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o Probabilistic latent variable models (LVMs) py(x, z) describe high-

dimensional structured data x using unobserved latent variables z.

X

z

e LVMs achieved remarkable successes when combined with deep learning®.
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Deep Recurrent Attentive Writer.

Variational auto-encoder.

1Kingma and Welling (2013); Gregor et al. (2015).



State-Space Models
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When both x and z exhibit sequential structure, the joint density can be

represented by a state-space model:
-

po(x,2) = po(xa1, z1) [ [ PoCxe zebxace—1, 21:e-1),
i=2

where T is the length of the sequence, and x;; denotes (x;j, Xj+1, ..., X;).



Variational Inference in State-Space Models

e A variational posterior is adopted for approximate inference,
T
as(21%) = qo(z1|x) [ ] 96(2¢|21:6-1, %)
t=2

® g, can be optimized by maximizing the Evidence Lower Bound (ELBO),

Leipo(0,¢;x) = Eq, [Iog Zj}é’;ﬂ < log ps(x).

e Importance-Weighted Auto-encoder (IWAE) provides a tighter bound,

|og( Zpa T )1 < log po(x),

W(’)

Lego(0, ¢: x) < Liae(0, ¢; x) =

by using multiple particles N > 1.



Gradient Estimators and the Baseline Method

Reparameterization Estimator. Score Function Estimator.
e Typically lower variance. e Applicable to discrete models.

e Only works for differentiable models. e High gradient variance...

This work. Lower variance score function estimator for state-space models.

e IWAE Gradient: low-variance path derivative + high-variance log derivative.
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e Variance reduction is needed for the log derivative term.

Vo Lmae(0, ¢; x) = V4B,




The Log Derivative has High Variances

e Intuition of High Variance. path derivative has a bounded coefficient;
the path derivative has an unbounded coefficient.

N wi? .
path derivative: Z[Nd)g) V,log qu(z(')‘x)
i=1 Zj:l Wy

N N
1 ; )
log derivative: Z log v Z W(()J) V4 log q5(z|x)
Jj=1

i=1

e A baseline lowers the variance of the log derivative term.

N

N
R ] 1 i i
Brign(2"M; x) = E log N Z Wg) = Bi| Vo log g2 ).
i=1 j=1



Constructing the Baseline

Question: How do we choose the for variance reduction?

For a state-space model, the log derivative admits further decompositions,

N T N
. . 1 i i _(i
Brign(ZM; %) =) log (N > W(’)> — Bie| Vs log qp(2"|20)_;, %),
1 Jr=

i=1 t=
G) . II[ PG(Xt-, Z§J)|X1:t—la foz_l)
W 0,0
t=1 %(Zt |21:t—1’X)

Desiderata for the Baseline. The baseline should
e Correlate with Iog(% ZJN:1 W(j)>.

e Be independent of zt(i), so that Eq(,)[BV log g(z)] = 0.




Prior Work: the VIMCQO Estimator

Intuition: for each particle / and time t, we wish to construct B;; close to

N N
1 3 1 ’ .
il 0| = il () (1)
log N,E w —Iog< N‘E.W + w )
Jj=1 J#i Need to replace

Independent of z

Idea. Use other particles to “approximate” w(/),
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Prior Work: the VIMCQO Estimator

Intuition: for each particle / and time t, we wish to construct B;; close to

N N
1 ] 1 ] .
il 0l = il 0) ()
log NZWJ —Iog< NZW + w2 >
J=1 J#i Need to replace

Independent of z

VIMCO: w() might be close to the geometric mean of other particles w(™7.

1Y 1Y e
Bi = log | & Y w4 NH(WU)) vt
J#i

J#i
Particle 1: Wil) X Wz(l) X 4..W§i)l X Wt(l) X Wt(i)l X ...Wg—l)
Particle i: wl(i) X wz(i) X "'WLFQI x w x Wt(jt)l X ...W(Ti)

Replaced by mean(w(ﬁ")) in B



The Future Likelihood Baseline

What is another way to replace the term w()?

Idea: For each particle i and time t, w() should be close to Wl(fgflr(t’ll, where

‘ [ is the future likelihood function defined as: () 2 E, 01240 |:W§jrl:T:|' ‘

wi

E[w?]

How do we estimate the future likelihood '?

e Proposal: parameterize I'; with a neural network.
10



The Future Likelihood Baseline

What is another way to replace the term w()?

()

Idea: For each particle i and time t, w() should be close to Wl:t_lrﬁ"ll, where

‘ [ is the future likelihood function defined as: () £ E

U) }
i i w. . .
a(z0)y.r1280) [ t+1T

Proposed Method.

Particle 1:

Particle i:

wf?

wl)

(
X Wy
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w2y ) (4] ) 7

Future Likelihood: I'i/._l
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1
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Replaced by I'gll in B
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Variational Inference with Future Likelihood Estimates (VIFLE)

e To sum up, the (unbiased) VIFLE gradient estimator is,

() ()

i W(j) + Wit aWeT
BVIFLE = ZZ [Iog el ) (,; s

i=1 t=1 Zﬁe, w) +wi)_ T,

V, log QqB(zt )|21 t— 17X)

wi

E[w?]

o High variances still persist due to the random variables Wt(l-),—
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Variational Inference with Future Likelihood Estimates (VIFLE)

Proposal: introduce a surrogate objective:

N T (J)+W()r()
8VIFLE = ZZ[ Hﬁ’
J

=1 t=1 75, wl) + 1(21r(t’21

1V¢ log q¢(z§i)|z§fz_l, x).

we

E[w¢]

e Now the denominator and enumerator differ by only one random variable zt(i).

e gyirLe has lower variances but is no longer unbiased.
13



New Variational Lower Bound?

gvirLe is biased. What objective is it optimizing?
o Is it still a valid variational lower bound on log py(x)?

Theorem (?). Let Lvire(0, ¢; x) be the objective that gvir e is optimizing, then

log po(x) > Liwae (0, ¢; x) > Lvirte(6, ¢; x).

Is the theorem correct?

e Sketch. The proof of this theorem compares the IWAE bound to the
VIFLE objective with stop gradient.

e It is meaningless to compare objectives that involve stop gradients. E.g.,

x % x < x * stopgrad(x) + stopgrad(x) * x,

e Yet LHS and RHS have the exact same gradient w.r.t. x.

e In reality ,C/WAE(Q, d); X) < »C\/IFLE(Ga QS;X)"'
14



Experimental Results

Learning Simple Dynamical Systems.

e Continuous Model: z; = Az;—1 + vi, xe = Bzi + ws. z, w ~ N(O, led).

e Discrete Model: z; = F(z;—1),xt = Az + sin(10z;) + we. zo ~ Bern(0.5).
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e The (biased) VIFLE estimator consistently achieves good performance.
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Experimental Results

Learning Simple Dynamical Systems.

e Continuous Model: z; = Az;—1 + vi, xe = Bzi + ws. z,w ~ N(O, azld).
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e VIFLE outperforms VIMCO in terms of gradient variance, and is comparable to
the reparameterization estimator.
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Conclusion

Summary.

e Introduced a novel variance reduction method, the future likelihood
baseline, for the IWAE objective in learning state-space models.

e Proposed a biased gradient estimator, gvir g, to further reduce the
gradient variance, and achieves strong empirical performance.

Limitation and Future Directions.

e What exactly is gyjr e optimizing?
Is it still a valid lower bound on the log likelihood?

e Why does the unbiased VIFLE estimator perform very poorly?
Is there a better way to parameterize the future likelihood?

e How does VIFLE compare to other biased estimators, e.g., Gumbel-Softmax?

e Can we apply similar baseline to objectives beyond IWAE?

17
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Appendix: VIFLE maximizes an Upper Bound of IWAE

Let Lvike and LY, o be the objectives that gvir e and gy, £ is optimizing,
respectively. We have

Lvirte(z8M; x) — L5 (20Y; %)

ZJI'\;; wl) + Wl(:lzrgl) ZJA;, wl) 4 Wl(:lt)'WLg-ls—)lzT
=B |le s o om o | B |l 0 o
YWV + w2 i WY w7y
N N
=E,, |lo Z wl) + wr —E,, |[lo Z wt) + ww()
qs | 108 1:th ¢t qs | 108 1:tWer1:T
i i
>0

)

The last inequality is due to Jensen's Inequality on ng) = E[waI:T].



Appendix: Estimating the Future Likelihood Baseline

e Using random sampling to estimate ng) is computationally expensive:

rt = EQ(Zt:T|Z1:t—1;X)[Wt3T]
e Recall the recursive definition of the future likelihood function,

Me(2z1:0-1 %) = Eqzr|zuea ) [WeT (21225 X)),

rtf

w{i) X W(A) X wt(’) X wt(fl,.. X W-(,—i).

e
e Proposed Method. Learn a neural network to approximate the future

likelihood. Parameterize f(zl;t_l;x) with a recurrent neural network. The
following objective is minimized via stochastic gradient descent,

man( Z1:4-1; X) Eq(zﬂzl:t_l;x)[Wtf(zl;t;x)])Q.
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