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Introduction

Main Idea: Define a stochastic process prior on Bayesian Neural Networks,
as opposed to weight space prior.
Key Contributions:

@ The functional ELBO (fELBO)

@ KL Divergence between two stochastic processes

@ Techniques for computing fELBO gradients
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Background: BNNs

Bayesian Neural Networks (BNNs) introduce a prior on weights p(w).
@ Improves performance, as BNNs act as an ensemble of networks

@ Allows better quantification of uncertainty compared to regular NNs

Source: Blundell et al. 2015

Problem: Exact inference on weights intractable
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Background: Bayes by Backprop

“Weight Uncertainty in Neural Networks” (Blundell et al. 2015)
@ Model distribution of each BNN weight using N (p;, ;)
@ Sample realization of BNN from weight posterior ¢(w|¢)
@ Use reparameterization trick to allow backpropagation

@ Train by minimizing ELBO:
Ly = Ey[log p(Dlw)] — KL[g(w) || p(w)] (1)
where the expectation is computed by Monte Carlo.

Many related methods (Goan and Fookes 2020), but all place prior over
BNN weights, instead of distribution of functions.
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Background: Bayes by Backprop

Problem: Results aren't great!

MJWW ] J
(a) BBB-1 (b) BBB-0.001

Results of Bayes-By-Backprop (BBB) on toy problem. Source: Sun et al. 2019
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Functional BNN




Functional ELBO

Sun et al. introduce the Functional ELBO (fELBO):

Ly = Eqflogp(D|f)] = KLg || p] (2)

@ g is the fBNN posterior q(f|¢) allowing reparametrization.
@ f is a sample from the fBNN posterior f ~ ¢
@ p is a prior on a function space.

o {f(z):x € X} can be viewed as a stochastic process.

Breakdown:
o Likelihood term E,[logp(D|f)] computed as in BBB.
e How do we compute KL[q || p]?
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Functional ELBO

Given two stochastic processes P and Q):

KLIP | Q= sup KL[Px | Qx] (3)
neN,Xexn

@ X is the measurement set: a finite set of points where function is
evaluated

@ Px is the marginal distribution of functional values at X

“Supremum of marginal KL divergences over all finite sets of inputs”

See Appendix A of Sun et al. 2019 for full proof.
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Functional ELBO

Thus:
L(q) = Ey[logp(D|f)] — S KL[g(£%) || p(£%)] (4)
= e e (Z)D B, [log p(y:] £ (x:)] — KLIa(F¥) || p(£¥)]  (5)
= el £ ©
Also define
Ln(q) = _inf Lx(q) (7)

Xexn

as the fELBO restricted to sets of only n points.
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Choosing Measurement Sets: Adversarial Methods

What is the best way to chose the measurement set X7

Adversarial Measurement Sets: Cast fELBO as a two-player zero-sum
game. One player chooses the BNN, the other chooses the measurement
set. Concurrently optimize:

max L (q) = max min Lx(q) (8)

Doesn't work that well unfortunately. Tends to chose measurement set
overlapping training data, meaning functional prior is ignored for
extrapolation.
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Choosing Measurement Sets: Sampling

Sampling Based Measurement Sets: Define distribution ¢ from which
to draw measurement sets:

L(q) := Ep E L s 9
r;leaéc (q) r;leaéc D Exn . Lxm xps(q) (9)

@ Sampled measurement set should include both training data (Xs)

and prediction regions (X).

In experiments, authors sample from rectangle [zpin — d/2, Tmax + d/2]

@ Tmin, Tmax are the min / max input values along a dimension

o d= Tmax — Tmin
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Sampling-Based Measurement Sets

Including all training input in measurement set allows fELBO to lower
bound log marginal likelihood such that:

Lx(q) = logp(D) — KL[g(f*) || p(f*|D)] < log p(D) (10)

See Appendix B.2 of Sun et al. 2019 for full proof.
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KL Divergence Gradients

Remaining challenge: How do we compute gradients for KL term if we
don't have explicit g, (f%)?

The gradient of the KL term VsKL[gs(fX) || p(£X)] is:
Ey[Vlog 4s(£%)] + E¢[Vf™ (Vi log g(%) — Velogp(fX))] (1)

o First term goes to zero

@ The term V¢fx computed via backprop.

We need a gradient estimator for V¢ log ¢(fX) and V¢ log p(fX), which
are both intractable.
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Spectral Stein Gradient Estimator

Spectral Stein Gradient Estimator (SSGE) (Shi, Sun, and Zhu 2018) is
used to compute gradients for implicit distributions, where the distribution
is intractable, but sampling is tractable. Sounds applicable!

The SSGE is given by:

V., log g(x ij Zﬁm (12)

where eigenvalues (/3;;) and eigenfunctions (1);) are computed by Nystrom
approximation. (Williams and Seeger 2001)
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Algorithm

Algorithm 1 Functional Variational Bayesian Neural Networks (fBNNs)

Require: Dataset D, variational posterior g(-), prior p (explicit or implicit), KL weight A.
Require: Sampling distribution ¢ for random measurement points.
1: while ¢ not converged do

2: XM ~~e;DsCD > sample measurement points
3 f; = gg[XlM, XPs| ging), i=1---k. > sample k& function values
4: A =g 2o 2wy Vo logplylfi(z)) 1> compute log likelihood gradients
5: Ay = SSGE(p, f1.1) 1> estimate KL gradients
6: ¢ + Optimizer(@, Ay — AAs) > update the parameters
7: end while

Source: Sun et al. 2019
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Experiments (Code Notebook)

Recreating Toy Experiment from Paper:
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(b) fBNN with GP Prior (Periodic
RBF kernel)
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Experiments (Code Notebook)

Control over fBNN properties possible through GP prior.
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Experiments

Authors validate their method on:

@ UCI Regression Data Sets

o Contextual Bandits

Functional BNNs compared mainly against BBB on test MSE prediction of
held out points. Generally outperforms BBB, but metrics quite close.

Table 2: Averaged test RMSE and log-likelihood for the regression benchmarks.

Test RMSE Test log-likelihood
Dataset N BBB FBNN BBB FBNN
Naval 11934 1.6E-4+0.000 1.2E-4+0.000 6.950+0.052  7.130+0.024
Protein 45730 4.3314+0.033  4.3264+0.019  -2.892+0.007 -2.892+0.004
Video Memory 68784 1.879+0.265 1.858+0.036  -1.999+0.054 -2.038+0.021
Video Time 68784  3.632+1.974  3.007+0.127  -2.390+0.040 -2.471+0.018
GPU 241600 21.886+0.673  19.50+0.171  -4.5054+0.031  -4.400+0.009
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Limitations (Code Notebook)

Performance of fBNN heavily tied to accuracy of functional prior.

Experiment on linearly Period toy data. Should be easily represented with
Linear + Periodic kernel.

5.0 \ 4

(a) Data (b) Learned Prior

Have to be careful!
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Limitations

SSGE is known to cause underestimates uncertainty in comparison to

HMC (Shi, Sun, and Zhu 2018). Shown in figure below.

(a) HMC

(b) Spectral-Implicit

(c) BBB

(d) Spectral-Factorized

Source: Shi, Sun, and Zhu 2018
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Conclusion

Key Takeaways: Functional Variational Bayesian Neural Nets

@ Function (instead of weight) space prior on BNNs

Functional BNN is trained via the Functional ELBO

o KL divergence between two stochastic processes computed as
supremum of marginals on all finite measurement sets.

@ Measurement sets used compute KL divergence obtained via sampling

o KL gradients computed using SSGE.
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