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Deep Probabilistic Models

• Probabilistic latent variable models (LVMs) pθ(x , z) describe high-
dimensional structured data x using unobserved latent variables z .

Z X

• LVMs achieved remarkable successes when combined with deep learning1.

Variational auto-encoder. Deep Recurrent Attentive Writer.

1Kingma and Welling (2013); Gregor et al. (2015).
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State-Space Models

𝑥! 𝑥" ⋯ 𝑥# ⋯
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When both x and z exhibit sequential structure, the joint density can be
represented by a state-space model :

pθ(x , z) = pθ(x1, z1)
T∏
i=2

pθ(xt , zt |x1:t−1, z1:t−1),

where T is the length of the sequence, and xi :j denotes (xi , xi+1, ..., xj).
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Variational Inference in State-Space Models

• A variational posterior is adopted for approximate inference,

qφ(z |x) = qφ(z1|x)
T∏
t=2

qφ(zt |z1:t−1, x).

• qφ can be optimized by maximizing the Evidence Lower Bound (ELBO),

LELBO(θ, φ; x) = Eqφ

[
log

pθ(x , z)

qφ(z |x)

]
≤ log pθ(x).

• Importance-Weighted Auto-encoder (IWAE) provides a tighter bound,

LELBO(θ, φ; x) ≤ LIWAE (θ, φ; x) , Eqφ

[
log
( 1
N

N∑
i=1

pθ(x , z (i))

qφ(z (i)|x)︸ ︷︷ ︸
w (i)

)]
≤ log pθ(x),

by using multiple particles N > 1.
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Gradient Estimators and the Baseline Method

Reparameterization Estimator.

• Typically lower variance.

• Only works for differentiable models.

Score Function Estimator.

• Applicable to discrete models.

• High gradient variance...

This work. Lower variance score function estimator for state-space models.

• IWAE Gradient: low-variance path derivative + high-variance log derivative.

∇φLIWAE (θ, φ; x) = ∇φEqφ

[
log

(
1
N

N∑
i=1

w
(i)
φ

)]
,

• Variance reduction is needed for the log derivative term.
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The Log Derivative has High Variances

• Intuition of High Variance. path derivative has a bounded coefficient;
the path derivative has an unbounded coefficient.

path derivative:
N∑
i=1

[
w

(i)
φ∑N

j=1 w
(j)
φ

]
∇φ log qφ(z (i)|x)

log derivative:
N∑
i=1

log

 1
N

N∑
j=1

w
(j)
φ

∇φ log qφ(z (i)|x)

• A baseline lowers the variance of the log derivative term.

ĝhigh(z (1:N); x) =
N∑
i=1

log

 1
N

N∑
j=1

w
(j)
φ

− Bi

∇φ log qφ(z (i)|x).

6



Constructing the Baseline

Question: How do we choose the baseline for variance reduction?

For a state-space model, the log derivative admits further decompositions,

ĝhigh(z (1:N); x) =
N∑
i=1

T∑
t=1

log

(
1
N

N∑
j=1

w (j)

)
− Bit

∇φ log qφ(z
(i)
t |z

(i)
1:t−1, x),

w (j) :=
T∏
t=1

pθ(xt , z
(j)
t |x1:t−1, z

(j)
1:t−1)

qφ(z
(j)
t |z

(j)
1:t−1, x)

.

Desiderata for the Baseline. The baseline Bit should

• Correlate with log
(

1
N

∑N
j=1 w

(j)
)
.

• Be independent of z (i)
t , so that Eq(z)[B∇ log q(z)] = 0.
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Prior Work: the VIMCO Estimator

Intuition: for each particle i and time t, we wish to construct Bit close to

log

 1
N

N∑
j=1

w (j)

 = log

(
1
N

N∑
j 6=i

w (j)

︸ ︷︷ ︸
Independent of zt

+ w (i)︸︷︷︸
Need to replace

)
.

Idea. Use other particles to “approximate” w (i).

𝑤!

𝑤"

𝑤#

𝑤$

𝑤%
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Prior Work: the VIMCO Estimator

Intuition: for each particle i and time t, we wish to construct Bit close to

log

 1
N

N∑
j=1

w (j)

 = log

(
1
N

N∑
j 6=i

w (j)

︸ ︷︷ ︸
Independent of zt

+ w (i)︸︷︷︸
Need to replace

)
.

VIMCO: w (i) might be close to the geometric mean of other particles w (¬i).

Bit = log

 1
N

N∑
j 6=i

w (j) +
1
N

N∏
j 6=i

(
w (j)

) 1
N−1

.
Particle 1: w

(1)
1 × w

(1)
2 × ...w

(1)
t−1 × w

(1)
t × w

(1)
t+1 × ...w

(1)
T

...

Particle i: w
(i)
1 × w

(i)
2 × ...w

(i)
t−1 × w

(i)
t × w

(i)
t+1 × ...w

(i)
T︸ ︷︷ ︸

Replaced by mean(w (¬i)) in Bit

...
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The Future Likelihood Baseline

What is another way to replace the term w (i)?

Idea: For each particle i and time t, w (i) should be close to w
(i)
1:t−1Γ

(i)
t−1, where

Γ is the future likelihood function defined as: Γ
(i)
t , E

q(z
(i)
t+1:T |z

(i)
1:t)

[
w

(i)
t+1:T

]
.

𝑤!

𝐸[𝑤"!]

𝑤"!

≈

How do we estimate the future likelihood Γ?

• Proposal: parameterize Γt with a neural network.
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The Future Likelihood Baseline

What is another way to replace the term w (i)?

Idea: For each particle i and time t, w (i) should be close to w
(i)
1:t−1Γ

(i)
t−1, where

Γ is the future likelihood function defined as: Γ
(i)
t , E

q(z
(i)
t+1:T |z

(i)
1:t)

[
w

(j)
t+1:T

]
.

Proposed Method.

Bit := log

(
1
N

N∑
j 6=i

w (j) +
1
N
w

(i)
1:t−1 Eq

(
z

(i)
t:T |z

(i)
1:t−1

)[w (i)
t:T

]
︸ ︷︷ ︸
Future Likelihood: Γ

(i)
t−1

)
,

Particle 1: w
(1)
1 × w

(1)
2 × ...w

(1)
t−1 × w

(1)
t × w

(1)
t+1 × ...w

(1)
T

...

Particle i: w
(i)
1 × w

(i)
2 × ...w

(i)
t−1 × w

(i)
t × w

(i)
t+1 × ...w

(i)
T︸ ︷︷ ︸

Replaced by Γ
(i)
t−1 in Bit
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Variational Inference with Future Likelihood Estimates (VIFLE)

• To sum up, the (unbiased) VIFLE gradient estimator is,

gu
VIFLE =

N∑
i=1

T∑
t=1

[
log

∑N
j 6=i w

(j) + w
(i)
1:t−1w

(i)
t:T∑N

j 6=i w
(j) + w

(i)
1:t−1Γ

(i)
t−1

]
∇φ log qφ(z

(i)
t |z

(i)
1:t−1, x).

𝐸[𝑤!"]

𝑤!"

• High variances still persist due to the random variables w (i)
t:T .
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Variational Inference with Future Likelihood Estimates (VIFLE)

Proposal: introduce a surrogate objective:

gVIFLE =
N∑
i=1

T∑
t=1

[
log

∑N
j 6=i w

(j) + w
(i)
1:tΓ

(i)
t∑N

j 6=i w
(j) + w

(i)
1:t−1Γ

(i)
t−1

]
∇φ log qφ(z

(i)
t |z

(i)
1:t−1, x).

𝐸[𝑤!"]

𝑤!"

• Now the denominator and enumerator differ by only one random variable z
(i)
t .

• gVIFLE has lower variances but is no longer unbiased.
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New Variational Lower Bound?

gVIFLE is biased. What objective is it optimizing?
• Is it still a valid variational lower bound on log pθ(x)?

Theorem (?). Let LVIFLE (θ, φ; x) be the objective that gVIFLE is optimizing, then

log pθ(x) ≥ LIWAE (θ, φ; x) ≥ LVIFLE (θ, φ; x).

Is the theorem correct?

• Sketch. The proof of this theorem compares the IWAE bound to the
VIFLE objective with stop gradient.

• It is meaningless to compare objectives that involve stop gradients. E.g.,

x ∗ x ≤ x ∗ stopgrad(x) + stopgrad(x) ∗ x ,

• Yet LHS and RHS have the exact same gradient w.r.t. x .

• In reality LIWAE (θ, φ; x) ≤ LVIFLE (θ, φ; x)...
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Experimental Results

Learning Simple Dynamical Systems.

• Continuous Model: zt = Azt−1 + vt , xt = Bzt + wt . z ,w ∼ N (0, σ2Id).

• Discrete Model: zt = F (zt−1), xt = Azt + sin(10zt) + wt . z0 ∼ Bern(0.5).

• The (biased) VIFLE estimator consistently achieves good performance.
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Experimental Results

Learning Simple Dynamical Systems.

• Continuous Model: zt = Azt−1 + vt , xt = Bzt + wt . z ,w ∼ N (0, σ2Id).

• VIFLE outperforms VIMCO in terms of gradient variance, and is comparable to
the reparameterization estimator.
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Conclusion

Summary.

• Introduced a novel variance reduction method, the future likelihood
baseline, for the IWAE objective in learning state-space models.

• Proposed a biased gradient estimator, gVIFLE , to further reduce the
gradient variance, and achieves strong empirical performance.

Limitation and Future Directions.

• What exactly is gVIFLE optimizing?
Is it still a valid lower bound on the log likelihood?

• Why does the unbiased VIFLE estimator perform very poorly?
Is there a better way to parameterize the future likelihood?

• How does VIFLE compare to other biased estimators, e.g., Gumbel-Softmax?

• Can we apply similar baseline to objectives beyond IWAE?
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Appendix: VIFLE maximizes an Upper Bound of IWAE

Let LVIFLE and Lu
VILFE be the objectives that gVIFLE and gu

VIFLE is optimizing,
respectively. We have

LVIFLE (z (1:N); x)− Lu
VIFLE (z (1:N); x)

= Eqφ

[
log

∑N
j 6=i w

(j) + w
(i)
1:tΓ

(i)
t∑N

j 6=i w
(j) + w

(i)
1:t−1Γ

(i)
t−1

]
− Eqφ

[
log

∑N
j 6=i w

(j) + w
(i)
1:tw

(i)
t+1:T∑N

j 6=i w
(j) + w

(i)
1:t−1Γ

(i)
t−1

]

= Eqφ

log

 N∑
j 6=i

w (j) + w
(i)
1:tΓ

(i)
t

− Eqφ

log

 N∑
j 6=i

w (j) + w
(i)
1:tw

(i)
t+1:T


≥ 0,

The last inequality is due to Jensen’s Inequality on Γ
(i)
t = E[w

(i)
t+1:T ].



Appendix: Estimating the Future Likelihood Baseline

• Using random sampling to estimate Γ
(i)
t is computationally expensive:

Γt = Eq(zt:T |z1:t−1;x)[wt:T ]

• Recall the recursive definition of the future likelihood function,

Γt(z1:t−1; x) = Eq(zT |z1:t−1;x)[wtΓt(z1:t ; x)],

w
(i)
1 × w

(i)
2 ...× w

(i)
t ×

Γ
(i)
t︷ ︸︸ ︷

w
(i)
t+1...× w

(i)
T︸ ︷︷ ︸

Γ
(i)
t−1

.

• Proposed Method. Learn a neural network to approximate the future
likelihood. Parameterize Γ̂(z1:t−1; x) with a recurrent neural network. The
following objective is minimized via stochastic gradient descent,

min
∑
t

(
Γ̂(z1:t−1; x)− Eq(zT |z1:t−1;x)[wt Γ̂(z1:t ; x)]

)2
.
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