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Predictive Uncertainty

Observe: X1:n ∼ ν⊗n and Y1:n = Noise
[
f∗(X1:n)

]
.

Goal: Predict Y | X.
Solution: Approximate E[Y | X] with a neural network fW .
Performance: Measured by R(W ) = E(fW (X)− Y )2.
Problem: Two sources of uncertainty are not captured.

Aleatoric — the amount of noise may affect Y | X in complicated ways.
Epistemic — the model may be uncertain of fW for rare X’s.



Bayesian Prediction

Aleatoric — the amount of noise may affect Y | X in complicated ways.
Epistemic — the model may be uncertain of fW for rare X’s.

To address aleatoric uncertainty, fW (X) parametrizes a distribution over Y .
If Y ∈ {0, 1}, Ŷ ∼ Bernoulli(fW (X)).
If Y ∈ R, Ŷ ∼ Normal(fW (X)).

In general, we can define the conditional likelihood p(Y | X,W ).

Epistemic refers to uncertainty in fW ’s estimate of the uncertainty parameter!

Epistemic uncertainty is quantified by the posterior p(W | Y1:n, X1:n).
Given a prior π(W ), we can write

p(W | Y1:n, X1:n) = p(Y1:n | W,X1:n)π(W )
p(Y1:n | X1:n) .

Let Dn = (Xi, Yi)i∈[n]. For simplicity, we write

p(W | Dn) = p(Dn | W )π(W )
p(Dn) .



Variational Inference

p(W | Dn) = p(Dn | W )π(W )
p(Dn) .

Computing p(Dn) is intractable!

Instead, approximate p(W | Dn) with qθ(W ), a parametric density.

θ̂n = arg min
θ

KL (qθ(W )‖ p(W | Dn))

= arg max
θ

EW∼qθ
[
log π(W )− log

( qθ(W )
p(Dn | W )

)]
= arg max

θ
ELBOn(qθ).

We want to solve this with gradient ascent:

θ̂(k+1)
n = θ̂(k)

n + η∇θELBOn(qθ).



Reparametrization

θ̂(k+1)
n = θ̂(k)

n + η∇θELBOn(qθ).

Computing ∇θELBOn(qθ) is intractable!

Suppose that W ∼ qθ ⇐⇒ W = t(θ, ε), where ε is independent standard noise.
E.g., ε ∼ Normal(0, 1) or ε ∼ Unif([0, 1]).

Let hn(W, θ) = log π(W )− log
(

qθ(W )
p(Dn | W )

)
.

∂

∂θ
ELBOn(qθ) = ∂

∂θ
EW∼qθhn(W, θ)

= ∂

∂θ
Eεhn

(
t(θ, ε), θ

)
= Eε

[
∂hn(t, θ)

∂t

∂t(θ, ε)
∂θ

+ ∂hn(t, θ)
∂θ

]
t=t(θ,ε)

.

gn(θ, ε) =
[
∂hn(t,θ)

∂t
∂t(θ,ε)
∂θ + ∂hn(t,θ)

∂θ

]
t=t(θ,ε)

is an unbiased gradient estimator!



Gaussian Example

Define θ = (µ, σ) so that qθ = Normal(µ,diag(σ)).
Reparametrize with σ = log(1 + eρ).
Then t(θ, ε) = µ+ log(1 + eρ)ε where ε ∼ Normal(0, I)...

...and ∂t(θ, ε)/∂θ = ε[1 + e−ρ]−1.

Evaluating at t = t(θ, ε)...
gn(θ, ε) = ε

1 + e−ρ
∂

∂t
log π(t) (prior)

+ ε

1 + e−ρ
∂

∂t
log p(Dn | t) (likelihood)

+ ε

1 + e−ρ
∂

∂t
log qθ(t) + ∂

∂θ
log qθ(t) (approximate posterior)

The prior derivative can be achieved by autograd – this is data independent.
The likelihood derivative is a composition of an easy derivative (say a Normal)

and the usual derivative of the neural net output computed by backprop.
The posterior derivative is easy by the chosen form of qθ.



Prediction Intervals

How should we use our uncertainty quantifications?

Frequentist: Y | X ∼ Dist(fW (X)) for a learned (fixed) W .
Output 95% quantile range of Dist(fW (X)) for each new X.

Bayesian: Y | X ∼ Dist(fW (X)) for W ∼ p(W | Dn).
Maximum a posteriori: Ŵ = arg max p(W | Dn) and use frequentist interval.

Doesn’t even require VI! Ignores epistemic uncertainty – just regularized MLE.
Model averaging: p(Y | X) = EW∼qθ(W )[p(Y | X,W )].

Paper proposes this, but it still ignores some epistemic uncertainty!

Monte Carlo: Sample Ŵ ∼ qθ(W ) and Y | X ∼ Dist(f
Ŵ

(X)).
Repeat many times to get empirical 95% quantile range for Y | X.
E.g., p(W ∼ Dn) = Normal(µW , σW ) and fW (X) = (µ, σ).
Sample Ŵ ∼ Normal(µW , σW ), f

Ŵ
(X) = (µ̂, σ̂), Y | X ∼ Normal(µ̂, σ̂).

Importance Sampling: Sample Ŵ1:M ∼ qθ(W ) and Y1:M | X ∼ Dist(f
Ŵ1:M

(X)).
Only keep Yj with (unnormalized) probability p(Ŵj ,Dn)/qθ(Ŵj).
Approximates sampling from p(Ŵj | Dn), but may have higher variance.



Summary

Goal: Quantify uncertainty of predictions on rare covariates in addition to
inherent uncertainty due to systemic noise.
Solution: Treat the weights as random and find their posterior using VI.

In theory, this should work as long as the variational inference is accurate...
...but in practice, training is a nightmare!

“The BNN posterior distribution is complicated and high dimensional, and it’s
really hard to approximate it accurately with fully factorized Gaussians.”

– Roger Grosse and Jimmy Ba’s slides

There are many other tools to address these stability and accuracy issues...
minibatching, SGLD over GD, dropout, etc.

It remains open to fully account for both sources of uncertainty in predictions.

http://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec19.pdf

