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Announcements

Extension on the final project report. Now due April 14.
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Today

Bayesian RL, distinct from RL as inference.

Thompson Sampling.
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MDPs today

For todays lecture an MDP M = 〈S,A,P, r ,T , ρ〉 will be defined by

State space S
Action space A
Transition matrix P
Initial state distribution ρ

Reward function r

Horizon T
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Exploration vs. exploitation

Discussed exploration vs. exploitation tradeoff in the context of
bandits (T = 1).

Can we formalize exactly what we mean by this in a general MDP
setting?

Consider the following distinction. Suppose that either

1. Observed M: we know the full description of the MDP M, in which
case we can implement planning or optimal control.

2. Unobserved M ∈M: we know that M ∈M is in a family of Markov
decision processes, but we must explore to figure out which M we’re in.
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Exploration vs. exploitation

By considering unobserved M ∈M, we can formalize what we mean
by exploration vs. exploitation. We will focus on this setting.

This discussion is based on the following references:
I Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, Aviv Tamar.

(2015). Bayesian Reinforcement Learning: A Survey.
I Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng

Wen. (2020). A Tutorial on Thompson Sampling.
I Arthur Guez, David Silver, Peter Dayan. (2013). Efficient

Bayes-Adaptive Reinforcement Learning using Sample-Based Search.
I Brendan O’Donoghue, Ian Osband, Catalin Ionescu. (2020). Making

Sense of Reinforcement Learning and Probabilistic Inference.
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Exploration vs. exploitation

Suppose we have interacted with an MDP M for ` episodes and t
timesteps on the `+ 1 episode.

We observe histories h`t ,
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h`
t =

An RL algorithm alg maps histories h`t → π`,t to policies.

Given M, alg we can define the sequence of histories h`t as those
produced by iteratively interacting with M via π`,t .
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Exploration vs. exploitation

If we have a budget of L episodes, we can evaluate algs according to

Worst-case regret

max
M∈M

E

[
L∑
`=1

VM,∗
0 (s`0)−

T∑
t=1

r(s`t , a
`
t)

∣∣∣∣∣M, alg

]

Bayesian regret for some prior p over M,

EM∼p

[
E

[
L∑
`=1

VM,∗
0 (s`0)−

T∑
t=1

r(s`t , a
`
t)

∣∣∣∣∣M, alg

]]

These are the same for Dirac priors. Let’s focus on Bayesian regret.
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Exploration vs. exploitation

To do well on Bayesian regret, an agent needs to be statistically
efficient and consider the value of information.

This means maintaining an estimate of M, so that it can direct its
action to states that reveal more information about M.

Yet, not sacrificing too much in terms of accumulated returns.
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Example

Consider a bandits example.

S = {1},T = 1,M = {M+,M−},A = {1, 2, 3, . . . ,N}.
Only difference is rewards (color = optimal arm):

r+(1, 1) = 1, r+(1, 2) = +2, r+(1, a) = 1− ε for a ≥ 3

r−(1, 1) = 1, r−(1, 2) = −2, r−(1, a) = 1− ε for a ≥ 3

Now let’s consider different settings.
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Example–M known

r+(1, 1) = 1, r+(1, 2) = +2, r+(1, a) = 1− ε for a ≥ 3

r−(1, 1) = 1, r−(1, 2) = −2, r−(1, a) = 1− ε for a ≥ 3

If M is known, then the optimal policy is trivially a` = 2 in M+ and
a` = 1 in M−.
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Example—M unknown, worst-case regret optimal

r+(1, 1) = 1, r+(1, 2) = +2, r+(1, a) = 1− ε for a ≥ 3

r−(1, 1) = 1, r−(1, 2) = −2, r−(1, a) = 1− ε for a ≥ 3

1. Choose a0 = 2, observe r0.

2. If r0 = +2, then pick a` = 2 for all ` ≥ 1.

3. If r0 = −2, then pick a` = 1 for all ` ≥ 1.

This achieves a regret of 3, and is worst-case optimal (also Bayes optimal
as long as p(M+)L > 3).
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Bayes-optimal strategies

In general, policies that optimize the Bayesian regret are still poorly
understood. (As I understand it, I am not an expert in this area.)

Instead, let us consider so-called Bayes-optimal strategies that directly
maximize the expected return over a single episode with unobserved
M:

arg max
π

EM∼p

[
E

[
T∑
t=1

r(st , at)

∣∣∣∣∣M
]]

This objective is not the expected return of an MDP. Technically, it’s
a POMDP, where M is an unobserved variable.

Algorithms that approximate Bayes-optimal strategies often good in
practice.
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Bayes-optimal strategies

An agent can receive higher reward, if it performs Bayes-rationally
about the information it’s received.

So, Bayes-optimal strategy gives value to exploration moves.

To see what I mean, let’s consider a T round bandit problem as an
unobserved MDP.

I Can think of this as a single state MDP.
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Bayes-optimal strategiesI B Acting under Model Uncertainty B Finding the Optimal Learning Plan 18

0 1
q

p(
q)Prior belief about the probability

of success of each arm.

Play blue arm Play orange arm

Success Failure

Updated
beliefs

A
B

C

Figure 1.1: Example of Bayesian bandit problem with 2 possible arms (blue
and orange), each giving a payoff of 1 (success) or 0 (failure) with some
unknown probability. The initial belief about these probabilities is in the top
plot, which indicates a bit more certainty about the probability of success
of the orange arm. In the center of the figure are all the possible beliefs
that could arise after seeing the outcome of a single action — notice that
the belief about the blue arm is unchanged if the orange arm is played (and
vice versa). Each of these outcomes happens with some known probability
according to the belief. We can recursively consider all future events in the
same way. We only show a selection of 3 possible partial trajectories from
this point where: A the orange arm appears to be worse than the blue arm,
B the blue arm is likely to be worse than the orange arm, C the beliefs
for both arms are relatively similar. Given all these trajectories, the agent
needs to find the best arm to pull at the top to maximize its average sum of
discounted payoffs.

(Guez, 2015)
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Bayes-optimal strategies

Interaction can with an unobserved M can be formulated as a
fully-observed MDP by expanding the state-space.

Expanded state space S+ = S ×H where H is the set of all histories
ht = s0a0s1a1 . . . at−1st for t ≤ T .

Expanded transition probability

P+(s ′, h′|a, s, h) = 1(h′ = has ′)

∫
P(s ′|s, a)p(P|h)dP

where p(P|h) ∝ p(P)p(h|P) is the posterior under prior p.

Expanded reward function

r+(s, h, a) = r(s, a)

This expanded MDP is called the Bayes-Adaptive MDP (BAMDP).
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Bayes-optimal strategies

The optimal policy of the BAMDP is also the optimal policy,

arg max
π

EM∼p

[
E

[
T∑
t=1

r(st , at)

∣∣∣∣∣M
]]

The BAMDP construction is an application of a classical technique in
partially observed MDPs.

Could always do planning in the BAMDP to get the optimal policy,
but this requires Bayesian inference at every node of the search tree.

Guez et al. (2013) provide a more efficient MCTS method for
approximating this Bayes-optimal policy.
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BA-UCT (Guez et al., 2013)

BA-UCT is a MCTS method for approximating the Bayes-optimal policy.

1. Starting from the root in state s with history h.

2. For simulation i = 1, . . .,
I Sample P i ∼ p(P|h).
I Run one simulation of UCT with P i .
I Share estimates of Q∗(s, h, a) between simulations.

3. Return best action a according to current UCT estimates of
Q∗(s, h, a).

4. Get next state s ′ and update history h′.
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BA-UCT (Guez et al., 2013)

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 6

Tree
Policy

Default
Policy

Selection Expansion Simulation Backpropagation

Fig. 2. One iteration of the general MCTS approach.

Algorithm 1 General MCTS approach.
function MCTSSEARCH(s0)

create root node v0 with state s0

while within computational budget do
vl  TREEPOLICY(v0)
� DEFAULTPOLICY(s(vl))
BACKUP(vl,�)

return a(BESTCHILD(v0))

the tree until the most urgent expandable node is
reached. A node is expandable if it represents a non-
terminal state and has unvisited (i.e. unexpanded)
children.

2) Expansion: One (or more) child nodes are added to
expand the tree, according to the available actions.

3) Simulation: A simulation is run from the new node(s)
according to the default policy to produce an out-
come.

4) Backpropagation: The simulation result is “backed
up” (i.e. backpropagated) through the selected
nodes to update their statistics.

These may be grouped into two distinct policies:

1) Tree Policy: Select or create a leaf node from the
nodes already contained within the search tree (se-
lection and expansion).

2) Default Policy: Play out the domain from a given
non-terminal state to produce a value estimate (sim-
ulation).

The backpropagation step does not use a policy itself,
but updates node statistics that inform future tree policy
decisions.

These steps are summarised in pseudocode in Algo-

rithm 1.6 Here v0 is the root node corresponding to state
s0, vl is the last node reached during the tree policy
stage and corresponds to state sl, and � is the reward
for the terminal state reached by running the default
policy from state sl. The result of the overall search
a(BESTCHILD(v0)) is the action a that leads to the best
child of the root node v0, where the exact definition of
“best” is defined by the implementation.

Note that alternative interpretations of the term “sim-
ulation” exist in the literature. Some authors take it
to mean the complete sequence of actions chosen per
iteration during both the tree and default policies (see for
example [93], [204], [94]) while most take it to mean the
sequence of actions chosen using the default policy only.
In this paper we shall understand the terms playout and
simulation to mean “playing out the task to completion
according to the default policy”, i.e. the sequence of
actions chosen after the tree policy steps of selection and
expansion have been completed.

Figure 2 shows one iteration of the basic MCTS al-
gorithm. Starting at the root node7 t0, child nodes are
recursively selected according to some utility function
until a node tn is reached that either describes a terminal
state or is not fully expanded (note that this is not
necessarily a leaf node of the tree). An unvisited action
a from this state s is selected and a new leaf node tl is
added to the tree, which describes the state s0 reached
from applying action a to state s. This completes the tree
policy component for this iteration.

A simulation is then run from the newly expanded
leaf node tl to produce a reward value �, which is then

6. The simulation and expansion steps are often described and/or
implemented in the reverse order in practice [52], [67].

7. Each node contains statistics describing at least a reward value
and number of visits.
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root defined by state s and history h
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Thompson Sampling

Convergence can be slow for this algorithm.

Thompson sampling is a heuristic approximation to Bayes-optimal
strategies that converges faster.

I Given a history h` (from ` episodes).
I For episode `+ 1, use policy πP , which is defined as following optimal

actions under a random MDP P ∼ p(P|h`).

This can be implemented using Bayesian posterior updating to keep
track of p(P|h`)
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Thompson sampling
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<latexit sha1_base64="zHCmi9Ja8EPi6NUCw6mDW0UtzV4=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclRkR7bLixmUF+4B2KJk004ZmkjHJFMq03+HGhSJu/Rh3/o2ZdhbaeiBwOOde7skJYs60cd1vZ219Y3Nru7BT3N3bPzgsHR03tUwUoQ0iuVTtAGvKmaANwwyn7VhRHAWctoLRXea3xlRpJsWjmcTUj/BAsJARbKzkT7sRNkOCeXo7m/ZKZbfizoFWiZeTMuSo90pf3b4kSUSFIRxr3fHc2PgpVoYRTmfFbqJpjMkID2jHUoEjqv10HnqGzq3SR6FU9gmD5urvjRRHWk+iwE5mGfWyl4n/eZ3EhFU/ZSJODBVkcShMODISZQ2gPlOUGD6xBBPFbFZEhlhhYmxPRVuCt/zlVdK8rHjXFe/hqlyr5nUU4BTO4AI8uIEa3EMdGkDgCZ7hFd6csfPivDsfi9E1J985gT9wPn8AO3OSXw==</latexit>|A|

<latexit sha1_base64="c6W/2NdJT/g2CGQctUzZemsinvw=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0WoLkoiol0W3LisYB/QhDCZTtqhM5MwMxFKzD+48VfcuFDErRt3/o2TtgttPXDhcM693HtPmDCqtON8W6WV1bX1jfJmZWt7Z3fP3j/oqDiVmLRxzGLZC5EijArS1lQz0kskQTxkpBuOrwu/e0+korG405OE+BwNBY0oRtpIgX3mcaRHGLGslUNPUQ6T2m/pAY6CzCOM5aeBXXXqzhRwmbhzUgVztAL7yxvEOOVEaMyQUn3XSbSfIakpZiSveKkiCcJjNCR9QwXiRPnZ9KccnhhlAKNYmhIaTtXfExniSk14aDqLc9WiV4j/ef1URw0/oyJJNRF4tihKGdQxLAKCAyoJ1mxiCMKSmlshHiGJsDYxVkwI7uLLy6RzXncv6+7tRbXZmMdRBkfgGNSAC65AE9yAFmgDDB7BM3gFb9aT9WK9Wx+z1pI1nzkEf2B9/gCwTZ4B</latexit>P ⇠ p(P|h`)

<latexit sha1_base64="+qfJlWvCEqTxvdAgPMbmI1K7di8="></latexit>

Indicator that a is optimal

in state s at time t

given P

<latexit sha1_base64="I1Ai4YbPcgeFn1qWqRMNETXqlFo=">AAACCXicbVDLSsNAFJ34rPUVdelmsAiuSiKiLotuXFawD2hCmEwn7dDJg5kbMYRs3fgrblwo4tY/cOffOGmz0NYDFw7n3Mu99/iJ4Aos69tYWl5ZXVuvbdQ3t7Z3ds29/a6KU0lZh8Yiln2fKCZ4xDrAQbB+IhkJfcF6/uS69Hv3TCoeR3eQJcwNySjiAacEtOSZ2AH2AHkSC04zXGAn4V7uhATGlIi8XRSe2bCa1hR4kdgVaaAKbc/8coYxTUMWARVEqYFtJeDmRAKnghV1J1UsIXRCRmygaURCptx8+kmBj7UyxEEsdUWAp+rviZyESmWhrzvLG9W8V4r/eYMUgks351GSAovobFGQCgwxLmPBQy4ZBZFpQqjk+lZMx0QSCjq8ug7Bnn95kXRPm/Z50749a7Suqjhq6BAdoRNkowvUQjeojTqIokf0jF7Rm/FkvBjvxsesdcmoZg7QHxifP5E9muQ=</latexit>

policy ⇡P
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Thompson sampling—example

Let’s consider a detailed Beta-Bernoulli Bandit example.

M is a K arms Bernoulli bandit problem.
I Pulling arm k on round ` returns a Bernoulli reward r `(k) ∼ Bern(θk)

where r `(k) ∈ {0, 1}, θk ∈ (0, 1).
I M is fully defined by θk values.

Agent has a Beta prior over θk ∼ Beta(αk , βk) where αk , βk > 0.

p(θk) ∝ θαk−1
k (1− θk)βk−1

In this model, Bayesian updating has a simple form.
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Thompson sampling—example

In the Beta-Bernoulli Bandit model, Bayesian updating has a simple
form.

The posterior over θks is itself a Beta, after observing rewards.

Let α`k , β
`
k be the parameters of the posterior Beta after observing

r1, . . . r `, then if we pull arm k on round `+ 1, we get the following
update

α`+1
k , β`+1

k )← (α`k + r `, β`k + 1− r `)

α`+1
j , β`+1

j )← (α`j , β
`
j ) for j 6= k
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Thompson sampling—example

In this case, Thompson sampling is: on round `
I Sample θk ∼ Beta(α`−1

k , β`−1
k ) from the current posterior.

I Pull arm k∗ = arg maxk θk and observe reward r `(k∗).
I Apply Bayesian posterior updates to get α`

k , β
`
k .

Can compare this to a greedy approach that has all the same
updating, but uses θ̂k = E[θk ] to decide which arm to pull.
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Thompson sampling—example 15

Algorithm 3.1
BernGreedy(K,–,—)
1: for t = 1, 2, . . . do
2: #estimate model:
3: for k = 1, . . . , K do
4: ◊̂k Ω –k/(–k + —k)
5: end for
6:
7: #select and apply action:
8: xt Ω argmaxk ◊̂k
9: Apply xt and observe rt
10:
11: #update distribution:
12: (–xt , —xt ) Ω (–xt + rt, —xt + 1 ≠ rt)
13: end for

Algorithm 3.2 BernTS(K,–,—)
1: for t = 1, 2, . . . do
2: #sample model:
3: for k = 1, . . . , K do
4: Sample ◊̂k ≥ beta(–k, —k)
5: end for
6:
7: #select and apply action:
8: xt Ω argmaxk ◊̂k
9: Apply xt and observe rt
10:
11: #update distribution:
12: (–xt , —xt ) Ω (–xt + rt, —xt + 1 ≠ rt)
13: end for

To understand how TS improves on greedy actions with or without
dithering, recall the three armed Bernoulli bandit with posterior distri-
butions illustrated in Figure 2.2. In this context, a greedy action would
forgo the potentially valuable opportunity to learn about action 3. With
dithering, equal chances would be assigned to probing actions 2 and 3,
though probing action 2 is virtually futile since it is extremely unlikely
to be optimal. TS, on the other hand would sample actions 1, 2, or 3,
with probabilities approximately equal to 0.82, 0, and 0.18, respectively.
In each case, this is the probability that the random estimate drawn for
the action exceeds those drawn for other actions. Since these estimates
are drawn from posterior distributions, each of these probabilities is
also equal to the probability that the corresponding action is optimal,
conditioned on observed history. As such, TS explores to resolve un-
certainty where there is a chance that resolution will help the agent
identify the optimal action, but avoids probing where feedback would
not be helpful.

It is illuminating to compare simulated behavior of TS to that
of a greedy algorithm. Consider a three-armed beta-Bernoulli bandit
with mean rewards ◊1 = 0.9, ◊2 = 0.8, and ◊3 = 0.7. Let the prior
distribution over each mean reward be uniform. Figure 3.1 plots results
based on ten thousand independent simulations of each algorithm. Each
simulation is over one thousand time periods. In each simulation, actions

(Russo et al., 2020)
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Thompson sampling—example

17

per-period regret of TS vanishes as time progresses. That is not the
case for the greedy algorithm.

Comparing algorithms with fixed mean rewards raises questions
about the extent to which the results depend on the particular choice
of ◊. As such, it is often useful to also examine regret averaged over
plausible values of ◊. A natural approach to this involves sampling many
instances of ◊ from the prior distributions and generating an independent
simulation for each. Figure 3.2b plots averages over ten thousand such
simulations, with each action reward sampled independently from a
uniform prior for each simulation. Qualitative features of these plots are
similar to those we inferred from Figure 3.2a, though regret in Figure
3.2a is generally smaller over early time periods and larger over later
time periods, relative to Figure 3.2b. The smaller regret in early time
periods is due to the fact that with ◊ = (0.9, 0.8, 0.7), mean rewards are
closer than for a typical randomly sampled ◊, and therefore the regret
of randomly selected actions is smaller. The fact that per-period regret
of TS is larger in Figure 3.2a than Figure 3.2b over later time periods,
like period 1000, is also a consequence of proximity among rewards with
◊ = (0.9, 0.8, 0.7). In this case, the di�erence is due to the fact that it
takes longer to di�erentiate actions than it would for a typical randomly
sampled ◊.

(a) ◊ = (0.9, 0.8, 0.7) (b) average over random ◊

Figure 3.2: Regret from applying greedy and Thompson sampling algorithms to
the three-armed Bernoulli bandit.

(Russo et al., 2020)
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Thompson sampling—example

Why is Thompson sampling better than greedy?

Greedy can get stuck, but even if we allow it to take a uniform
random action w.p. ε, it will still ignore uncertainty.

11

Figure 2.2: Probability density functions over mean rewards.

ad infinitum. It seems reasonable to avoid action 2, since it is extremely
unlikely that ◊2 > ◊1. On the other hand, if the agent plans to operate
over many time periods, it should try action 3. This is because there is
some chance that ◊3 > ◊1, and if this turns out to be the case, the agent
will benefit from learning that and applying action 3. To learn whether
◊3 > ◊1, the agent needs to try action 3, but the greedy algorithm will
unlikely ever do that. The algorithm fails to account for uncertainty in
the mean reward of action 3, which should entice the agent to explore
and learn about that action.

Dithering is a common approach to exploration that operates through
randomly perturbing actions that would be selected by a greedy algo-
rithm. One version of dithering, called ‘-greedy exploration, applies the
greedy action with probability 1 ≠ ‘ and otherwise selects an action
uniformly at random. Though this form of exploration can improve
behavior relative to a purely greedy approach, it wastes resources by
failing to “write o�” actions regardless of how unlikely they are to be
optimal. To understand why, consider again the posterior distributions
of Figure 2.2. Action 2 has almost no chance of being optimal, and
therefore, does not deserve experimental trials, while the uncertainty
surrounding action 3 warrants exploration. However, ‘-greedy explo-

(Russo et al., 2020)
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Recap

We can formalize the notion of exploration by considering uncertainty
over the MDP M.

This gives us a natural class of algorithms that update their posterior
beliefs about the MDP specification after observing state-action
histories.

Despite having a posterior, the RL as inference that we’ve been seeing
a lot of (VIREL, MPO, SAC, etc.) is very distinct from this view on
Bayesian RL.
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Next week

Next week Brendan O’Donoghue will talk about K -learning and a
variational inference perspective on Bayesian RL.
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