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Introduction

Main Idea: Define a stochastic process prior on Bayesian Neural Networks,
as opposed to weight space prior.

Key Contributions:

The functional ELBO (fELBO)

KL Divergence between two stochastic processes

Techniques for computing fELBO gradients
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Background: BNNs

Bayesian Neural Networks (BNNs) introduce a prior on weights p(w).

Improves performance, as BNNs act as an ensemble of networks

Allows better quantification of uncertainty compared to regular NNs

Source: Blundell et al. 2015

Problem: Exact inference on weights intractable
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Background: Bayes by Backprop

“Weight Uncertainty in Neural Networks” (Blundell et al. 2015)

Model distribution of each BNN weight using N (µi, σi)

Sample realization of BNN from weight posterior q(w|φ)
Use reparameterization trick to allow backpropagation

Train by minimizing ELBO:

Lq = Eq[log p(D|w)]− KL[q(w) ‖ p(w)] (1)

where the expectation is computed by Monte Carlo.

Many related methods (Goan and Fookes 2020), but all place prior over
BNN weights, instead of distribution of functions.
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Background: Bayes by Backprop

Problem: Results aren’t great!

Results of Bayes-By-Backprop (BBB) on toy problem. Source: Sun et al. 2019
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Functional BNN

Figure: Idea of fBNN, e.g. F = {f(x) = wx+ b : w ∈ R, b ∈ R}
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Functional ELBO

Sun et al. introduce the Functional ELBO (fELBO):

Lq = Eq[log p(D|f)]− KL[q ‖ p] (2)

q is the fBNN posterior q(f |φ) allowing reparametrization.

f is a sample from the fBNN posterior f ∼ q
p is a prior on a function space.

{f(x) : x ∈ X} can be viewed as a stochastic process.

Breakdown:

Likelihood term Eq[log p(D|f)] computed as in BBB.

How do we compute KL[q ‖ p]?
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Functional ELBO

Given two stochastic processes P and Q:

KL[P ‖ Q] = sup
n∈N,X∈Xn

KL[PX ‖ QX] (3)

X is the measurement set: a finite set of points where function is
evaluated

PX is the marginal distribution of functional values at X

“Supremum of marginal KL divergences over all finite sets of inputs”

See Appendix A of Sun et al. 2019 for full proof.
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Functional ELBO

Thus:

L(q) = Eq[log p(D|f)]− sup
n∈N,X∈Xn

KL[q(fX) ‖ p(fX)] (4)

= inf
n∈N,X∈Xn

∑
(xi,yi)∈D

Eq[log p(yi|f(xi)]− KL[q(fX) ‖ p(fX)] (5)

: = inf
n∈N,X∈Xn

LX(q) (6)

Also define
Ln(q) := inf

X∈Xn
LX(q) (7)

as the fELBO restricted to sets of only n points.
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Choosing Measurement Sets: Adversarial Methods

What is the best way to chose the measurement set X?

Adversarial Measurement Sets: Cast fELBO as a two-player zero-sum
game. One player chooses the BNN, the other chooses the measurement
set. Concurrently optimize:

max
q∈Q
Lm(q) := max

q∈Q
min

X∈Xm
LX(q) (8)

Doesn’t work that well unfortunately. Tends to chose measurement set
overlapping training data, meaning functional prior is ignored for
extrapolation.
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Choosing Measurement Sets: Sampling

Sampling Based Measurement Sets: Define distribution c from which
to draw measurement sets:

max
q∈Q
L(q) := max

q∈Q
EDsEXM∼c LXM ,XDs (q) (9)

Sampled measurement set should include both training data (XDs)
and prediction regions (XM ).

In experiments, authors sample from rectangle [xmin − d/2, xmax + d/2]

xmin, xmax are the min / max input values along a dimension

d = xmax − xmin
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Sampling-Based Measurement Sets

Including all training input in measurement set allows fELBO to lower
bound log marginal likelihood such that:

LX(q) = log p(D)− KL[q(fX) ‖ p(fX|D)] ≤ log p(D) (10)

See Appendix B.2 of Sun et al. 2019 for full proof.
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KL Divergence Gradients

Remaining challenge: How do we compute gradients for KL term if we
don’t have explicit qφ(f

X)?

The gradient of the KL term ∇φKL[qφ(f
X) ‖ p(fX)] is:

Eq[∇φ log qφ(fX)] + Eξ[∇φfX(∇f log q(f
X)−∇f log p(f

X))] (11)

First term goes to zero

The term ∇φfX computed via backprop.

We need a gradient estimator for ∇f log q(f
X) and ∇f log p(f

X), which
are both intractable.
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Spectral Stein Gradient Estimator

Spectral Stein Gradient Estimator (SSGE) (Shi, Sun, and Zhu 2018) is
used to compute gradients for implicit distributions, where the distribution
is intractable, but sampling is tractable. Sounds applicable!

The SSGE is given by:

∇xi log q(x) = gi(x) =

∞∑
j=1

βijψj(x) ≈
J∑
j=1

β̂ijψ̂j(x) (12)

where eigenvalues (βij) and eigenfunctions (ψj) are computed by Nyström
approximation. (Williams and Seeger 2001)
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Algorithm

Source: Sun et al. 2019
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Experiments (Code Notebook)

Recreating Toy Experiment from Paper:

(a) BBB
(b) fBNN with GP Prior (Periodic +
RBF kernel)
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Experiments (Code Notebook)

Control over fBNN properties possible through GP prior.
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Experiments

Authors validate their method on:

UCI Regression Data Sets

Contextual Bandits

Functional BNNs compared mainly against BBB on test MSE prediction of
held out points. Generally outperforms BBB, but metrics quite close.
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Limitations (Code Notebook)

Performance of fBNN heavily tied to accuracy of functional prior.

Experiment on linearly Period toy data. Should be easily represented with
Linear + Periodic kernel.

(a) Data (b) Learned Prior (c) fBNN

Have to be careful!
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Limitations

SSGE is known to cause underestimates uncertainty in comparison to
HMC (Shi, Sun, and Zhu 2018). Shown in figure below.

Source: Shi, Sun, and Zhu 2018
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Conclusion

Key Takeaways: Functional Variational Bayesian Neural Nets

Function (instead of weight) space prior on BNNs

Functional BNN is trained via the Functional ELBO

KL divergence between two stochastic processes computed as
supremum of marginals on all finite measurement sets.

Measurement sets used compute KL divergence obtained via sampling

KL gradients computed using SSGE.
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