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Background: control as inference

This section is directly adapted from Sergey Levine's slides in CS285 lecture 19 (fall
2019)

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-19.pdf


http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-19.pdf

Background: control as inference

Conventional RL / optimal control:

-
ai,...,ar = arg max g r(st, ar)

ai,...,at
t=1

St41 ™~ P(5t+1|5t, at)
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Background: control as inference

Model the decision making as a probabilistic graphical model (PGM)
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Inference problem:
p(si.7,a1.7) =777

What's the probability of a trajectory?



Background: control as inference

Introduce an optimality random variable O;.

e O; =1 — optimal at time t.
e O; =0 — not optimal at time t.

New inference problem:
p(T’Ol;T) =777 where 7 = (51;7'7 al;T)

What's the probability of a trajectory, given that it is optimal at all timesteps?

O 03 Oy
(a) (8 (a)

St @ @ EEsmssmmEEnm




Background: control as inference

Important assumption:
p(O¢|st, ar) ox exp(r(st, at))

This gives us a convenient form for p(7|O1.7):

plrlOLT) o plr) exp (3 r(sc20)

t

Higher-reward trajectories are exponentially more likely.



Background: control as inference
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Benefits of modeling control as an inference problem:

e Can model suboptimal behaviour (important for inverse RL)
e Provides an explanation for why stochastic behaviour might be preferred.

e Can apply inference algorithms to solve control and planning problems



Background: control as inference
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How to do inference?
1. compute backward messages S5¢(st, ar) = p(Or.1|st, ar) (Q-function)

2. compute policy m(a¢|s:) = p(at|st, Or.T)

3. compute forward messages a(s:) = p(s¢|O1:¢—1)



Background: control as variational inference

let g(si.7,a1.7) = p(s1 Hﬂ?(st+1\sr ay)q(aylse)

N/ N

same dynamics and only new thing
initial state as p

Variational inference: match p(7|O1.7) with q(s1.7, a1.7):
minimize KL(q(T) I P(Tol:T)>

< Maximize the variational lower bound on log p(O1.7):

log p(O1.7) > - ZE (se.00)~alr (e, at) + H(m(ae|st))]
reward action entropy

Motivates maximum entropy RL 1



Background: control as variational inference

ELBO = E(s, 2,)~qlr(st, at) + H(m(at|st))]
—_

reward action entropy

The ELBO is maximized with the Boltzmann policy

m(ae|st) < exp(Q(st, ar))
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Problems with existing methods

Maximum Entropy RL methods (MERLIN)

e Recall: optimal policy m(at|st) o exp(Q(st, at))
>
>

Pseudo likelihood methods

e Minimizes KL(p(7|O1.7)|q(7)) instead of KL(q(7)||p(7|O1.7))
>
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VIREL — desiderata

Desired properties of the VIREL objective:

1. When objective is maximized, policy should be deterministic
2. When objective is not maximized, policy should be stochastic

3. Should minimize the “correct” (risk-neutral) KL — KL(g(7)||p(7|O1:7))
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VIREL — key idea

Key idea: Boltzmann policy with adaptive temperature

exp( %L52))

fAexp ( Quls:2)y g,

mw(als) ==

° @w(s, a) is the approximate Q-function parameterized by w.

e ¢, is the adaptive temperature, defined as the Bellman error:
c A o
w = ;H’]t—qu(% a) — Qu(s, a)H,’i

where T,(+) = r(s, a) + YE(s 2)~p(s'|s,a)m (a|s')[}] is the Bellman operator, ¢ >0
is an arbitrary constant, and assume p =2 WLOG.
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VIREL — objective

First try on the objective:

arg min £(w) := arg min %ym@w(s, a) — Qu(s,3)[I5

€w

Check the desiderata:

1. Main result: finding optimal w* such that ¢,» =0 = Q function is optimal
@w(s, a) = Q*(s, a).

— 7+(als) = 6(a = argmaxy Q,-(a,s)) is the deterministic optimal policy
2. When the objective is not optimized (e, > 0), the temperature is positive, and

m(als) is stochastic
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VIREL — objective

However, it's intractable to compute the normalization constant of the Boltzmann
policy

Qw(s,a) )

€w

exp(

mo(als) =

Solution: learn a variational policy

mo(als) =~ m,(als)
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VIREL — objective

New objective:

‘C(wv 9) = ]ESNd(S) |:Ea~7r9(a|s) [Qwis’a)] + H(We(a|5))]

w

where d(s) is an arbitrary sampling distribution for the state.

e Can check that it still satisfies desiderata 1 and 2

e Can show that it minimizes the risk-neutral KL:

£ 0) = tog | ep( ) KL (qu(s. )l 2) ~ H((5)

SxA €w

It satisfies desiderata 3 as well
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VIREL — derived actor-critic

VIREL provides a variational framework for probabilistic RL, from which we can derive
specific algorithms.

A natural derivation: EM <— variational actor-critic
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VIREL — derived actor-critic

Use EM to optimize the objective «— actor-critic

‘C(wv 9) = IE:5~d(s) |:Ea~7r9(a|s) [Qwisja)] + H(W9(3|5)):|

w

E-step (actor)
9i+1 — [ 4F Qactor€w Veﬁ(wk, 0/)

M-step (critic)
Wiy1 = wj + acriticeiivwﬁ(wiv 9k+1)

A lot of techniques in advanced actor-critic methods naturally apply here (e.g. control
variates, baselines, ...)
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experiments
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Figure 3: Training curves on continuous control benchmarks gym-Mujoco-v2 : High-dimensional domains.
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Figure 4: Training curves on continuous control benchmarks gym-Mujoco-v1. o



Colab presentation

Link to Colab Notebook
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https://colab.research.google.com/drive/17cX4WZ-h7JRdXA49PZ6TWBaIDj7jSt8K?usp=sharing

e RL as an inference problem
e Existing methods in probabilistic RL suffer from various issues
e VIREL

> Key idea: Boltzmann policy with adaptive temperature
» Variational objective that satisfies all the desiderata

» Naturally derived actor-critic algorithm
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Scope & limitations

The experiments are on the Mujoco continuous control tasks. It's unclear how VIREL
performs on tasks with discrete state / action spaces, or tasks with higher dimensional
inputs (e.g. pixel input).

To accurately estimate ¢,, can be costly. Current implementation uses a buffer to
reduce sample complexity, but may introduce complications to the learning dynamics.
An immediate future work is to find better estimates of .

Another direction for future work: extend the framework to multi-agent settings.
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Thank you for listening!
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