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SurVAE: Motivation

Variational Autoencoders (VAEs) [Kingma & Welling, 2013] and Normalizing Flows 
[Rezende & Mohamed, 2015] are two distinct approaches to generative modelling.

● Transform a simple prior distribution        to a complex data distribution 

https://openai.com/blog/generative-models/



SurVAE: Motivation

Main Ideas: 

● Surjective transformations to “bridge the gap” between VAEs and Normalizing Flows

● A framework in which VAEs, Normalizing Flows, and surjections are composable layers



Variational Autoencoders

● Models a stochastic generative process:

● The posterior       involves an intractable
integral and is approximated via a neural network:

[Kingma & Welling, 2019]
Useful for optimization (to be shown)

DecoderPrior

Encoder



VAE Objective

● Instead, a surrogate objective (ELBO) is used:

● The goal is to maximize the likelihood of the data
but this is also intractable!

ELBO



● Main issue: Many desirable quantities are intractable in the VAE 
framework, e.g.   ,  

ELBO

● Note that

and the better the approximation         , the tighter the bound! 

(ELBO)



Normalizing Flows

● Transform a simple distribution         into a more complicated distribution by composing 
deterministic, invertible transformations (bijections)

● Obtain the exact log-probability of any    : 
○ Use change-of-variables formula: 
○ Optimize the model to maximize likelihood of the data

● Flow layers ideally are expressive, invertible, and have an easily computable Jacobian 
determinant.

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html


Normalizing Flow Layers

● Affine Coupling Layer (RealNVP - Dihn et al. 2017)
○ Input dimensions are split into two parts.

○ Easy to invert and the Jacobian is convenient.
● Invertible 1x1 conv (Glow - Kingma and Dhariwal, 2018)

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html


Issues with Normalizing Flows

● Transformations must be bijective.
○ Difficult to alter dimensionality 
○ Issues mapping continuous latents to discrete data.

● Flow models still fall behind in image quality / log 
likelihood compared to other model types. 

A bijective transformation. Figure from 
Nielsen et al 2020.



Comparison: VAEs and Flows

VAEs learn stochastic transformations 
       and  .

● Intractable likelihood          .

Flows learn deterministic bijections
       (and through inverting,     ).

● Difficult to alter dimensionality



Normalizing Flow
Glow (Kingma and Dhariwal, 2018)

VAE
Very Deep VAE (Child, 2020)



SurVAE Flows

● Both VAEs and Flow models optimize the log likelihood of the data 
○ Flow models optimize this likelihood exactly
○ VAEs optimize a lower bound (ELBO)

● Can we frame VAEs as a layer of a Flow model?



VAE:

Normalizing Flow:

A Connection Between VAEs and Flows

[Nielsen et al 2020]

(change-of-variables)



● Dirac delta-function:

● Can write a deterministic function                       as a probability distribution with

A Connection Between VAEs and Flows

● VAEs learn stochastic mappings while Flows learn deterministic mappings                      .



● Let 

● Then

A Connection Between VAEs and Flows

where

(ELBO)

(change-of-variables)

0



●                            is surjective if every   has a pre-image    

such that

● Multiple inputs can map to the same output.

Surjective Transformations

● Next we consider surjective transformations with properties of both VAEs and Flows.

[Nielsen et al 2020]



Surjective Transformations

● Surjective transformations are deterministic forwards and can have stochastic inverses.

● Can also have surjections in the “inference” direction      .

Generative surjection Inference surjection



SurVAE Flows

● We just saw how Flow models are a special case of VAEs with a certain distribution.
● SurVAE Flows give a general framework for computing likelihood for different choices of 

forward and inverse transformations.

likelihood contribution bound looseness



Example: Rounding Surjection

● Consider the surjective transformation 

● The forward transformation is given by

● The backward transformation       is stochastic with support over  



Example: Rounding Surjection

● To find                , use 

●

● So, 

Expectation of log delta fn = 0



Related Work

Many well-known methods in the literature can be expressed as SurVAE Flows.

● Dequantization (Uria et al, 2013; Ho et al, 2019) is used to train continuous flows on 
discrete data.

○ Can be obtained via the Rounding Surjection.



SurVAE Layers

Generative Surjection: stochastic 

Inference Surjection: stochastic

Note: inference surjections have  
     i.e. exact likelihood.

                    



Experiments - Symmetrical Synthetic Data

● Using an absolute value inference surjection 
improves the modeling of data with symmetries.

● Normalizing flows have trouble modelling 
disconnected structure in the data.



2D Visualization (Code Notebook)

● Normalizing flow combined with an absolute value surjection (last layer).



2D Visualization (Code Notebook)

● Composing a VAE layer and 
an abs. (inference) surjection.



Experiments - MaxPoolFlow for Image Data

MaxPooling is used to downscale from 
the image dimension to a smaller 
latent dimension.

Adding MaxPooling yields worse 
log-likelihoods but better inception and 
FID scores.



Summary

● SurVAE Flows is a framework in which VAEs and Normalizing Flows are modular layers.
○ Encompasses several additional works in the literature, e.g. Dequantization

● Surjective layers are introduced as a “bridge” between VAEs and Normalizing Flows
○ Can alter dimensionality
○ (In some cases) can compute exact likelihood

● Several novel, practical surjective layers are derived and introduced.
○ e.g. MaxPool, AbsoluteValue, Sort
○ Allows greater flexibility in designing Flow architectures.
○ Limitation: most of the introduced surjections are targeted to very specific functions and require 

extensive domain knowledge to be applied. 
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