Weight Uncertainty in Neural Networks*

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, Daan Wierstra

Presentation by Blair Bilodeau¹ and Daniel Severo¹ February 25, 2021 Presented to STA4273

¹University of Toronto and Vector Institute *C. Blundell et al. "Weight Uncertainty in Neural Networks". In: *Proceedings of the 32nd International Conference on Machine Learning.* 2015

Predictive Uncertainty

Observe: $X_{1:n} \sim \nu^{\otimes n}$ and $Y_{1:n} = \text{Noise} \Big[f^*(X_{1:n}) \Big]$. **Goal:** Predict $Y \mid X$.

Solution: Approximate $\mathbb{E}[Y \mid X]$ with a neural network f_W .

Performance: Measured by $R(W) = \mathbb{E}(f_W(X) - Y)^2$.

Problem: Two sources of uncertainty are not captured.

Aleatoric — the amount of noise may affect $Y \mid X$ in complicated ways. Epistemic — the model may be uncertain of f_W for rare X's.

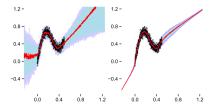


Figure 5. Regression of noisy data with interquatile ranges. Black crosses are training samples. Red lines are median predictions. Blue/purple region is interquartile range. Left: Bayes by Backprop neural network, Right: standard neural network.

Bayesian Prediction

Aleatoric — the amount of noise may affect $Y \mid X$ in complicated ways. Epistemic — the model may be uncertain of f_W for rare X's.

To address aleatoric uncertainty, $f_W(X)$ parametrizes a distribution over Y. If $Y \in \{0,1\}$, $\hat{Y} \sim \text{Bernoulli}(f_W(X))$. If $Y \in \mathbb{R}$, $\hat{Y} \sim \text{Normal}(f_W(X))$.

In general, we can define the *conditional likelihood* $p(Y \mid X, W)$.

Epistemic refers to uncertainty in f_W 's estimate of the uncertainty parameter!

Epistemic uncertainty is quantified by the *posterior* $p(W \mid Y_{1:n}, X_{1:n})$. Given a *prior* $\pi(W)$, we can write

$$p(W \mid Y_{1:n}, X_{1:n}) = \frac{p(Y_{1:n} \mid W, X_{1:n})\pi(W)}{p(Y_{1:n} \mid X_{1:n})}.$$

Let $\mathcal{D}_n = (X_i, Y_i)_{i \in [n]}$. For simplicity, we write

$$p(W \mid \mathcal{D}_n) = \frac{p(\mathcal{D}_n \mid W)\pi(W)}{p(\mathcal{D}_n)}$$

Variational Inference

$$p(W \mid \mathcal{D}_n) = \frac{p(\mathcal{D}_n \mid W)\pi(W)}{p(\mathcal{D}_n)}.$$

Computing $p(\mathcal{D}_n)$ is intractable

Instead, approximate $p(W \mid \mathcal{D}_n)$ with $q_{\theta}(W),$ a parametric density.

$$\hat{\theta}_n = \underset{\theta}{\arg\min} \operatorname{KL} \left(q_{\theta}(W) \| p(W \mid \mathcal{D}_n) \right)$$
$$= \underset{\theta}{\arg\max} \mathbb{E}_{W \sim q_{\theta}} \left[\log \pi(W) - \log \left(\frac{q_{\theta}(W)}{p(\mathcal{D}_n \mid W)} \right) \right]$$
$$= \underset{\theta}{\arg\max} \operatorname{ELBO}_n(q_{\theta}).$$

We want to solve this with gradient ascent:

$$\hat{\theta}_n^{(k+1)} = \hat{\theta}_n^{(k)} + \eta \nabla_{\theta} \text{ELBO}_n(q_{\theta}).$$

$$\hat{\theta}_n^{(k+1)} = \hat{\theta}_n^{(k)} + \eta \nabla_{\theta} \text{ELBO}_n(q_{\theta}).$$

Computing $\nabla_{\theta} \text{ELBO}_n(q_{\theta})$ is intractable!

Suppose that $W \sim q_{\theta} \iff W = t(\theta, \varepsilon)$, where ε is independent standard noise. E.g., $\varepsilon \sim \text{Normal}(0, 1)$ or $\varepsilon \sim \text{Unif}([0, 1])$.

Let
$$h_n(W, \theta) = \log \pi(W) - \log \left(\frac{q_\theta(W)}{p(\mathcal{D}_n \mid W)}\right).$$

 $\frac{\partial}{\partial \theta} \text{ELBO}_n(q_\theta) = \frac{\partial}{\partial \theta} \mathbb{E}_{W \sim q_\theta} h_n(W, \theta)$
 $= \frac{\partial}{\partial \theta} \mathbb{E}_{\varepsilon} h_n\left(t(\theta, \varepsilon), \theta\right)$
 $= \mathbb{E}_{\varepsilon} \left[\frac{\partial h_n(t, \theta)}{\partial t} \frac{\partial t(\theta, \varepsilon)}{\partial \theta} + \frac{\partial h_n(t, \theta)}{\partial \theta}\right]_{t=t(\theta, \varepsilon)}$

 $g_n(\theta,\varepsilon) = \left[\frac{\partial h_n(t,\theta)}{\partial t}\frac{\partial t(\theta,\varepsilon)}{\partial \theta} + \frac{\partial h_n(t,\theta)}{\partial \theta}\right]_{t=t(\theta,\varepsilon)}$ is an unbiased gradient estimator!

Gaussian Example

Define $\theta = (\mu, \sigma)$ so that $q_{\theta} = \text{Normal}(\mu, \text{diag}(\sigma))$. Reparametrize with $\sigma = \log(1 + e^{\rho})$. Then $t(\theta, \varepsilon) = \mu + \log(1 + e^{\rho})\varepsilon$ where $\varepsilon \sim \text{Normal}(0, I)$and $\partial t(\theta, \varepsilon) / \partial \theta = \varepsilon [1 + e^{-\rho}]^{-1}$.

Evaluating at
$$t = t(\theta, \varepsilon)$$
...
 $g_n(\theta, \varepsilon) = \frac{\varepsilon}{1 + e^{-\rho}} \frac{\partial}{\partial t} \log \pi(t)$ (prior)
 $+ \frac{\varepsilon}{1 + e^{-\rho}} \frac{\partial}{\partial t} \log p(\mathcal{D}_n \mid t)$ (likelihood)
 $+ \frac{\varepsilon}{1 + e^{-\rho}} \frac{\partial}{\partial t} \log q_{\theta}(t) + \frac{\partial}{\partial \theta} \log q_{\theta}(t)$ (approximate posterior)

The prior derivative can be achieved by autograd – this is data independent. The likelihood derivative is a composition of an easy derivative (say a Normal) and the usual derivative of the neural net output computed by backprop. The posterior derivative is easy by the chosen form of q_{θ} . How should we use our uncertainty quantifications?

Frequentist: $Y \mid X \sim \text{Dist}(f_W(X))$ for a learned (fixed) W. Output 95% quantile range of $\text{Dist}(f_W(X))$ for each new X.

Bayesian: $Y \mid X \sim \text{Dist}(f_W(X))$ for $W \sim p(W \mid \mathcal{D}_n)$. *Maximum a posteriori:* $\widehat{W} = \arg \max p(W \mid \mathcal{D}_n)$ and use frequentist interval.

Doesn't even require VI! Ignores epistemic uncertainty – just regularized MLE. Model averaging: $p(Y \mid X) = \mathbb{E}_{W \sim q_{\theta}(W)}[p(Y \mid X, W)].$

Paper proposes this, but it still ignores some epistemic uncertainty!

 $\begin{array}{l} \textit{Monte Carlo: Sample } \widehat{W} \sim q_{\theta}(W) \text{ and } Y \mid X \sim \mathrm{Dist}(f_{\widehat{W}}(X)). \\ \textit{Repeat many times to get empirical 95% quantile range for } Y \mid X. \\ \textit{E.g., } p(W \sim \mathcal{D}_n) = \mathrm{Normal}(\mu_W, \sigma_W) \text{ and } f_W(X) = (\mu, \sigma). \\ \textit{Sample } \widehat{W} \sim \mathrm{Normal}(\mu_W, \sigma_W), \ f_{\widehat{W}}(X) = (\hat{\mu}, \hat{\sigma}), \ Y \mid X \sim \mathrm{Normal}(\hat{\mu}, \hat{\sigma}). \end{array}$

Importance Sampling: Sample $\widehat{W}_{1:M} \sim q_{\theta}(W)$ and $Y_{1:M} \mid X \sim \text{Dist}(f_{\widehat{W}_{1:M}}(X))$. Only keep Y_j with (unnormalized) probability $p(\widehat{W}_j, \mathcal{D}_n)/q_{\theta}(\widehat{W}_j)$. Approximates sampling from $p(\widehat{W}_j \mid \mathcal{D}_n)$, but may have higher variance.

Summary

Goal: Quantify uncertainty of predictions on rare covariates in addition to inherent uncertainty due to systemic noise.

Solution: Treat the weights as random and find their posterior using VI.

In theory, this should work as long as the variational inference is accurate... ...but in practice, training is a nightmare!

"The BNN posterior distribution is complicated and high dimensional, and it's really hard to approximate it accurately with fully factorized Gaussians."

- Roger Grosse and Jimmy Ba's slides

There are many other tools to address these stability and accuracy issues... minibatching, SGLD over GD, dropout, etc.

It remains open to *fully* account for both sources of uncertainty in predictions.