{t}\right)$, there exists a problem setting such that

$$\lim_{t \to \infty} t \mathcal{E}_t \geq \frac{\sigma^2}{\tau^2} \left(\sum_{a} \exp\left(r(a) / \tau \right) \right)^2$$

assuming all reward distributions are $\sigma^2\text{-subgaussian}$

Theorem 2: gauranteed convergence of E2W to the lower bound For the softmax stochastic bandit problem, E2W can guarantee,

$$\lim_{t \to \infty} t \mathcal{E}_t = \frac{\sigma^2}{\tau^2} \left(\sum_{a} \exp\left(r(a)/\tau\right) \right)^2$$

Maximum Entropy for Tree Search (MENTS) applies maximum entropy policy optimization to MCTS

- $\bullet\,$ Building out a tree ${\cal T}$ online
- Each node $\mathit{n}(s) \in \mathcal{T}$ corresponds to a state s
- Each node has a softmax value estimate Q(s, a) and visit count N(s, a) associated with it for each action a
- $Q_{sft}(s)$ denotes |A|-dimensional vector of components $Q_{sft}(s, a)$

Maximum Entropy for Tree Search (MENTS) applies maximum entropy policy optimization to MCTS

1. Use E2W as tree policy

$$\pi_t(\boldsymbol{a}|\boldsymbol{s}) = (1-\lambda_s) \boldsymbol{f}_{\tau}(\boldsymbol{Q}_{sft}(\boldsymbol{s}))(\boldsymbol{a}) + \lambda_s \frac{1}{|\mathcal{A}|},$$

where $\lambda_s = \epsilon |\mathcal{A}| / \log (\mathcal{N}(s) + 1)$.

Maximum Entropy for Tree Search (MENTS)

Maximum Entropy for Tree Search (MENTS) applies maximum entropy policy optimization to MCTS

1. Use E2W as tree policy

$$\pi_t(\boldsymbol{a}|\boldsymbol{s}) = (1-\lambda_s) \boldsymbol{f}_\tau(\boldsymbol{Q}_{sft}(\boldsymbol{s}))(\boldsymbol{a}) + \lambda_s \frac{1}{|\mathcal{A}|},$$

where $\lambda_s = \epsilon |\mathcal{A}| / \log (\mathcal{N}(s) + 1)$.

2. Use *softmax backup* to update the Q-values along the nodes in a trajectory

$$Q_{sft}(s_t, a_t) = \begin{cases} r(s_t, a_t) + R & t = T - 1\\ r(s_t, a_t) + \mathcal{F}_{\tau} \left(\boldsymbol{Q}_{sft}(s_{t+1}) \right) & t < T - 1 \end{cases}$$

Maximum Entropy for Tree Search (MENTS)

Maximum Entropy for Tree Search (MENTS) applies maximum entropy policy optimization to MCTS

1. Use E2W as tree policy

$$\pi_t(\boldsymbol{a}|\boldsymbol{s}) = (1-\lambda_s) \boldsymbol{f}_\tau(\boldsymbol{Q}_{sft}(\boldsymbol{s}))(\boldsymbol{a}) + \lambda_s \frac{1}{|\mathcal{A}|},$$

where $\lambda_s = \epsilon |\mathcal{A}| / \log (\mathcal{N}(s) + 1)$.

2. Use *softmax backup* to update the Q-values along the nodes in a trajectory

$$Q_{sft}(s_t, a_t) = \begin{cases} r(s_t, a_t) + R & t = T - 1\\ r(s_t, a_t) + \mathcal{F}_{\tau} \left(\boldsymbol{Q}_{sft}(s_{t+1}) \right) & t < T - 1 \end{cases}$$

3. At the end of the iterations, propose $a = \arg \max_{a} Q_{sft}(s, a)$

Theorem 5

Let a_t be the action returned by MENTS at iteration t. Then for large enough t with some constant C,

$$P(a_t \neq a*) \leq Ct \exp\left\{-\frac{t}{(\log t)^3}\right\}$$

Theorem 5

Let a_t be the action returned by MENTS at iteration t. Then for large enough t with some constant C,

$$P(a_t \neq a*) \leq Ct \exp\left\{-\frac{t}{(\log t)^3}\right\}$$

Convergence Property

Theorem 5

Let a_t be the action returned by MENTS at iteration t. Then for large enough t with some constant C,

$$P(a_t \neq a*) \leq Ct \exp\left\{-\frac{t}{(\log t)^3}
ight\}$$

- MENTS enjoys fundamentally faster convergence rate than UCT
- MENTS applies the E2W as the tree policy during simulations
- Softmax values are back-propagated up the search tree which can be estimated effectively in an optimal rate for each node
- This assures that tree policy converges to the optimal softmax policy $\pi^*_{\it sft}$ asymptotically
- Probability of sub-optimal decision at root decays exponentially

Experiments: Synthetic Tree Environment

Experiments: Synthetic Tree Environment

Experiments: Synthetic Tree Environment

Figure 2: Value estimation error at root with depth = 4 and k = 10

Experiments: CartPole

- Two actions and reward of +1 until the pole falls over (end of episode)
- A single neural network to compute:
 - P(s, a): prior probability on action selection
 - V(s): used for leaf node evaluation, instead of MC rollout
- Instead of UCT, used its variant, PUCT:

$$PUCT(s, a) = Q(s, a) + \epsilon P(s, a) \frac{\sqrt{N(s)}}{1 + N(s, a)},$$

where P is a prior probability on action selection and $\epsilon > 0$

- In MENTS, prior probability used to initialize $Q_{sft}(s, a)$
- 32 MCTS iteration budget for proposing an action
- Cart can take up to 300 steps in an episode, and total reward calculated from the steps
- Samples from an episode used to train the value/policy network

Experiments: CartPole

- Need good value/policy network to perform well
- But need enough exploration to 'stumble' upon good episodes to learn from

Figure 3: Total reward at each episode. Value / policy network is updated at the end of each episode.

Notebook implementation at: https://colab.research.google.com/ drive/13KhMkjW7NHgFTIrmxGOt1ybG7re9B7L-?usp=sharing

Conclusion

- Monte-Carlo value estimates in MCTS do not enjoy effective convergence guarantee when value is back-propagated
- MENTS augments MCTS with maximum entropy policy optimization where softmax values are back-propagated up the search tree
- MENTS enjoys exponential convergence rate to the optimal softmax policy π^*_{sft} , ie, probability of of choosing sub-optimal action at root decays exponentially

- MENTS performance in our implementation was very sensitive to changes in the exploration parameter if not chosen carefully easily degenerates to random policy at each node
- Does MENTS always perform better than UCT in all settings?
- Performance in some Atari experiments not much better than UCT attributes constraint in simulation budget as a reason

Xiao et al. Maximum Entropy Monte-Carlo planning, NeurIPS 2019 Browne et al. A Survey of Monte Carlo Tree Search Methods Convex Regularization in Monte-Carlo Tree Search: https://openreview.net/pdf?id=-kfLEqppEm