The Value Function Polytope in Reinforcement Learning

Robert Dadashi, Adrien Ali Taiga, Nicolas Le Roux, Dale Schuurmans, Marc G. Bellemare

Characterizing the space of value functions in a finite state-action Markov Decision Process context

Characterizing the space of value functions in a finite state-action Markov Decision Process context

A geometric perspective

The boundary of this polytope can be described by value functions corresponding to "semi-deterministic" policies

We are working with a Markov Decision Process, $M:=(\mathcal{S},\mathcal{A},r,P,\gamma)$

 $\ensuremath{\mathcal{S}}$: finite state space

 \mathcal{A} : finite action space

r: reward function

 $P:\ {\sf transition}\ {\sf function}$

 γ : discount factor in [0,1)

We are working with a Markov Decision Process, $M := (S, A, r, P, \gamma)$

 ${\mathcal S}$: finite state space

 ${\cal A}$: finite action space

r : reward function

P: transition function

 γ : discount factor in [0,1)

 π denotes a policy; $\pi:\mathcal{S}\to\Delta\mathcal{A}$. Together with the transition function P, we have state-to-state transition probabilities with respect to policy π :

We are working with a Markov Decision Process, $M := (S, A, r, P, \gamma)$

 \mathcal{S} : finite state space

 ${\cal A}$: finite action space

r : reward function

P: transition function

 γ : discount factor in [0,1)

 π denotes a policy; $\pi:\mathcal{S}\to\Delta\mathcal{A}$. Together with the transition function P, we have state-to-state transition probabilities with respect to policy π :

$$P^{\pi}(s'|s) := \sum_{a \in \mathcal{A}} \pi(a|s) P(s'|s,a)$$

The value function at state *s* is defined as follows:

$$V^\pi(s) := \mathbb{E}_{P^\pi}\left[\sum_{i=0}^\infty \gamma^i r(s_i, a_i) | s_0 = s
ight]$$

where r(s, a) is the reward function evaluated at state s and action a

The value function at state *s* is defined as follows:

$$V^{\pi}(s) := \mathbb{E}_{P^{\pi}}\left[\sum_{i=0}^{\infty} \gamma^{i} r(s_{i}, a_{i}) | s_{0} = s
ight]$$

where r(s, a) is the reward function evaluated at state s and action a

Definition

Let $f_v : \mathcal{P}(\mathcal{A})^{\mathcal{S}} \to \mathbb{R}^{\mathcal{S}}$ be the **value functional** mapping the space of policies to their corresponding value functions.

Definition

Policy Determinism: A policy π is

- s-deterministic for $s \in \mathcal{S}$ if $\pi(a|s) \in \{0,1\}$.
- **semi-deterministic** if it is *s*-deterministic for at least one $s \in S$.
- **deterministic** if it is *s*-deterministic for all states $s \in S$.

Definition

Policy Determinism: A policy π is

- s-deterministic for $s \in \mathcal{S}$ if $\pi(a|s) \in \{0,1\}$.
- **semi-deterministic** if it is *s*-deterministic for at least one $s \in \mathcal{S}$.
- **deterministic** if it is *s*-deterministic for all states $s \in S$.

Definition

Let $s_1,...,s_k$ be states and π a policy. Then $\boldsymbol{Y}^{\pi}_{s_1,...,s_k}\subset\mathcal{P}(\mathcal{A})^{\mathcal{S}}$ is the set of policies that agree with π on the states $s_1,...,s_k$. Similarly, let $\boldsymbol{Y}^{\pi}_{\mathcal{S}-\{s\}}$ be the set of policies which agree with π on all states except s.

Visualizations

Figure: Value function space corresponding to four two-state MDPs; each evaluated from 50,000 policies sampled uniformly from $\mathcal{P}(\mathcal{A})^{\mathcal{S}}$.

The Line Theorem

Theorem 1: Let s be a state and π a policy. Then there are two s-deterministic policies in $Y^{\pi}_{\mathcal{S}-\{s\}}$, denoted π_{l} and π_{u} , such that for all $\pi' \in Y^{\pi}_{\mathcal{S}-\{s\}}$

$$f_{\nu}(\pi_I) \leq f_{\nu}(\pi') \leq f_{\nu}(\pi_u)$$

Furthermore, the following are equivalent:

- $f_v(Y_{S-\{s\}}^\pi)$
- $\{f_{\nu}(\alpha\pi_{l} + (1-\alpha)\pi_{u}) : \alpha \in [0,1]\}$
- $\{\alpha f_{v}(\pi_{l}) + (1 \alpha)f_{v}(\pi_{u}) : \alpha \in [0, 1]\}$

The Line Theorem

Theorem 1: Let s be a state and π a policy. Then there are two s-deterministic policies in $Y^{\pi}_{\mathcal{S}-\{s\}}$, denoted π_{l} and π_{u} , such that for all $\pi' \in Y^{\pi}_{\mathcal{S}-\{s\}}$

$$f_{\nu}(\pi_I) \leq f_{\nu}(\pi') \leq f_{\nu}(\pi_u)$$

Furthermore, the following are equivalent:

- $f_v(Y_{S-\{s\}}^\pi)$
- $\{f_v(\alpha \pi_I + (1 \alpha)\pi_u) : \alpha \in [0, 1]\}$
- $\{\alpha f_{\nu}(\pi_{l}) + (1 \alpha)f_{\nu}(\pi_{u}) : \alpha \in [0, 1]\}$

Definition

A **convex combination** is a finite linear combination of vectors whose coefficients are non-negative and sum to 1.

Definition

A **convex combination** is a finite linear combination of vectors whose coefficients are non-negative and sum to 1.

Definition

The **convex hull** of a set E is the intersection of all convex sets containing E. A set C is **convex** if for any $x,y\in C$ $\{\alpha x+(1-\alpha)y:\alpha\in[0,1]\}\subset C$.

Definition

A **convex combination** is a finite linear combination of vectors whose coefficients are non-negative and sum to 1.

Definition

The **convex hull** of a set E is the intersection of all convex sets containing E. A set C is **convex** if for any $x, y \in C$ $\{\alpha x + (1 - \alpha)y : \alpha \in [0, 1]\} \subset C$.

Credit to Harshit Sikchi.

Interesting Consequences of the Line Theorem

For any set of states $s_1,...,s_k \in \mathcal{S}$ and a policy π , V^{π} can be expressed as a convex combination of value functions of $\{s_1,...,s_k\}$ -deterministic policies. In particular, $\mathcal{V} := f_{\mathcal{V}}(\mathcal{P}(\mathcal{A})^{\mathcal{S}})$ is included in the convex hull of the value functions of deterministic policies.

Interesting Consequences of the Line Theorem

For any set of states $s_1,...,s_k \in \mathcal{S}$ and a policy π , V^{π} can be expressed as a convex combination of value functions of $\{s_1,...,s_k\}$ -deterministic policies. In particular, $\mathcal{V}:=f_{\nu}(\mathcal{P}(\mathcal{A})^{\mathcal{S}})$ is included in the convex hull of the value functions of deterministic policies.

Interesting Consequences of the Line Theorem

Let V^{π} and $V^{\pi'}$ be two value functions. Then there exists a sequence of policies $\pi_1,...,\pi_k$ ($k \leq \mathcal{S}$ such that $V^{\pi} = V^{\pi_1},V^{\pi'} = V^{\pi_k}$, and

$$\{f_{\nu}(\alpha\pi_{i}+(1-\alpha)\pi_{i+1}):\alpha\in[0,1]\}$$

forms a line segment for all $1 \le i < k$.

Boundary of Semi-Deterministic Policies

The boundary of the space of value functions is a subset of value functions corresponding to semi-deterministic policies.

Boundary of Semi-Deterministic Policies

The boundary of the space of value functions is a subset of value functions corresponding to semi-deterministic policies.

Definition

P is a **convex polytope** iff there exist points $x_1, ..., x_k \in \mathbb{R}^n$ such that *P* is the convex hull of $\{x_1, ..., x_k\}$.

Definition

A **polytope** is a finite union of convex polytopes.

Credit to Harshit Sikchi.

Main Result

Let π be a policy and let $s_1,...,s_k$ be states in \mathcal{S} . Then $f_{\nu}(Y^{\pi}_{s_1,...,s_k})$ is a polytope and in particular, $\mathcal{V}=f_{\nu}(Y^{\pi}_{\phi})$ is a polytope.

Main Result

Let π be a policy and let $s_1,...,s_k$ be states in \mathcal{S} . Then $f_v(Y^\pi_{s_1,...,s_k})$ is a polytope and in particular, $\mathcal{V}=f_v(Y^\pi_\phi)$ is a polytope.

- ullet Surprising since f_{v} is in general non-linear and mixtures of policies can describe curves
- There is a sub-polytope structure in the space of value functions

