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Motivation
In class, we saw the policy gradient for a discounted reword problem that has the following 
form:

∇𝐽(𝜃) = 𝐸[)
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𝛾!r!∇%𝑙𝑜𝑔𝜋%(𝑎!|𝑠!)]

We would introduce to you a new form of policy gradient 

∇𝐽(𝜃) = 𝐸[)
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𝐴&,((𝑠! , 𝑎!)∇%𝑙𝑜𝑔𝜋%(𝑎!|𝑠!)]

where 
𝐴&,( 𝑠! , 𝑎! = 𝑄&,( 𝑠! , 𝑎! − 𝑉&,((𝑠!)

is called advantage function.
We would derive General Advantage Estimator for 𝐴&,( 𝑠! , 𝑎! ,

9𝐴)*+ (,,

Which is controlled by two parameters 𝛾, 𝜆



Problem Setting
Our usual setting in RL: 
A trajectory (𝑠!, 𝑎!, 𝑠", 𝑎", …) is generated by 𝑎#~𝜋 𝑎# 𝑠# and Transitional rule 
𝑠#$"~𝑃(𝑠#$"|𝑠#, 𝑎#)

Our goal is to maximize the expected total reward ∑#%!& 𝑟#, where 𝑟# = 𝑟(𝑎#, 𝑠#) is 
received at each timestamp.

In a discounted total reward version, we have ∑#%!& 𝛾#𝑟#, where 𝛾 is the discount 
factor. 
We can avoid convergence problem due to infinite horizon and control the scale of 
the overall return through settings of 𝛾.



Advantage Function
𝐴&,( 𝑠! , 𝑎! = 𝑄&,( 𝑠! , 𝑎! − 𝑉&,((𝑠!)

Intuitively,  𝐴',)(𝑠#, 𝑎#) is the “advantage” of taking a specific action 𝑎# at state 𝑠#, 
comparing to the “average” reward across all possible actions at 𝑠#.

Recall that mathematically,

𝑄',) 𝑠#, 𝑎# = 𝐸*!"#:%,+!"#:%[3
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and 

𝑉',) 𝑠# = 𝐸*!"#:%,+!:%[3
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𝛾,𝑟#$,]

The difference between 𝑄',) 𝑠#, 𝑎# and 𝑉',) 𝑠# is the range of expected value.



𝐴!,#(𝑠$ , 𝑎$) VS 𝛾%r% in Policy Gradient

Why do we use advantage function in policy gradient?

1. A step in the policy gradient direction should increase the probability of better-
than-average actions and decrease the probability of worse-than-average actions.

2. Choosing 𝐴',) 𝑠#, 𝑎# makes sure that for any step 𝑡, 𝐴',) 𝑠#, 𝑎# ∇-𝑙𝑜𝑔𝜋-(𝑎#|𝑠#)
points to the direction of increased 𝜋-(𝑎#|𝑠#) if and only if 𝐴',)(𝑎#, 𝑠#) > 0.

3. Comparing to using overall return, using advantage function results in a typically 
smaller variance for policy gradient.



Estimating 𝐴!,# 𝑠$ , 𝑎$
We now want to find an estimator =𝐴 such that the policy gradient has form

𝐸[3
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=𝐴#∇-𝑙𝑜𝑔𝜋-(𝑎#|𝑠#)]

to estimate 

𝐸[3
#%!

&

𝐴',) 𝑠#, 𝑎# ∇-𝑙𝑜𝑔𝜋-(𝑎#|𝑠#)]

If the above two expectation is equivalent, we say =𝐴# is “unbiased”.



Finding )𝐴$
There are several options for 9𝐴!, such that the policy gradient is unbiased.
Suppose that we have some value function, denoted 𝑉.
Here we introduce TD (Temporal Difference) residual using 𝑉 ,

𝛿!- = 𝑟! + 𝛾𝑉 𝑠!./ − 𝑉(𝑠!)

In fact, if we know the true value function 𝑉&,(,

Taking expected value 𝐸0!"# 𝛿!
-$,& = 𝐸0!"# 𝑄

&,( 𝑠! , 𝑎! − 𝑉&,((𝑠!) = 𝐴&,((𝑠! , 𝑎!)
𝛿!-

$,&
is unbiased to estimate 𝐴&,((𝑠! , 𝑎!)!

But we don’t know 𝑉&,(, however, we can use 𝛿!- as a starting point to construct an 
estimator with some approximation 𝑉 .



Finding )𝐴$
Consider taking sum of 𝑘 of these TD residuals, denoted by =𝐴#

. .
=𝐴#
" = 𝛿#/ = −𝑉 𝑠# + 𝑟# + 𝛾𝑉 𝑠#$"

=𝐴#
0 = 𝛿#/ + 𝛾𝛿#$"/ = −𝑉 𝑠# + 𝑟# + 𝛾𝑟#$" + 𝛾0𝑉 𝑠#$0
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𝛾,𝛿#$,/ = −𝑉 𝑠# + 𝑟# + 𝛾𝑟#$" +⋯+ 𝛾.1"𝑟#$.1" + 𝛾.𝑉 𝑠#$.

As 𝑘 increases the “inaccuracy” in 𝑉 𝑠#$. becomes smaller.
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We have a very compact form for =𝐴#
& , which is essentially the empirical return 

minus the value function baseline.



Finding )𝐴$
Now we have 

9𝐴!
$ = −𝑉 𝑠! +)

1"#

$

𝛾1𝑟!.1

What about the “inaccurate” baseline 𝑉 𝑠! ?
As it turns out, we don’t need to worry about the choice of 𝑉!

The intuition is that 𝑉 𝑠! is a function of 𝑠!, when multiplied by ∇%𝑙𝑜𝑔𝜋%(𝑎!|𝑠!) and
taking expected value over the future trajectory (𝑠!./:$, 𝑎!:$).  The term

𝐸0!"#:(,3!:( ∇%𝑙𝑜𝑔𝜋% 𝑎! 𝑠! 𝑉 𝑠! = 0
because of E[∇%𝑙𝑜𝑔𝜋% 𝑎! 𝑠! ] = 0, and 𝑉 𝑠! can be taken outside of the expectation!

Main takeaway: 9𝐴!
$ is ”unbiased” regardless of the choice of 𝑉!



Final remark on )𝐴$
&

Now we have 9𝐴!
/ , …, 9𝐴!

4 , …, 9𝐴!
$ .

The bias decreases as 𝑘 goes from 1 to ∞.

This is because 𝛾4𝑉 𝑠!.4 becomes more and more discounted by 𝛾 as 𝑘 increases.
The bias as the result of inaccurate 𝑉 becomes smaller as well.

But the variance increases, as 𝑘 increases! You may interpret that, as 𝑘 increases, the 
number of random variables in the summation increases. Each of them contributes some 
variation, as the result 9𝐴!

$ has the largest variation.

So far, 9𝐴!
4 allows us to control bias-variance through 𝑘. 

Final step! We want to ”build” a general expression using 9𝐴!
4 .



General Advantage Estimation (GAE)
Finally, we can build GAE, which is controlled by two parameters 𝛾, 𝜆, which is defined to be an 
exponentially weighted summation of $𝐴!

" , $𝐴!
# , …, $𝐴!

$

$𝐴%&' (,* = (1 − 𝜆)( $𝐴!
" + 𝜆 $𝐴!

# + 𝜆# $𝐴!
+ +⋯)

$𝐴!
" has weight (1 − 𝜆), $𝐴!

, has weight 𝜆,(1 − 𝜆)

𝜆 ∈ [0,1]
is the control of weight for $𝐴!

,

If we want GAE to be more unbiased, 
we should assign more weight towards $𝐴!

$ or larger 𝑘. 
If we want GAE have less variation, 
we should assign more weight towards $𝐴!

" or smaller 𝑘. 



General Advantage Estimation (GAE)
After some cleanup, 

!𝐴!"# $,& =$
'()

*

𝛾𝜆 '𝛿+,'-

where 𝛿+,'- is the TD residual with form 𝛿+,'- = 𝑟+,' + 𝛾𝑉 𝑠+,',. − 𝑉(𝑠+,').

GAE can be expressed by exponentially weighted summation from both !𝐴+/ or TD residuals.

Finally, we can plug in !𝐴!"# $,& into an empirical estimator for policy gradient to update our policy using 𝑁
trajectories :

1
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1

$
+()

*

!𝐴+
!"#($,&)∇4𝑙𝑜𝑔𝜋4 𝑎+0 𝑠+0

How do we handle infinite time horizon (limitation due to computational cost)?
We could sample trajectories until the MDP terminates, after which the reward would be 0. 
Or empirically, we can sample trajectories up to some very large timestamp, as large as our compute power allows.
We can set a “cut off” for 𝜆, after some small number, we treat the weight 𝜆 as 0 when computing !𝐴!"# $,& .



Summary
We want to estimate 𝐸 ∑!"/$ 𝐴&,(∇%𝑙𝑜𝑔𝜋% 𝑎! 𝑠! as our policy gradient.
One of the parameters, 𝛾 , can be interpreted discount factor in a discounted return 
problem. We can also view 𝛾 as a control to the scale of the expected total return.
Then we aim to estimate 𝐸 𝐴&,(∇%𝑙𝑜𝑔𝜋% 𝑎! 𝑠! by using GAE,

9𝐴)*+ (,, =)
1"#

$

𝛾𝜆 1𝛿!.1-

Using some approximate value function 𝑉.

Finally, we can control the bias and variance of the estimator in accordance with our needs 
in our problem.
𝜆 → 0 means estimated policy gradient is becoming more biased and has smaller variance.
𝜆 → 1 means estimated policy gradient is becoming less biased and has larger variance.



Schulman, John & Moritz, Philipp & Levine, Sergey & Jordan, Michael & Abbeel, Pieter. (2015). 
High-Dimensional Continuous Control Using Generalized Advantage Estimation. 


