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Policy Distillation

Motivations
Distillation
Knowledge transfer; learn an optimal behavior from expert (e.g. a
pre-trained model or a human) interactions with an environment.

• Speed up the learning process
• Achieve model compression

Figure 1 from (Gou et al., 2020)
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Policy Distillation

Markov Decision Process
MDP
A Markov decision process is a tupleM = (S,A, r ,P, π, γ), where
• S – Finite state space
• A – Finite action space
• r : S ×A → R – State-action dependent reward function
• P : S ×A → ∆|S| – Transition probability distribution
• π : S → ∆|A| – Policy
• γ ∈ [0, 1] – Discount factor

• One trajectory fromM is denoted by

τ = (s1, a1, r1, . . . , s|τ |, a|τ |, r|τ |).

• Typical goal of reinforcement learning: find a policy

π∗ = argmaxπ

Eπ

 |τ |∑
t=1

γt−1rt

 .
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Policy Distillation

General Problem

Policy Distillation
Goal: extract knowledge from a teacher policy, and transfer it to a
student policy using trajectories sampled from interactions between a
control policy and the environment.

• π – Teacher policy
• πθ – Student policy
• qθ – Control policy

Update rules for the parameters of πθ are proportional to

Eqθ

 |τ |∑
t=1
−∇θ log(πθ(at |st))R̂t +∇θ`t

 .
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Policy Distillation

Update Rules
Update rules for the parameters of πθ are proportional to

Eqθ

 |τ |∑
t=1
−∇θ log(πθ(at |st))R̂t +∇θ`t

 .
• qθ

• Control policy, i.e. measure of state space exploration
• Teacher qθ = π; Student qθ = πθ

• Could also be a uniform distribution or a mixture of policies

• R̂t =
∑|τ |

i=t r̂i =
∑|τ |

i=t r̂(πθ,Vπθ
, si , ai , si+1, ai+1, ri)

• Reward term, i.e. long-term alignment
• r̂i = log(π(ai |si))
• r̂i = ri + Vπ(si+1)− Vπθ (si)

• `t = `(πθ,Vπθ
, st)

• Loss term, i.e. policy alignment with the teacher
• Cross-entropy `t = −Ea∼π(st ) [log(πθ(a|st))]
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Policy Distillation Algorithms

Offline vs Online RL
Offline RL:
• Learning without interacting with the environment, only observing

transitions from some policies
• Turning (large) datasets of transitions into decision making engines

Online RL:
• Learning while interacting with the environment, working with data

as it is made available
• Improving policies with the latest collected experience

Figure 1 from (Levine et al., 2020)
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Policy Distillation Algorithms

Offline Policy Distillation

Figure 2 (a) from (Rusu et al., 2015)
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Policy Distillation Algorithms

Online Policy Distillation

Figure 1 from (Lin et al., 2017)
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Policy Distillation Algorithms

Contributions

• Exploration of multiple policy distillation approaches
• Naive student distillation does not form a gradient vector field
• That property can be recovered adding an additional reward term
• Student distillation has convergence guarantees in simple tabular

cases

• Proposition of new algorithm variations
• Modifications of known distillation techniques to address some issues
• Methods using the value function
• Methods splitting the loss between the reward and loss terms

• Empirical evaluation of different distillation techniques
• Performance comparison with different control policies
• Performance comparison with different update rules
• Policy distillation method selection diagram
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Convergence of On-Policy Distillation

Update Rules with the Student as Control

Eπθ

 |τ |∑
t=1
−∇θ log(πθ(at |st))R̂t +∇θ`t

 .
Gradient is under an expectation wrt. the same θ it operates upon

Theorem 1
If g(θ) = Eπθ

[∇θ

∑|τ |
t=1 `t ] is differentiable and there exists ατ ∈ R such

that ∇θ

∑|τ |
t=1 `t = ατ∇θπθ(τ), then g(θ) is not a gradient vector field of

any function.

Unclear if distillation with student-generated trajectories will converge...

Theorem 2
The gradient vector field property can be recovered adding an appropriate
extra reward term.
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Convergence of On-Policy Distillation

Gradient Vector Field
Let `(τ, θ) =

∑|τ |
t=1 `(π(st)||πθ(st)), for a certain loss, e.g. cross-entropy.

Then computing the gradient of this loss function yields

∇θL(θ) = ∇θ Eπθ(τ) [`(τ, θ)]

= ∇θ

∫
τ

πθ(τ)`(τ, θ)dτ

=
∫

τ

(∇θπθ(τ)) `(τ, θ) + πθ(τ) (∇θ`(τ, θ)) dτ

=
∫

τ

(πθ(τ)∇θ log(πθ(τ))) `(τ, θ) + πθ(τ) (∇θ`(τ, θ)) dτ

= Eπθ(τ) [∇θ log(πθ(τ))`(τ, θ)] + Eπθ(τ) [∇θ`(τ, θ)] .

Setting r̂i = −`(π(si+1)||πθ(si+1)), we recover the gradient vector field
property

Eπθ

 |τ |∑
t=1
−∇θ log(πθ(at |st))

|τ |∑
i=t

r̂i +∇θ`t

 .
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Comparison of Control Policies

Experimental Setting
• Thousand randomly sampled 20× 20 grid worlds MDPs with

rewards and terminal states

Figure 7 from (Czarnecki et al., 2019)
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Comparison of Control Policies

Experimental Setting

• Teacher trained with standard Q-learning and ε-greedy policies

Q(at , st) = (1− λ)Q(at , st) + λ
(

rt + γmax
a

Q(a, st+1)
)

• Distillation with different control policies, 30,000 optimization steps
• Teacher, student or uniform driven distillation

• Minimizing the per-step cross-entropy:

Eqθ

 |τ |∑
t=1
∇θH×(π(st)||πθ(st))

 .
H×(p1(s)||p2(s)) = −Ea∼p1(s) [log p2(a|s)]
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Comparison of Control Policies

Results of Experiments - Control Policy

• Student-driven distillation needs 3x less iterations than
teacher-driven distillation to recover the full teacher performance

• Student-driven distillation explores more the state space; visits states
that would be less visited with a teacher-driven distillation

• Student-driven distillation leads to less of a distribution-shift
between the training phase and the testing deployment

• Student-driven distillation provides in general more robust policies
than teacher-driven distillation
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Comparison of Control Policies

Results of Experiments - Control Policy

Notebook experiments!
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Comparison of Control Policies

Results of Experiments - Control Policy
• KL over various sampling distributions and returns when following a

teacher policy

Figure 3 from (Czarnecki et al., 2019)
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Comparison of Update Rules

Results of Experiments - Loss Term

• Common approaches with H×(p1||p2) = −Ea∼p1(s) [log p2(a|s)]:
• Using H×(π||πθ): trying to replicate the π
• Using H×(πθ||π): trying to find the most probable action of π

• Since H×(π||πθ) = H(π) + KL(π||πθ), the minimum is given by π

• When optimizing H×(πθ||π), the minimum is the dirac delta
distribution of the most probable action a∗ of π

H×(πθ||π) = −Ea∼πθ(s) [log π(a|s)]
> −Ea∼πθ(s) [log π(a∗|s)]

• Better empirical results with H×(πθ||π), i.e. when directly
maximizing the probability of the student produced trajectories
under the teacher policy
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Algorithm Extensions

Proposed Distillation Methods

• Best empirical results obtained with their expected entropy
regularized distillation algorithm
• It creates a gradient vector field
• It reduces the variance by splitting the entropy between the reward

and loss term

Figure 4 from (Czarnecki et al., 2019)
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Algorithm Extensions

Proposed Distillation Methods

• Their teacher V reward distillation algorithm uses the value function
Vπ(s) = Eπ[

∑
t rt ] in the distillation process

• It can estimate how much we trust the teacher
• It allows the student to learn with imperfect teachers

Figure 5 from (Czarnecki et al., 2019)
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Algorithm Extensions

Policy Distillation Method Selection
Despite the multiple other factors affecting performance of policy
distillation in practice, this provides a method suggestion based on
different settings:
• Do we want convergence guarantees?
• Do we prefer improvement over speed?
• Is the teacher relatively strong?

Figure 1 from (Czarnecki et al., 2019)
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Summary and Limitations

• Student-driven policy distillation provides better empirical results
over teacher-driven distillation

• Their proposed expected entropy regularized and teacher V reward
distillation algorithms combine benefits of various methods:
• Creates a gradient vector field
• Reduces the variance
• Allows the agent to learn from imperfect teachers

• Their distillation method selection diagram gives a general rule of
thumb when choosing the most suitable algorithms in practice

• Some open questions:
• Same behaviors on real-world problems, e.g. continuous spaces?
• Similar results using functions approximators, e.g. neural nets?
• Convergence guarantees?
• Infinite horizon problems instead of episodic?
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Related Work

Distillation
Form of knowledge transfer; learn an optimal behavior from expert (e.g.
a pre-trained model or a human) interactions with an environment.

• Compress the knowledge of an ensemble of large neural networks
into a single model (Hinton et al., 2015)

• Train a new network based on a already trained RL agent (Rusu
et al., 2015)
• The smaller network achieves expert level performance
• Procedure can be used for multi-task policy distillation

• Mimic an expert on a dataset of trajectories, imitation learning
(Ross et al., 2011)
• DAGGER algorithm
• Similar to the Follow-The-Leader approach, best policy over the

iterations
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Policy Distillation Algorithms

Table 1 from (Czarnecki et al., 2019)

• Different control policies, loss terms and reward terms

• Methods below the mid line are introduced in this paper

• Usually modifications of known techniques to address specific issues
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Oscillation Example

Figure 2 from (Czarnecki et al., 2019)

• Student policy is parameterized with sigmoids and shares parameter
for both yellow states

• Teacher policy prefers to go right when in sR with
`(θ|sR) = −4πθ(R|sR)

• On-policy distillation diverges

`t = H×(π(st)||πθ(st)), r̂t = 0

• N-distillation converges

`t = H×(π(st)||πθ(st)), r̂t = −H×(π(st+1)||πθ(st+1))
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Results of Experiments - Cont’d

Figure 4 & 6 from (Czarnecki et al., 2019)
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