SurVAE Flows: Surjections to
Bridge the Gap between VAEs and Flows

Didrik Nielsen', Priyank Jaini?, Emiel Hoogeboom?, Ole Winther'!, Max Welling?

Technical University of Denmark’ UvA-Bosch Delta Lab, University of Amsterdam?

NeurlPS 2020

Presenters: Keiran Paster, Andrew L.i



SurVAE: Motivation

Variational Autoencoders (VAEs) [Kingma & Welling, 2013] and Normalizing Flows
[Rezende & Mohamed, 2015] are two distinct approaches to generative modelling.

e Transform a simple prior distribution p(z) to a complex data distribution p(z)

generated distribution true data distribution

p(x)

>
e

unit gaussian

generative

model
(neural net)

*. |loss| ,/

image space image space

https://openai.com/blog/generative-models/



SurVAE: Motivation

Main Ideas:

e Surjective transformations to “bridge the gap” between VAEs and Normalizing Flows

e A framework in which VAEs, Normalizing Flows, and surjections are composable layers



Variational Autoencoders

e Models a stochastic generative process:

2~ py(2), T ~ po(x|2)
Prior Decoder

e The posterior py(z|x) involves an intractable

integral and is approximated via a neural network:

qp(2|z) =~ po(2|z)

Encoder

Useful for optimization (to be shown)

Prior distribution: pe(z)

z-space

.
.

Encoder: qo(z|x)

Decoder: pe(x|z)

A

X-space

Dataset: D

[Kingma & Welling, 2019]




VAE Objective

e The goal is to maximize the likelihood of the data log pg ()

but this is also intractable!

e Instead, a surrogate objective (ELBO) is used:

log po(x) = Eq, (2)2) {bg [

N

pg(:l?,Z)

e (z|)

N

v
ELBO

H + B, (1) {10%“

Dx1[ge(z I\;)

|po(zlz)]




ELBO

e Notethat logpg(x) > E%(ZI:U) [log [%H (ELBO)

and the better the approximation ¢4 (z|x) ~ pg(z|z), the tighter the bound!

e Main issue: Many desirable quantities are intractable in the VAE
framework, e.g. Pg (CC) , PO (Z‘CIJ)



Normalizing Flows

e Transform a simple distribution p(z) into a more complicated distribution by composing
deterministic, invertible transformations (bijections)
e Obtain the exact log-probability of any a:

o Use change-of-variables formula: p(z) = p(z)|det V, f~1(z)|
o  Optimize the model to maximize likelihood of the data

e Flow layers ideally are expressive, invertible, and have an easily computable Jacobian

determinant.
fl ZO) fz Z;_ 1) f1,+1 zz
0 ORXS) @ -

zo ~ po(zo) z; sz( i) zx ~ Pk (2K)

https://lilianweng.qgithub.io/lil-log/2018/10/13/flow-based-deep-generative-models.html



https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Normalizing Flow Layers

e Affine Coupling Layer (RealNVP - Dihn et al. 2017)
o Input dimensions are split into two parts.

Yid — X1d
Yi+1:p — Xd+1:D ® exp(s(xlzd)) + t(xlzd)

o Easy to invert and the Jacobian is convenient.
e Invertible 1x1 conv (Glow - Kingma and Dhariwal, 2018)

A

affine coupling layer

)

invertible 1x1 conv

|

actnorm

A

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html



https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Issues with Normalizing Flows

e Transformations must be bijective. Z X
o Difficult to alter dimensionality
o Issues mapping continuous latents to discrete data. '
e Flow models still fall behind in image quality / log .
likelihood compared to other model types.

A bijective transformation. Figure from
Nielsen et al 2020.



Comparison: VAEs and Flows

VAESs learn stochastic transformations Flows learn deterministic bijections
Z =X and X — Z. Z — X (and through inverting, X — 2).
e Intractable likelihood Pg (aj) e Difficult to alter dimensionality

Z X Z X




VAE Normalizing Flow
Very Deep VAE (Child, 2020) Glow (Kingma and Dhariwal, 2018)




SurVAE Flows

e Both VAEs and Flow models optimize the log likelihood of the data log p(x)
o Flow models optimize this likelihood exactly
o VAEs optimize a lower bound (ELBO)

e Can we frame VAEs as a layer of a Flow model?



A Connection Between VAEs and Flows

VAE:
_ p(x|z) q(z|z)
logp(a:) - q(z|:1:) [logp(z)] + ll:‘:q(zlzn) llog (le) +Eq(z|:1:) log p(z|w)4
Lik. cont;lrb. V(z,z) Bound loos::ness E(x,z)
Normalizing Flow:
0z -
logp(xz) =logp(z) + log |det 8—:1: , z=f 1(33) (change-of-variables)

N

"

Lik. contrib. V(zx,2)

[Nielsen et al 2020]



A Connection Between VAEs and Flows

e VAEs learn stochastic mappings while Flows learn deterministic mappings Z — X
e Dirac delta-function: 5(w) _ )0, T = 0
0, x#0
7 &(z)dz =1
—O0

e Can write a deterministic function & = f(z) as a probability distribution with

p(z|z) = é(z — f(2))



A Connection Between VAEs and Flows

o Let p(x|z) =d(z — f(2))
p(zlz) = 8(z— f(z))

(ELBO)
a(z|z) = p(z]a) .
: L=

A

|z) q(z|x)
e Then logp(x)=E, 22 llogpz —|—logp( + log
() = Bataie) |08P(2) 108 210y 108 4ol
= logp(z) + log|det J|, for z = f~*(x), (change-of-variables)

. 0f(2)
1 _
where J = = 3, ‘z:fl(m)



Surjective Transformations

e Next we consider surjective transformations with properties of both VAEs and Flows.

° f - Z — X issurjective ifevery x € X hasapre-image 2 € Z
such that f(z) =X

e Multiple inputs can map to the same output.

Z X

[Nielsen et al 2020]



Surjective Transformations

e Surjective transformations are deterministic forwards and can have stochastic inverses.

e Can also have surjections in the “inference” direction X — Z.

Z X

Generative surjection Inference surjection



SurVAE Flows

e We just saw how Flow models are a special case of VAEs with a certain distribution.
e SurVAE Flows give a general framework for computing likelihood for different choices of
forward and inverse transformations.
Algorithm 1: log — likelihood(x)
Data: z, p(2) & {fi}/_
logp(z) ~logp(z) + V(z, 2) + E(x, 2) Result: £(x)
for ¢ in range(T), do
\ if f; is bijective then
kel g z = ft_l(‘l’) ;
ikelihood contribution bound looseness B
pz|2) Vt=10g|det8—m -
E q(z|z) llog ] >0 else if f; is stochastic then
q(z|x) z ~ qi(z|T) ;
pe(z|z) .
Ve = log ¢ Gl >
=
end

return log p(z) + S, Vs




Example: Rounding Surjection

e Consider the surjective transformation g — LzJ
e The forward transformation is given by P(x|z) = I(z = |2])

e The backward transformation Q(Z |33 ) is stochastic with support over

{x +ulu € [0,1)%}



Example: Rounding Surjection

e Tofind V(x,z),use p(x|z) =d(x = |2])

p(z|?)
° IEq(z|x) llog :| . IE’q(z|x) [10gp(l‘|2)] +Eq(z|x)[_ 10gq(2|$)]

q(z|x)
/

Expectation of log delta fn =0

e So, V(ZE,Z):Eq(z|m)[—10gQ(2‘ZIZ‘)]



Related Work

Many well-known methods in the literature can be expressed as SurVAE Flows.

e Dequantization (Uria et al, 2013; Ho et al, 2019) is used to train continuous flows on
discrete data.
o Can be obtained via the Rounding Surjection.

Table 3: SurVAE Flows as a unifying framework.
Model | SurVAE Flow architecture

Probabilistic PCA (Tipping and Bishop, 1999)
VAE (Kingma and Welling, 2014; Rezende et al., 2014)
Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al., 2020)

z stochastic X

Dequantization (Uria et al., 2013; Ho et al., 2019) Lo

ANFs, VFlow (Huang et al., 2020; Chen et al., 2020)

zZ
X augment) X xE bijection\ z
X

bijection slice bijection
_

IXE—DY —Z2

CIFs, Discretely Indexed Flows, DeepGMM:s

|
|
Multi-scale Architectures (Dinh et al., 2017) l
| x

augment\ bijection slice
(Cornish et al., 2019; Duan, 2019; Oord and Dambre, 2015) Pk X & rEXE—E
RAD Flows (Dinh et al., 2019) PO, o % B T, e i M




SurVAE Layers

Table 6: Summary of some generative surjection layers.

Surjection | Forward | Inverse | V(z, z)
Rounding | =z=|z] | z~ q(z|x) where z € [z,z + 1) | —log q(z|z)
Slicing | T =2z | 21 = ¢, 23 ~ q(2z2|x) —logg(z2|x)
s = 51gnz s ~ Bern(r(z))
Ak ‘ z = |z ‘ z=s5-T, SE {1 —-1} ~logg(slz)
k = argmax z k ~ Cat(mw(z
Max ‘ T = maxz ‘ P =X By q(z k|z k) ’ IOg q(k""'E IOg q(z—k|mt k)
7T = argsort z Z ~ Cat(m(z))
Sot ‘ x = sort z ‘ z=xz ~logg(Z|=)
ReLU | £ =max(z,0) | fr=0:2z~¢q(z),else:z=2 | I(z = 0)[— log q(2)]
Table 7: Summary of some inference surjection layers.
Surjection | Forward | Inverse | V(z, z)
Rounding | z ~ p(z|z) wherez € [z,z+ 1) | Zi=i|E] | log p(z|x)
Slicing T = 2,2 ~ p(x2|2) | z=x | log p(z2|2)
s ~ Bern(m(2)) s =signz
Abs { z=s-2, s€{-1,1} z = |z| logp(s|2)
k ~ Cat(m(z)) k = argmaxx
Max ‘ B sy e AR P log p(k|2) + log p(x—«|2, k)
Z ~ Cat(w(z)) Z = argsort x
Bort ‘ T =2z z =sortx log p(Z|2)
ReLU | ifz=0:z ~p(z),else:z =2 | z=max(z,0) | I(z = 0) log p(zx)

z X
[ ] [ ]
= >
[ ]
(b) Surjective (Gen.) (c) Surjective (Inf.)

Generative Surjection: stochastic q(z |£C)

Inference Surjection: stochastic p(:c|z )

Note: inference surjections have
E(x,z) = 0 i.e. exact likelihood.



Experiments - Symmetrical Synthetic Data

Data ow AbsFlow (ours)

"
-

e Using an absolute value inference surjection
improves the modeling of data with symmetries.

e Normalizing flows have trouble modelling
disconnected structure in the data.

Dataset Flow AbsFlow (ours)
Checkerboard  3.65 3.49
Corners 3.19 3.03

Gaussians 3.01 2.86
Circles 3.44 2.99




2D Visualization (Code Notebook)

e Normalizing flow combined with an absolute value surjection (last layer).




2D Visualization (Code Notebook)

plz) VAE SimpleAbsSurjection

e Composing a VAE layer and
an abs. (inference) surjection.




Experiments - MaxPoolFlow for Image Data

MaxPooling is used to downscale from
the image dimension to a smaller

latent dimension.

Adding MaxPooling yields worse
log-likelihoods but better inception and

FID scores.
Model Inception T FID |
DCGAN* 6.4 37.1
WGAN-GP* 6.5 36.4
Pixel CNN* 4.60 65.93
PixelIQN* 5.29 49.46
Baseline (Ours) 5.08 49.56
MaxPoolFlow (Ours) 5.18 49.03

Table 5: Inception score and FID for CIFAR-10.

*Results taken from Ostrovski et al. (2018).

Coupling Il
Convlxl

Max Pooling

[ )
7

[ Gt )
[ )

Dequannzatlon
R nding)

= )

Figure 6: Flow architec-
ture with max pooling.

Surjections in green.

Figure 7: Samples from CIFAR-10 models.
Top: MaxPoolFlow, Bottom: Baseline.



Summary

e SurVAE Flows is a framework in which VAEs and Normalizing Flows are modular layers.
O Encompasses several additional works in the literature, e.g. Dequantization

e Surjective layers are introduced as a “bridge” between VAEs and Normalizing Flows
o Can alter dimensionality
o (In some cases) can compute exact likelihood

e Several novel, practical surjective layers are derived and introduced.
o e.g. MaxPool, AbsoluteValue, Sort
o Allows greater flexibility in designing Flow architectures.
o Limitation: most of the introduced surjections are targeted to very specific functions and require
extensive domain knowledge to be applied.



References

1. Nielsen, D., Jaini, P., Hoogeboom, E., Winther, O., & Welling, M. (2020). Survae flows: Surjections to bridge the gap between vaes and
flows. In Proceedings of the 33rd Conference on Advances in Neural Information Processing Systems (NeurlPS).

2. Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. In Proceedings of the 2nd International Conference on Learning
Representations (ICLR).

3. Rezende, D., & Mohamed, S. (2015). Variational inference with normalizing flows. In International Conference on Machine Learning (pp.
1530-1538). PMLR.

4. Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. arXiv preprint arXiv:1906.02691.

5. Child, R. (2020). Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images. arXiv preprint
arXiv:2011.10650.

6. Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real NVP. In Proceedings of the 5th International Conference on
Learning Representations (ICLR).

7. Kingma, D. P., & Dhariwal, P. (2018). Glow: generative flow with invertible 1x 1 convolutions. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems (pp. 10236-10245).

8. Uria, B., Murray, I., & Larochelle, H. (2013). RNADE: The real-valued neural autoregressive density-estimator. In Proceedings of the 27th
Conference on Advances in Neural Information Processing Systems (NeurlPS).

9. Ho, J., Chen, X,, Srinivas, A., Duan, Y. &mp; Abbeel, P.. (2019). Flow++: Improving Flow-Based Generative Models with Variational
Dequantization and Architecture Design. Proceedings of the 36th International Conference on Machine Learning, in Proceedings of Machine
Learning Research 97:2722-2730.



