
Maximum Entropy Monte-Carlo Planning

Chenjun Xiao, Jincheng Mei, Ruitong Huang, Dale Schuurmans, Martin Müller

Presented by Sourav Bhattacharjee and Andrew Jung

STA 4273 Winter 2021 - Minimizing Expectations

March 25, 2021

Xiao, C., Huang, R., Mei, J., Schuurmans, D., and Müller, M. Maximum entropy monte-carlo

planning. In Advances in Neural Information Processing Systems, pp. 9516–9524, 2019.

Main Idea

Augment Monte Carlo Tree Search (MCTS) with maximum entropy

policy optimization to improve the worst case efficiency of UCT

1

Online Planning in Markov Decision Process (MDP)

Online planning problem: finding the optimal policy at a given state (s0)

• An MDP M = 〈S,A, p(·|s, a), r(s, a)〉
• Generative model of M used to simulate state-action trajectories

within a sampling budget

• From the simulation, an optimal action is proposed for the

input state, s0

• The paper considers episodic and deterministic MDP for simplicity

2

Online Planning in Markov Decision Process (MDP)

Online planning problem: finding the optimal policy at a given state (s0)

• An MDP M = 〈S,A, p(·|s, a), r(s, a)〉
• Generative model of M used to simulate state-action trajectories

within a sampling budget

• From the simulation, an optimal action is proposed for the

input state, s0

• The paper considers episodic and deterministic MDP for simplicity

2

Online Planning in Markov Decision Process (MDP)

Online planning problem: finding the optimal policy at a given state (s0)

• An MDP M = 〈S,A, p(·|s, a), r(s, a)〉
• Generative model of M used to simulate state-action trajectories

within a sampling budget

• From the simulation, an optimal action is proposed for the

input state, s0

• The paper considers episodic and deterministic MDP for simplicity

2

Monte Carlo Tree Search (MCTS)

MCTS uses simulated trajectories to incrementally build a search tree to

propose an optimal action for the root node

Figure 1: Each MCTS iteration consists of four phases. From Sutton, R. S.

and Barto A. G., Reinforcement learning: An introduction. MIT press, 2018.

3

Monte Carlo Tree Search (MCTS)

MCTS uses simulated trajectories to incrementally build a search tree to

propose an optimal action for the root node

Figure 1: Each MCTS iteration consists of four phases. From Sutton, R. S.

and Barto A. G., Reinforcement learning: An introduction. MIT press, 2018.

3

Monte Carlo Tree Search (MCTS)

MCTS uses simulated trajectories to incrementally build a search tree to

propose an optimal action for the root node

Figure 1: Each MCTS iteration consists of four phases. From Sutton, R. S.

and Barto A. G., Reinforcement learning: An introduction. MIT press, 2018.

3

Monte Carlo Tree Search (MCTS)

MCTS uses simulated trajectories to incrementally build a search tree to

propose an optimal action for the root node

Figure 1: Each MCTS iteration consists of four phases. From Sutton, R. S.

and Barto A. G., Reinforcement learning: An introduction. MIT press, 2018.

3

Monte Carlo Tree Search (MCTS)

MCTS uses simulated trajectories to incrementally build a search tree to

propose an optimal action for the root node

Figure 1: Each MCTS iteration consists of four phases. From Sutton, R. S.

and Barto A. G., Reinforcement learning: An introduction. MIT press, 2018.

3

Monte Carlo Tree Search (MCTS)

MCTS uses simulated trajectories to incrementally build a search tree

• At the end of the iteration, node statistics updated from the backup

(often Q(s, a) and N(s)).

• MCTS iterations run until the budget

• Best action for the root node, s0, chosen based on the node statistics

• Selectively sampling actions can improve the performance, especially

in large search space

• Tree policy needs to balance exploitation with exploration

4

Monte Carlo Tree Search (MCTS)

MCTS uses simulated trajectories to incrementally build a search tree

• At the end of the iteration, node statistics updated from the backup

(often Q(s, a) and N(s)).

• MCTS iterations run until the budget

• Best action for the root node, s0, chosen based on the node statistics

• Selectively sampling actions can improve the performance, especially

in large search space

• Tree policy needs to balance exploitation with exploration

4

Monte Carlo Tree Search (MCTS)

MCTS uses simulated trajectories to incrementally build a search tree

• At the end of the iteration, node statistics updated from the backup

(often Q(s, a) and N(s)).

• MCTS iterations run until the budget

• Best action for the root node, s0, chosen based on the node statistics

• Selectively sampling actions can improve the performance, especially

in large search space

• Tree policy needs to balance exploitation with exploration

4

Monte Carlo Tree Search (MCTS)

MCTS uses simulated trajectories to incrementally build a search tree

• At the end of the iteration, node statistics updated from the backup

(often Q(s, a) and N(s)).

• MCTS iterations run until the budget

• Best action for the root node, s0, chosen based on the node statistics

• Selectively sampling actions can improve the performance, especially

in large search space

• Tree policy needs to balance exploitation with exploration

4

Monte Carlo Tree Search (MCTS)

MCTS uses simulated trajectories to incrementally build a search tree

• At the end of the iteration, node statistics updated from the backup

(often Q(s, a) and N(s)).

• MCTS iterations run until the budget

• Best action for the root node, s0, chosen based on the node statistics

• Selectively sampling actions can improve the performance, especially

in large search space

• Tree policy needs to balance exploitation with exploration

4

Upper Confidence Bound (UCB) Applied to Trees (UCT)

UCT uses UCB1 from the bandits literature as a tree policy

• Consider the choice of child node as a multi-armed bandit problem

• In K-bandits, the goal is to choose sequence of K actions to

maximize the long-term expected rewards

UCB1

At time t, choose action a ∈ {1, ...,K} with the largest upper

confidence bound (UCB):

UCB(a) = r̂t(a) + c

√
ln t

nt,a

where r̂t(a) is empirical estimate of the reward from action a, nt,a is the

number of times action a was played, and c > 0 is a constant.

5

Upper Confidence Bound (UCB) Applied to Trees (UCT)

UCT uses UCB1 from the bandits literature as a tree policy

• Consider the choice of child node as a multi-armed bandit problem

• In K-bandits, the goal is to choose sequence of K actions to

maximize the long-term expected rewards

UCB1

At time t, choose action a ∈ {1, ...,K} with the largest upper

confidence bound (UCB):

UCB(a) = r̂t(a) + c

√
ln t

nt,a

where r̂t(a) is empirical estimate of the reward from action a, nt,a is the

number of times action a was played, and c > 0 is a constant.

5

Upper Confidence Bound (UCB) Applied to Trees (UCT)

UCT uses UCB1 from the bandits literature as a tree policy

• Consider the choice of child node as a multi-armed bandit problem

• In K-bandits, the goal is to choose sequence of K actions to

maximize the long-term expected rewards

UCB1

At time t, choose action a ∈ {1, ...,K} with the largest upper

confidence bound (UCB):

UCB(a) = r̂t(a) + c

√
ln t

nt,a

where r̂t(a) is empirical estimate of the reward from action a, nt,a is the

number of times action a was played, and c > 0 is a constant.

5

Upper Confidence Bound (UCB) Applied to Trees (UCT)

UCT uses UCB1 from the bandits literature as a tree policy

• Consider the choice of child node as a multi-armed bandit problem

• In K-bandits, the goal is to choose sequence of K actions to

maximize the long-term expected rewards

UCB1

At time t, choose action a ∈ {1, ...,K} with the largest upper

confidence bound (UCB):

UCB(a) = r̂t(a) + c

√
ln t

nt,a

where r̂t(a) is empirical estimate of the reward from action a, nt,a is the

number of times action a was played, and c > 0 is a constant.

5

Upper Confidence Bound (UCB) Applied to Trees (UCT)

UCT uses UCB1 from the bandits literature as a tree policy

• Consider the choice of child node as a multi-armed bandit problem

• In K-bandits, the goal is to choose sequence of K actions to

maximize the long-term expected rewards

UCB1

At time t, choose action a ∈ {1, ...,K} with the largest upper

confidence bound (UCB):

UCB(a) = r̂t(a) + c

√
ln t

nt,a

where r̂t(a) is empirical estimate of the reward from action a, nt,a is the

number of times action a was played, and c > 0 is a constant.

5

Upper Confidence Bound (UCB) Applied to Trees (UCT)

UCT uses UCB1 from the bandits literature as a tree policy

UCT

At node s, choose action a with the largest UCB(s, a):

UCB(s, a) = Q(s, a) + c

√
lnN(s)

N(s, a)

where Q(s, a), N(s), and N(s, a) are the node statistics for action-value

and visitation counts.

• Asymptotically optimal: Q(s, a)
p−→ Q∗(s, a),∀s ∈ S,∀a ∈ A

• Probability of proposing a suboptimal action at the root after t

iterations, P(at 6= a∗), converges to zero at O
(
1
t

)

6

Upper Confidence Bound (UCB) Applied to Trees (UCT)

UCT uses UCB1 from the bandits literature as a tree policy

UCT

At node s, choose action a with the largest UCB(s, a):

UCB(s, a) = Q(s, a) + c

√
lnN(s)

N(s, a)

where Q(s, a), N(s), and N(s, a) are the node statistics for action-value

and visitation counts.

• Asymptotically optimal: Q(s, a)
p−→ Q∗(s, a),∀s ∈ S,∀a ∈ A

• Probability of proposing a suboptimal action at the root after t

iterations, P(at 6= a∗), converges to zero at O
(
1
t

)

6

Upper Confidence Bound (UCB) Applied to Trees (UCT)

UCT uses UCB1 from the bandits literature as a tree policy

UCT

At node s, choose action a with the largest UCB(s, a):

UCB(s, a) = Q(s, a) + c

√
lnN(s)

N(s, a)

where Q(s, a), N(s), and N(s, a) are the node statistics for action-value

and visitation counts.

• Asymptotically optimal: Q(s, a)
p−→ Q∗(s, a),∀s ∈ S,∀a ∈ A

• Probability of proposing a suboptimal action at the root after t

iterations, P(at 6= a∗), converges to zero at O
(
1
t

)
6

Maximum Entropy Policy Optimization

Entropy regularization in RL to encourage exploration:

V ∗ = max
π
{π · r}

V ∗sft = max
π
{π · r + τH (π)}

= τ log
∑
a

exp {r(a)/τ}

π∗ = arg max
π

{π · r}

π∗sft = arg max
π

{π · r + τH (π)}

= exp {(r − V ∗sft)) /τ}

= (smooth approximation to argmax)

where r ∈ RK is reward vector for K actions and τ ≥ 0

7

Maximum Entropy Policy Optimization

Entropy regularization in RL to encourage exploration:

V ∗ = max
π
{π · r}

V ∗sft = max
π
{π · r + τH (π)}

= τ log
∑
a

exp {r(a)/τ}

π∗ = arg max
π

{π · r}

π∗sft = arg max
π

{π · r + τH (π)}

= exp {(r − V ∗sft)) /τ}

= (smooth approximation to argmax)

where r ∈ RK is reward vector for K actions and τ ≥ 0

7

Maximum Entropy Policy Optimization

Entropy regularization in RL to encourage exploration:

V ∗ = max
π
{π · r}

V ∗sft = max
π
{π · r + τH (π)}

= τ log
∑
a

exp {r(a)/τ}

π∗ = arg max
π

{π · r}

π∗sft = arg max
π

{π · r + τH (π)}

= exp {(r − V ∗sft)) /τ}

= (smooth approximation to argmax)

where r ∈ RK is reward vector for K actions and τ ≥ 0

7

Maximum Entropy Policy Optimization

Entropy regularization in RL to encourage exploration:

V ∗ = max
π
{π · r}

V ∗sft = max
π
{π · r + τH (π)} = τ log

∑
a

exp {r(a)/τ}

= (smooth approximation to max)

π∗ = arg max
π

{π · r}

π∗sft = arg max
π

{π · r + τH (π)} = exp {(r − V ∗sft)) /τ}

= (smooth approximation to argmax)

where r ∈ RK is reward vector for K actions and τ ≥ 0

7

Maximum Entropy Policy Optimization

Simplify the notation by introducing Fτ (r) = τ log
∑

a exp (r(a)/τ) and

f τ (r) = exp {(r −Fτ (r)) /τ}:

Solving the regularized problem:

V ∗sft = Fτ (r),

π∗sft = f τ (r)

where r ∈ RK is reward vector for K actions and τ ≥ 0

8

Main Idea

Augment MCTS with maximum entropy policy optimization to improve

the worst case efficiency of UCT

• Apply entropy regularization to bandit problem

• Apply regularized bandit to MCTS

9

Softmax Value Estimation in Bandit

Apply maximum entropy regularization to bandit problem (softmax

bandit)

• The new entropy regularized objective: estimate the optimal softmax

value V ∗sft = Fτ (r) for some τ > 0

• To achieve this, find a sequential sampling algorithm to minimize

mean squared error Et = E
[
(U∗ − Ut)

2
]

where

U∗ =
∑

a exp {r(a)/τ} = eV
∗
sft/τ , Ut =

∑
a exp {r̂t(a)/τ} = e(Vsft)t/τ ,

and r̂ t is the empirical estimate of r at time t

• Propose an optimal algorithm for softmax bandit problem and show

this is optimal by two theorems: 1) there is a lower bound for Et and

2) the proposed algorithm achieves the lower bound asymptotically

Empirical Exponential Weight (E2W)

πt (a) = (1− λt) f τ (r̂ t) (a) + λt
1

|A|
,

where λt = ε |A| / log(t + 1) is decay rate for exploration and ε > 0

10

Softmax Value Estimation in Bandit

Apply maximum entropy regularization to bandit problem (softmax

bandit)

• The new entropy regularized objective: estimate the optimal softmax

value V ∗sft = Fτ (r) for some τ > 0

• To achieve this, find a sequential sampling algorithm to minimize

mean squared error Et = E
[
(U∗ − Ut)

2
]

where

U∗ =
∑

a exp {r(a)/τ} = eV
∗
sft/τ , Ut =

∑
a exp {r̂t(a)/τ} = e(Vsft)t/τ ,

and r̂ t is the empirical estimate of r at time t

• Propose an optimal algorithm for softmax bandit problem and show

this is optimal by two theorems: 1) there is a lower bound for Et and

2) the proposed algorithm achieves the lower bound asymptotically

Empirical Exponential Weight (E2W)

πt (a) = (1− λt) f τ (r̂ t) (a) + λt
1

|A|
,

where λt = ε |A| / log(t + 1) is decay rate for exploration and ε > 0

10

Softmax Value Estimation in Bandit

Apply maximum entropy regularization to bandit problem (softmax

bandit)

• The new entropy regularized objective: estimate the optimal softmax

value V ∗sft = Fτ (r) for some τ > 0

• To achieve this, find a sequential sampling algorithm to minimize

mean squared error Et = E
[
(U∗ − Ut)

2
]

where

U∗ =
∑

a exp {r(a)/τ} = eV
∗
sft/τ , Ut =

∑
a exp {r̂t(a)/τ} = e(Vsft)t/τ ,

and r̂ t is the empirical estimate of r at time t

• Propose an optimal algorithm for softmax bandit problem and show

this is optimal by two theorems: 1) there is a lower bound for Et and

2) the proposed algorithm achieves the lower bound asymptotically

Empirical Exponential Weight (E2W)

πt (a) = (1− λt) f τ (r̂ t) (a) + λt
1

|A|
,

where λt = ε |A| / log(t + 1) is decay rate for exploration and ε > 0

10

Softmax Value Estimation in Bandit

Apply maximum entropy regularization to bandit problem (softmax

bandit)

• The new entropy regularized objective: estimate the optimal softmax

value V ∗sft = Fτ (r) for some τ > 0

• To achieve this, find a sequential sampling algorithm to minimize

mean squared error Et = E
[
(U∗ − Ut)

2
]

where

U∗ =
∑

a exp {r(a)/τ} = eV
∗
sft/τ , Ut =

∑
a exp {r̂t(a)/τ} = e(Vsft)t/τ ,

and r̂ t is the empirical estimate of r at time t

• Propose an optimal algorithm for softmax bandit problem and show

this is optimal by two theorems: 1) there is a lower bound for Et and

2) the proposed algorithm achieves the lower bound asymptotically

Empirical Exponential Weight (E2W)

πt (a) = (1− λt) f τ (r̂ t) (a) + λt
1

|A|
,

where λt = ε |A| / log(t + 1) is decay rate for exploration and ε > 0
10

Softmax Value Estimation in Bandit

Apply maximum entropy regularization to bandit problem (softmax

bandit)

• The new entropy regularized objective: estimate the optimal softmax

value V ∗sft = Fτ (r) for some τ > 0

• To achieve this, find a sequential sampling algorithm to minimize

mean squared error Et = E
[
(U∗ − Ut)

2
]

where

U∗ =
∑

a exp {r(a)/τ} = eV
∗
sft/τ , Ut =

∑
a exp {r̂t(a)/τ} = e(Vsft)t/τ ,

and r̂ t is the empirical estimate of r at time t

• Propose an optimal algorithm for softmax bandit problem and show

this is optimal by two theorems: 1) there is a lower bound for Et and

2) the proposed algorithm achieves the lower bound asymptotically

Empirical Exponential Weight (E2W)

πt (a) = (1− λt) f τ (r̂ t) (a) + λt
1

|A|
,

where λt = ε |A| / log(t + 1) is decay rate for exploration and ε > 0
10

Softmax Value Estimation in Bandit

Apply maximum entropy regularization to bandit problem (softmax

bandit)

• The new entropy regularized objective: estimate the optimal softmax

value V ∗sft = Fτ (r) for some τ > 0

• To achieve this, find a sequential sampling algorithm to minimize

mean squared error Et = E
[
(U∗ − Ut)

2
]

where

U∗ =
∑

a exp {r(a)/τ} = eV
∗
sft/τ , Ut =

∑
a exp {r̂t(a)/τ} = e(Vsft)t/τ ,

and r̂ t is the empirical estimate of r at time t

• Propose an optimal algorithm for softmax bandit problem and show

this is optimal by two theorems: 1) there is a lower bound for Et and

2) the proposed algorithm achieves the lower bound asymptotically

Empirical Exponential Weight (E2W)

πt (a) = (1− λt) f τ (r̂ t) (a) + λt
1

|A|
,

where λt = ε |A| / log(t + 1) is decay rate for exploration and ε > 0
10

Softmax Value Estimation in Bandit

Apply maximum entropy regularization to bandit problem (softmax

bandit)

• The new entropy regularized objective: estimate the optimal softmax

value V ∗sft = Fτ (r) for some τ > 0

• To achieve this, find a sequential sampling algorithm to minimize

mean squared error Et = E
[
(U∗ − Ut)

2
]

where

U∗ =
∑

a exp {r(a)/τ} = eV
∗
sft/τ , Ut =

∑
a exp {r̂t(a)/τ} = e(Vsft)t/τ ,

and r̂ t is the empirical estimate of r at time t

• Propose an optimal algorithm for softmax bandit problem and show

this is optimal by two theorems: 1) there is a lower bound for Et and

2) the proposed algorithm achieves the lower bound asymptotically

Empirical Exponential Weight (E2W)

πt (a) = (1− λt) f τ (r̂ t) (a) + λt
1

|A|
,

where λt = ε |A| / log(t + 1) is decay rate for exploration and ε > 0
10

Optimal Sequential Sampling Strategy: E2W

Show E2W is optimal by demonstrating E2W achieves the lower bound of

Et asymptotically

Theorem 1: lower bound on Et
In the stochastic softmax bandit problem, for any algorithm that

achieves Et = O
(
1
t

)
, there exists a problem setting such that

lim
t→∞

tEt ≥
σ2

τ 2

(∑
a

exp (r(a)/τ)

)2

assuming all reward distributions are σ2-subgaussian

Theorem 2: gauranteed convergence of E2W to the lower bound

For the softmax stochastic bandit problem, E2W can guarantee,

lim
t→∞

tEt =
σ2

τ 2

(∑
a

exp (r(a)/τ)

)2

11

Optimal Sequential Sampling Strategy: E2W

Show E2W is optimal by demonstrating E2W achieves the lower bound of

Et asymptotically

Theorem 1: lower bound on Et
In the stochastic softmax bandit problem, for any algorithm that

achieves Et = O
(
1
t

)
, there exists a problem setting such that

lim
t→∞

tEt ≥
σ2

τ 2

(∑
a

exp (r(a)/τ)

)2

assuming all reward distributions are σ2-subgaussian

Theorem 2: gauranteed convergence of E2W to the lower bound

For the softmax stochastic bandit problem, E2W can guarantee,

lim
t→∞

tEt =
σ2

τ 2

(∑
a

exp (r(a)/τ)

)2

11

Optimal Sequential Sampling Strategy: E2W

Show E2W is optimal by demonstrating E2W achieves the lower bound of

Et asymptotically

Theorem 1: lower bound on Et
In the stochastic softmax bandit problem, for any algorithm that

achieves Et = O
(
1
t

)
, there exists a problem setting such that

lim
t→∞

tEt ≥
σ2

τ 2

(∑
a

exp (r(a)/τ)

)2

assuming all reward distributions are σ2-subgaussian

Theorem 2: gauranteed convergence of E2W to the lower bound

For the softmax stochastic bandit problem, E2W can guarantee,

lim
t→∞

tEt =
σ2

τ 2

(∑
a

exp (r(a)/τ)

)2

11

Maximum Entropy for Tree Search (MENTS)

Maximum Entropy for Tree Search (MENTS) applies maximum entropy

policy optimization to MCTS

• Building out a tree T online

• Each node n(s) ∈ T corresponds to a state s

• Each node has a softmax value estimate Q(s, a) and visit count

N(s, a) associated with it for each action a

• Qsft(s) denotes |A|-dimensional vector of components Qsft(s, a)

12

Maximum Entropy for Tree Search (MENTS)

Maximum Entropy for Tree Search (MENTS) applies maximum entropy

policy optimization to MCTS

1. Use E2W as tree policy

πt (a|s) = (1− λs) f τ (Qsft(s)) (a) + λs
1

|A|
,

where λs = ε |A| / log (N(s) + 1).

2. At the end of the iterations, propose a = arg maxa Qsft(s, a)

13

Maximum Entropy for Tree Search (MENTS)

Maximum Entropy for Tree Search (MENTS) applies maximum entropy

policy optimization to MCTS

1. Use E2W as tree policy

πt (a|s) = (1− λs) f τ (Qsft(s)) (a) + λs
1

|A|
,

where λs = ε |A| / log (N(s) + 1).

2. Use softmax backup to update the Q-values along the nodes in a

trajectory

Qsft(st , at) =

{
r(st , at) + R t = T − 1

r(st , at) + Fτ (Qsft(st+1)) t < T − 1

3. At the end of the iterations, propose a = arg maxa Qsft(s, a)

13

Maximum Entropy for Tree Search (MENTS)

Maximum Entropy for Tree Search (MENTS) applies maximum entropy

policy optimization to MCTS

1. Use E2W as tree policy

πt (a|s) = (1− λs) f τ (Qsft(s)) (a) + λs
1

|A|
,

where λs = ε |A| / log (N(s) + 1).

2. Use softmax backup to update the Q-values along the nodes in a

trajectory

Qsft(st , at) =

{
r(st , at) + R t = T − 1

r(st , at) + Fτ (Qsft(st+1)) t < T − 1

3. At the end of the iterations, propose a = arg maxa Qsft(s, a)

13

Convergence Property

Theorem 5

Let at be the action returned by MENTS at iteration t. Then for large

enough t with some constant C,

P(at 6= a∗) ≤ Ct exp

{
− t

(log t)3

}

14

Convergence Property

Theorem 5

Let at be the action returned by MENTS at iteration t. Then for large

enough t with some constant C,

P(at 6= a∗) ≤ Ct exp

{
− t

(log t)3

}

14

Convergence Property

Theorem 5

Let at be the action returned by MENTS at iteration t. Then for large

enough t with some constant C,

P(at 6= a∗) ≤ Ct exp

{
− t

(log t)3

}

• MENTS enjoys fundamentally faster convergence rate than UCT

• MENTS applies the E2W as the tree policy during simulations

• Softmax values are back-propagated up the search tree which can be

estimated effectively in an optimal rate for each node

• This assures that tree policy converges to the optimal softmax policy

π∗sft asymptotically

• Probability of sub-optimal decision at root decays exponentially

14

Experiments: Synthetic Tree Environment

15

Experiments: Synthetic Tree Environment

16

Experiments: Synthetic Tree Environment

Figure 2: Value estimation error at root with depth = 4 and k = 10

17

Experiments: CartPole

• Two actions and reward of +1 until the pole falls over (end of

episode)

• A single neural network to compute:

• P(s, a): prior probability on action selection

• V (s): used for leaf node evaluation, instead of MC rollout

• Instead of UCT, used its variant, PUCT:

PUCT (s, a) = Q(s, a) + εP(s, a)

√
N(s)

1 + N(s, a)
,

where P is a prior probability on action selection and ε > 0

• In MENTS, prior probability used to initialize Qsft(s, a)

• 32 MCTS iteration budget for proposing an action

• Cart can take up to 300 steps in an episode, and total reward

calculated from the steps

• Samples from an episode used to train the value/policy network

18

Experiments: CartPole

• Need good value/policy network to perform well

• But need enough exploration to ‘stumble’ upon good episodes to

learn from

Figure 3: Total reward at each episode. Value / policy network is updated at

the end of each episode.

19

Notebook Implementation

Notebook implementation at: https://colab.research.google.com/

drive/13KhMkjW7NHgFTIrmxGOt1ybG7re9B7L-?usp=sharing

20

https://colab.research.google.com/drive/13KhMkjW7NHgFTIrmxGOt1ybG7re9B7L-?usp=sharing
https://colab.research.google.com/drive/13KhMkjW7NHgFTIrmxGOt1ybG7re9B7L-?usp=sharing

Conclusion

Summary

• Monte-Carlo value estimates in MCTS do not enjoy effective

convergence guarantee when value is back-propagated

• MENTS augments MCTS with maximum entropy policy

optimization where softmax values are back-propagated up the

search tree

• MENTS enjoys exponential convergence rate to the optimal softmax

policy π∗sft , ie, probability of of choosing sub-optimal action at root

decays exponentially

21

Thoughts and Open questions

• MENTS performance in our implementation was very sensitive to

changes in the exploration parameter - if not chosen carefully easily

degenerates to random policy at each node

• Does MENTS always perform better than UCT in all settings?

• Performance in some Atari experiments not much better than UCT -

attributes constraint in simulation budget as a reason

22

References

Xiao et al. Maximum Entropy Monte-Carlo planning, NeurIPS 2019

Browne et al. A Survey of Monte Carlo Tree Search Methods Convex

Regularization in Monte-Carlo Tree Search:

https://openreview.net/pdf?id=-kfLEqppEm

23

	Conclusion

