SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows

Didrik Nielsen¹, Priyank Jaini², Emiel Hoogeboom², Ole Winther¹, Max Welling²

Technical University of Denmark¹

UvA-Bosch Delta Lab, University of Amsterdam²

NeurIPS 2020

Presenters: Keiran Paster, Andrew Li

SurVAE: Motivation

Variational Autoencoders (VAEs) [Kingma & Welling, 2013] and **Normalizing Flows** [Rezende & Mohamed, 2015] are two distinct approaches to generative modelling.

• Transform a simple prior distribution p(z) to a complex data distribution p(x)

SurVAE: Motivation

Main Ideas:

- *Surjective* transformations to "bridge the gap" between VAEs and Normalizing Flows
- A framework in which VAEs, Normalizing Flows, and surjections are composable layers

Variational Autoencoders

- Models a stochastic generative process:
 - $\begin{array}{cc} z \sim p_{\theta}(z), x \sim p_{\theta}(x|z) \\ \text{Prior} & \text{Decoder} \end{array}$
- The posterior $p_{\theta}(z|x)$ involves an intractable integral and is approximated via a neural network: $q_{\phi}(z|x) \approx p_{\theta}(z|x)$

Encoder

Useful for optimization (to be shown)

[[]Kingma & Welling, 2019]

VAE Objective

- The goal is to maximize the likelihood of the data $\log p_{\theta}(x)$ but this is also intractable!
- Instead, a surrogate objective (ELBO) is used:

$$\log p_{\theta}(x) = \mathbb{E}_{q_{\phi}(z|x)} \left[\log \left[\frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \right] \right] + \mathbb{E}_{q_{\phi}(z|x)} \left[\log \left[\frac{q_{\phi}(z|x)}{p_{\theta}(z|x)} \right] \right]$$

$$\underbrace{\mathsf{ELBO}}_{D_{\mathrm{KL}} \left[q_{\phi}(z|x) \| p_{\theta}(z|x) \right]}$$

ELBO

• Note that
$$\log p_{\theta}(x) \ge \mathbb{E}_{q_{\phi}(z|x)} \left[\log \left[\frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \right] \right]$$
 (ELBO)

and the better the approximation $q_{\phi}(z|x) pprox p_{\theta}(z|x)$, the tighter the bound!

• Main issue: Many desirable quantities are intractable in the VAE framework, e.g. $p_{\theta}(x)$, $p_{\theta}(z|x)$

Normalizing Flows

- Transform a simple distribution p(z) into a more complicated distribution by composing deterministic, invertible transformations (*bijections*)
- Obtain the exact log-probability of any x:
 - \circ Use change-of-variables formula: $p(x)=p(z)|\det
 abla_x f^{-1}(x)|$
 - Optimize the model to maximize likelihood of the data
- Flow layers ideally are expressive, invertible, and have an easily computable Jacobian determinant.

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Normalizing Flow Layers

- Affine Coupling Layer (RealNVP Dihn et al. 2017)
 - Input dimensions are split into two parts.

 $egin{aligned} \mathbf{y}_{1:d} &= \mathbf{x}_{1:d} \ \mathbf{y}_{d+1:D} &= \mathbf{x}_{d+1:D} \odot \exp(s(\mathbf{x}_{1:d})) + t(\mathbf{x}_{1:d}) \end{aligned}$

- Easy to invert and the Jacobian is convenient.
- Invertible 1x1 conv (Glow Kingma and Dhariwal, 2018)

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Issues with Normalizing Flows

- Transformations must be bijective.
 - Difficult to alter dimensionality
 - Issues mapping continuous latents to discrete data.
- Flow models still fall behind in image quality / log likelihood compared to other model types.

A bijective transformation. Figure from Nielsen et al 2020.

Comparison: VAEs and Flows

 $\begin{array}{l} \textbf{VAEs learn } \textit{stochastic transformations} \\ \mathcal{Z} \rightarrow \mathcal{X} \ \text{ and } \mathcal{X} \rightarrow \mathcal{Z}. \end{array}$

• Intractable likelihood $p_{\theta}(x)$.

Flows learn deterministic bijections $\mathcal{Z} \to \mathcal{X}$ (and through inverting, $\mathcal{X} \to \mathcal{Z}$).

• Difficult to alter dimensionality

VAE Very Deep VAE (Child, 2020)

Normalizing Flow Glow (Kingma and Dhariwal, 2018)

SurVAE Flows

- Both VAEs and Flow models optimize the log likelihood of the data $\log p(x)$
 - Flow models optimize this likelihood exactly
 - VAEs optimize a lower bound (ELBO)
- Can we frame VAEs as a layer of a Flow model?

A Connection Between VAEs and Flows

VAE:

$$\log p(\boldsymbol{x}) = \mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})} \left[\log p(\boldsymbol{z})\right] + \underbrace{\mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{p(\boldsymbol{x}|\boldsymbol{z})}{q(\boldsymbol{z}|\boldsymbol{x})}\right]}_{\text{Lik. contrib. } \mathcal{V}(\boldsymbol{x}, \boldsymbol{z})} + \underbrace{\mathbb{E}_{q(\boldsymbol{z}|\boldsymbol{x})} \left[\log \frac{q(\boldsymbol{z}|\boldsymbol{x})}{p(\boldsymbol{z}|\boldsymbol{x})}\right]}_{\text{Bound looseness } \mathcal{E}(\boldsymbol{x}, \boldsymbol{z})}$$

Normalizing Flow:

$$\log p(\boldsymbol{x}) = \log p(\boldsymbol{z}) + \underbrace{\log \left| \det \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{x}} \right|}_{\text{Lik. contrib. } \mathcal{V}(\boldsymbol{x}, \boldsymbol{z})}, \quad \boldsymbol{z} = f^{-1}(\boldsymbol{x}) \quad \text{(change-of-variables)}$$

[Nielsen et al 2020]

A Connection Between VAEs and Flows

• VAEs learn stochastic mappings while Flows learn deterministic mappings $\,\mathcal{Z} o \,\mathcal{X}_{\cdot}$

• Dirac delta-function: $\delta(x) = egin{cases} \infty, & x=0 \ 0, & x
eq 0 \end{cases}$

$$\int_{-\infty}^{\infty}\delta(x)dx=1$$

- Can write a deterministic function $\,x=f(z)\,$ as a probability distribution with $p(x|z)=\delta(x-f(z))\,$

A Connection Between VAEs and Flows

• Let
$$p(x|z) = \delta(x - f(z))$$

 $p(z|x) = \delta(z - f^{-1}(x))$
 $q(z|x) = p(z|x)$
• Then $\log p(x) = \mathbb{E}_{q(z|x)} \left[\log p(z) + \log \frac{p(x|z)}{q(z|x)} + \log \frac{q(z|x)}{p(z|x)} \right]$
 $= \log p(z) + \log |\det J|, \text{ for } z = f^{-1}(x), \text{ (change-of-variables)}$
where $J^{-1} = \frac{\partial f(z)}{\partial z}|_{z=f^{-1}(x)}$

Surjective Transformations

- Next we consider *surjective* transformations with properties of both VAEs and Flows.
- $f:\mathcal{Z}\to\mathcal{X}$ is surjective if every $x\in\mathcal{X}$ has a pre-image $z\in\mathcal{Z}$ such that f(z)=x
- Multiple inputs can map to the same output.

[Nielsen et al 2020]

Surjective Transformations

- Surjective transformations are *deterministic* forwards and can have *stochastic* inverses.
- Can also have surjections in the "inference" direction $\mathcal{X} \to \mathcal{Z}$.

Generative surjection

Inference surjection

SurVAE Flows

- We just saw how Flow models are a special case of VAEs with a certain distribution.
- SurVAE Flows give a general framework for computing likelihood for different choices of forward and inverse transformations.

$$\begin{split} \log p(x) \simeq \log p(z) + \mathcal{V}(x,z) + \mathcal{E}(x,z) \\ & \swarrow \\ & \downarrow \\ & \text{likelihood contribution} \\ & \mathbb{E}_{q(z|x)} \left[\log \frac{p(x|z)}{q(z|x)} \right] & bound \text{ looseness} \\ & \geq 0 \end{split}$$

Algorithm 1: $\log - \text{likelihood}(x)$ **Data:** $x, p(z) \& \{f_t\}_{t=1}^T$ **Result:** $\mathcal{L}(\boldsymbol{x})$ for t in range(T), do if f_t is bijective then $z = f_t^{-1}(x);$ $\mathcal{V}_t = \log \left| \det \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{x}} \right|;$ else if f_t is stochastic then $oldsymbol{z} \sim q_t(oldsymbol{z} | oldsymbol{x});$ $\mathcal{V}_t = \log rac{p_t(\boldsymbol{x}|\boldsymbol{z})}{q_t(\boldsymbol{z}|\boldsymbol{x})};$ $\boldsymbol{x}=\boldsymbol{z}$; end return $\log p(\boldsymbol{z}) + \sum_{t=1}^{T} \mathcal{V}_t$

Example: Rounding Surjection

- Consider the surjective transformation $x = \lfloor z \rfloor$
- The forward transformation is given by $P(x|z) = \mathbb{I}(x = \lfloor z \rfloor)$
- The backward transformation q(z|x) is stochastic with support over $\{x+u|u\in [0,1)^d\}$

Example: Rounding Surjection

• To find
$$\mathcal{V}(x,z)$$
, use $p(x|z) = \delta(x = \lfloor z \rfloor)$

•
$$\mathbb{E}_{q(z|x)} \left[\log \frac{p(x|z)}{q(z|x)} \right] = \mathbb{E}_{q(z|x)} [\log p(x|z)] + \mathbb{E}_{q(z|x)} [-\log q(z|x)]$$

 \swarrow
Expectation of log delta fn = 0

• So,
$$\mathcal{V}(x,z) = \mathbb{E}_{q(z|x)}[-\log q(z|x)]$$

Related Work

Many well-known methods in the literature can be expressed as SurVAE Flows.

- **Dequantization** (Uria et al, 2013; Ho et al, 2019) is used to train continuous flows on *discrete* data.
 - Can be obtained via the *Rounding Surjection*.

Model	SurVAE Flow architecture
Probabilistic PCA (Tipping and Bishop, 1999) VAE (Kingma and Welling, 2014; Rezende et al., 2014) Diffusion Models (Sohl-Dickstein et al., 2015; Ho et al., 2020)	$\mathcal{Z} \xrightarrow{\text{stochastic}} \mathcal{X}$
Dequantization (Uria et al., 2013; Ho et al., 2019)	$\mathcal{Z} \xrightarrow{\operatorname{round}} \mathcal{X}$
ANFs, VFlow (Huang et al., 2020; Chen et al., 2020)	$\mathcal{X} \xrightarrow{augment} \mathcal{X} \times \mathcal{E} \xrightarrow{bijection} \mathcal{Z}$
Multi-scale Architectures (Dinh et al., 2017)	$\mathcal{X} \xrightarrow{\text{bijection}} \mathcal{Y} \times \mathcal{E} \xrightarrow{\text{slice}} \mathcal{Y} \xrightarrow{\text{bijection}} \mathcal{Z}$
CIFs, Discretely Indexed Flows, DeepGMMs (Cornish et al., 2019; Duan, 2019; Oord and Dambre, 2015)	$\mathcal{X} \xrightarrow{augment} \mathcal{X} \times \mathcal{E} \xrightarrow{bijection} \mathcal{Z} \times \mathcal{E} \xrightarrow{slice} \mathcal{Z}$
RAD Flows (Dinh et al., 2019)	$\mathcal{X} \xrightarrow{\text{partition}} \mathcal{X}_{\mathcal{E}} \times \mathcal{E} \xrightarrow{\text{bijection}} \mathcal{Z} \times \mathcal{E} \xrightarrow{\text{slice}} \mathcal{Z}$

Table 3: SurVAE Flows as a unifying framework.

SurVAE Layers

Surjection	Forward	Inverse	$\mathcal{V}(oldsymbol{x},oldsymbol{z})$
Rounding	$ x = \lfloor z \rfloor$	$ \ z \sim q(z x)$ where $z \in [x, x+1)$	$ -\log q(z x) $
Slicing	$ x = z_1$	$oldsymbol{z}_1 = oldsymbol{x}, oldsymbol{z}_2 \sim q(oldsymbol{z}_2 oldsymbol{x})$	$-\log q(oldsymbol{z}_2 oldsymbol{x})$
Abs	$ \begin{array}{c} s = \operatorname{sign} z \ x = z \end{array} angle$	$s \sim ext{Bern}(\pi(x)) \ z = s \cdot x, \ s \in \{1, -1\}$	$-\log q(s x)$
Max	$\begin{vmatrix} k = \arg \max \boldsymbol{z} \\ x = \max \boldsymbol{z} \end{vmatrix}$	$egin{aligned} & k \sim \operatorname{Cat}(oldsymbol{\pi}(x)) \ & z_k = x, oldsymbol{z}_{-k} \sim q(oldsymbol{z}_{-k} x,k) \end{aligned}$	$\Big -\log q(k x) - \log q(oldsymbol{z}_{-k} x,k)$
Sort	$egin{aligned} \mathcal{I} = ext{argsort}oldsymbol{z} \ oldsymbol{x} = ext{sort}oldsymbol{z} \end{aligned}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$-\log q(\mathcal{I} oldsymbol{x})$
ReLU	$x = \max(z, 0)$	if $x = 0: z \sim q(z)$, else $: z = x$	$\mathbb{I}(x=0)[-\log q(z)]$

Surjection	Forward	Inverse	$\mid \mathcal{V}(oldsymbol{x},oldsymbol{z})$
Rounding	$ x \sim p(x z)$ where $x \in [z, z+1)$	$ z = \lfloor x \rfloor$	$ \log p(z x) $
Slicing	$ oldsymbol{x}_1 = oldsymbol{z}, oldsymbol{x}_2 \sim p(oldsymbol{x}_2 oldsymbol{z})$	$ $ $oldsymbol{z}=oldsymbol{x}_1$	$\log p(oldsymbol{x}_2 oldsymbol{z})$
Abs	$s \sim \operatorname{Bern}(\pi(z))$ $x = s \cdot z, \ s \in \{-1, 1\}$	$\begin{vmatrix} s = \operatorname{sign} x \\ z = x \end{vmatrix}$	$\log p(s z)$
Max	$egin{aligned} & k \sim \operatorname{Cat}(oldsymbol{\pi}(z)) \ & x_k = z, oldsymbol{x}_{-k} \sim p(oldsymbol{x}_{-k} z,k) \end{aligned}$	$egin{array}{c} k = rg\max{m{x}} \ x \ z = \max{m{x}} \end{array}$	$\log p(k z) + \log p(\boldsymbol{x}_{-k} z,k)$
Sort	$egin{array}{llllllllllllllllllllllllllllllllllll$	$egin{aligned} \mathcal{I} = ext{argsort}oldsymbol{x}\ oldsymbol{z} = ext{sort}oldsymbol{x} \end{aligned}$	$\log p(\mathcal{I} \boldsymbol{z})$
ReLU	if $z = 0 : x \sim p(x)$, else $: x = z$	$ z = \max(x, 0)$	$\mathbb{I}(z=0)\log p(x)$

(b) Surjective (Gen.)

(c) Surjective (Inf.)

Generative Surjection: stochastic q(z|x)Inference Surjection: stochastic p(x|z)

Note: inference surjections have $\mathcal{E}(x,z)=0$ i.e. exact likelihood.

Experiments - Symmetrical Synthetic Data

- Using an *absolute value inference surjection* improves the modeling of data with symmetries.
- Normalizing flows have trouble modelling disconnected structure in the data.

2D Visualization (Code Notebook)

• Normalizing flow combined with an absolute value surjection (last layer).

2D Visualization (Code Notebook)

• Composing a VAE layer and an abs. (inference) surjection.

Experiments - MaxPoolFlow for Image Data

MaxPooling is used to downscale from the image dimension to a smaller latent dimension.

Adding MaxPooling yields worse log-likelihoods but better inception and FID scores.

Model	Inception \uparrow	FID \downarrow	
DCGAN*	6.4	37.1	
WGAN-GP*	6.5	36.4	
PixelCNN*	4.60	65.93	
PixelIQN*	5.29	49.46	
Baseline (Ours)	5.08	49.56	
MaxPoolFlow (Ours)	5.18	49.03	

Table 5: Inception score and FID for CIFAR-10. *Results taken from Ostrovski et al. (2018).

Figure 6: Flow architecture with max pooling. Surjections in green.

Figure 7: Samples from CIFAR-10 models. Top: MaxPoolFlow, Bottom: Baseline.

Summary

- SurVAE Flows is a framework in which VAEs and Normalizing Flows are modular layers.
 - Encompasses several additional works in the literature, e.g. *Dequantization*
- Surjective layers are introduced as a "bridge" between VAEs and Normalizing Flows
 - Can alter dimensionality
 - (In some cases) can compute exact likelihood
- Several novel, practical surjective layers are derived and introduced.
 - e.g. *MaxPool, AbsoluteValue, Sort*
 - Allows greater flexibility in designing Flow architectures.
 - **Limitation:** most of the introduced surjections are targeted to very specific functions and require extensive domain knowledge to be applied.

References

- 1. Nielsen, D., Jaini, P., Hoogeboom, E., Winther, O., & Welling, M. (2020). Survae flows: Surjections to bridge the gap between vaes and flows. *In Proceedings of the 33rd Conference on Advances in Neural Information Processing Systems (NeurIPS).*
- 2. Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. *In Proceedings of the 2nd International Conference on Learning Representations (ICLR).*
- 3. Rezende, D., & Mohamed, S. (2015). Variational inference with normalizing flows. In *International Conference on Machine Learning* (pp. 1530-1538). PMLR.
- 4. Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. *arXiv preprint arXiv:1906.02691*.
- 5. Child, R. (2020). Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images. *arXiv preprint arXiv:2011.10650*.
- 6. Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real NVP. *In Proceedings of the 5th International Conference on Learning Representations (ICLR)*.
- 7. Kingma, D. P., & Dhariwal, P. (2018). Glow: generative flow with invertible 1× 1 convolutions. In *Proceedings of the 32nd International Conference on Neural Information Processing Systems* (pp. 10236-10245).
- 8. Uria, B., Murray, I., & Larochelle, H. (2013). RNADE: The real-valued neural autoregressive density-estimator. In *Proceedings of the 27th Conference on Advances in Neural Information Processing Systems (NeurIPS).*
- 9. Ho, J., Chen, X., Srinivas, A., Duan, Y. & amp; Abbeel, P. (2019). Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design. *Proceedings of the 36th International Conference on Machine Learning*, in *Proceedings of Machine Learning Research* 97:2722-2730.