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Announcements

@ Extension on the final project report. Now due April 14.
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@ Bayesian RL, distinct from RL as inference.

@ Thompson Sampling.
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MDPs today

For todays lecture an MDP M = (S, A, P, r, T, p) will be defined by
@ State space S

Action space A

Transition matrix P

o
o Initial state distribution p
@ Reward function r

o

Horizon T
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Exploration vs. exploitation

@ Discussed exploration vs. exploitation tradeoff in the context of
bandits (T = 1).
@ Can we formalize exactly what we mean by this in a general MDP
setting?
@ Consider the following distinction. Suppose that either
1. Observed M: we know the full description of the MDP M, in which
case we can implement planning or optimal control.

2. Unobserved M € M: we know that M € M is in a family of Markov
decision processes, but we must explore to figure out which M we're in.
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Exploration vs. exploitation

@ By considering unobserved M € M, we can formalize what we mean
by exploration vs. exploitation. We will focus on this setting.

@ This discussion is based on the following references:

» Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, Aviv Tamar.
(2015). Bayesian Reinforcement Learning: A Survey.

» Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, lan Osband, Zheng
Wen. (2020). A Tutorial on Thompson Sampling.

» Arthur Guez, David Silver, Peter Dayan. (2013). Efficient
Bayes-Adaptive Reinforcement Learning using Sample-Based Search.

» Brendan O’'Donoghue, lan Osband, Catalin lonescu. (2020). Making
Sense of Reinforcement Learning and Probabilistic Inference.
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Exploration vs. exploitation

Suppose we have interacted with an MDP M for £ episodes and t
timesteps on the £ + 1 episode.

@ We observe histories hf,
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@ An RL algorithm alg maps histories hf — 7+ to policies.

o Given M, alg we can define the sequence of histories h’ as those
produced by iteratively interacting with M via 7/ ;.
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Exploration vs. exploitation

If we have a budget of L episodes, we can evaluate algs according to

o Worst-case regret
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These are the same for Dirac priors. Let's focus on Bayesian regret.

@ Bayesian regret for some prior p over M,

L T
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Exploration vs. exploitation

@ To do well on Bayesian regret, an agent needs to be statistically
efficient and consider the value of information.

@ This means maintaining an estimate of M, so that it can direct its
action to states that reveal more information about M.

@ Yet, not sacrificing too much in terms of accumulated returns.
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Consider a bandits example.
e S={1},7T=1,M={M" M}, A={1,2,3,...,N}.
@ Only difference is rewards (color = optimal arm):

rf(1,1) =1,r(1,2) = +2,r"(1,a) =1 — e for a >3
r(1,1)=1,r(1,2)=-2,r (l,a)=1—¢cfora>3

Now let's consider different settings.
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Example-M known

rt(1,1)=1,r"(1,2) = +2,r"(1,a) =1 — e fora >3
r(1,1)=1,r (1,2)=-2,r (1,a)=1—¢efora>3

e If M is known, then the optimal policy is trivially a® =2 in M+ and
a’=1in M.
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Example—M unknown, worst-case regret optimal

r(1,1)=1,r"(1,2) = +2,r"(1,a) =1 —efora >3
r(1,1)=1,r(1,2)=-2,r (1,a)=1—¢cfora>3

1. Choose a° = 2, observe 9.

2. If r® = 42, then pick a’ =2 for all £ > 1.
3. If r® = —2, then pick a’ =1 for all £ > 1.

This achieves a regret of 3, and is worst-case optimal (also Bayes optimal
as long as p(MT)L > 3).
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Bayes-optimal strategies

@ In general, policies that optimize the Bayesian regret are still poorly
understood. (As | understand it, | am not an expert in this area.)

@ Instead, let us consider so-called Bayes-optimal strategies that directly
maximize the expected return over a single episode with unobserved

Z r(st, ar) M”

t=1
@ This objective is not the expected return of an MDP. Technically, it's
a POMDP, where M is an unobserved variable.

E

arg maxEpjp
™

@ Algorithms that approximate Bayes-optimal strategies often good in
practice.
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Bayes-optimal strategies

@ An agent can receive higher reward, if it performs Bayes-rationally
about the information it's received.
@ So, Bayes-optimal strategy gives value to exploration moves.

@ To see what | mean, let's consider a T round bandit problem as an
unobserved MDP.

» Can think of this as a single state MDP.
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Bayes-optimal strategies

Prior belief about the probability
of success of each arm
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(Guez, 2015)
(UofT) STA4273-Lecll




Bayes-optimal strategies

Interaction can with an unobserved M can be formulated as a
fully-observed MDP by expanding the state-space.

@ Expanded state space ST = S x H where H is the set of all histories
hy = spapsiar ... ar—15: for t < T.

@ Expanded transition probability
PT(s',H|a,s,h) =1(H = has')/P(s/]s, a)p(P|h)dP

where p(P|h) o< p(P)p(h|P) is the posterior under prior p.

@ Expanded reward function
rt(s,h,a) = r(s,a)

This expanded MDP is called the Bayes-Adaptive MDP (BAMDP).

(UofT) STA4273-Lecll 16 /29



Bayes-optimal strategies

@ The optimal policy of the BAMDP is also the optimal policy,

Z r(st, ar) M”

t=1
@ The BAMDP construction is an application of a classical technique in
partially observed MDPs.

argmaxEpp |E
™

@ Could always do planning in the BAMDP to get the optimal policy,
but this requires Bayesian inference at every node of the search tree.

o Guez et al. (2013) provide a more efficient MCTS method for
approximating this Bayes-optimal policy.
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BA-UCT (Guez et al., 2013)

BA-UCT is a MCTS method for approximating the Bayes-optimal policy.
1. Starting from the root in state s with history h.
2. For simulation i =1,.. .,
» Sample P’ ~ p(P|h). _
» Run one simulation of UCT with P’.
» Share estimates of Q*(s, h, a) between simulations.

3. Return best action a according to current UCT estimates of
Q*(s, h, a).
4. Get next state s’ and update history h'.
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BA-UCT (Guez et al., 2013)

oot defined by state s and history h
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Thompson Sampling

@ Convergence can be slow for this algorithm.
@ Thompson sampling is a heuristic approximation to Bayes-optimal
strategies that converges faster.

» Given a history hy (from £ episodes).
» For episode ¢ 4 1, use policy mp, which is defined as following optimal
actions under a random MDP P ~ p(P|h).

@ This can be implemented using Bayesian posterior updating to keep
track of p(P|hy)
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Thompson sampling
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Thompson sampling—example

Let's consider a detailed Beta-Bernoulli Bandit example.
@ M is a K arms Bernoulli bandit problem.

» Pulling arm k on round ¢ returns a Bernoulli reward rf(k) ~ Bern(fy)
where r‘(k) € {0,1},60, € (0,1).
» M is fully defined by 6 values.

@ Agent has a Beta prior over 6 ~ Beta(ay, Bx) where ay, Sx > 0.
p(Bk) o (1 — g, )1

@ In this model, Bayesian updating has a simple form.
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Thompson sampling—example

@ In the Beta-Bernoulli Bandit model, Bayesian updating has a simple
form.

@ The posterior over s is itself a Beta, after observing rewards.

o Let ai, 5£ be the parameters of the posterior Beta after observing
rl,...r% then if we pull arm k on round £+ 1, we get the following
update

@B (ke + B+ 1= 1)
ot B = (af, B)) for j # k

(UofT) STA4273-Lecll 23/29



Thompson sampling—example

@ In this case, Thompson sampling is: on round ¢
» Sample 6, ~ Beta(aiilﬁffl) from the current posterior.
» Pull arm k* = arg max, 0k and observe reward rf(k*).
» Apply Bayesian posterior updates to get ai,,@ﬁ.
@ Can compare this to a greedy approach that has all the same
updating, but uses A = E[f)] to decide which arm to pull.
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Thompson sampling—example

Algorithm 3.1 Algorithm 3.2 BernTS(K, o, 8)
BernGreedy (K, a, 5) 1: fort=1,2,... do
2: #qample model
1: fort =1,2,... do 3: fork=1,...,K do
2: #cstunatc modcl 4: S 1 é ~ bet
3 fork=1,...,K do 5 ond ample Ok ~ beta(o, fi)
4: O ak/(ak + Bk) 6:
5: end for 7 #select and apply action:
6: K 8: T¢ < argmax;, Oy
7 #select and apg)ly action: 9: Apply x; and observe r;
8: Ty < argmax,, 0y 10:
9: Apply z: and observe r¢ 11: #update distribution:
10: 120 (uy, Bey) < (g + 705 By +1 = 71)
11: #update distribution: 13: end for
12: (0tays Bay) — (Qwy + 71, Bay +1—1¢)
13: end for

(Russo et al., 2020)
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Thompson sampling—example
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Figure 3.2: Regret from applying greedy and Thompson sampling algorithms to
she three-armed Bernoulli bandit.

(Russo et al., 2020)
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Thompson sampling—example

@ Why is Thompson sampling better than greedy?

@ Greedy can get stuck, but even if we allow it to take a uniform
random action w.p. ¢, it will still ignore uncertainty.

— action1
— action 2
25 — action 3

probability density
G

0.0 0.2 0.4 0.6 0.8 1.0
mean reward

Figure 2.2: Probability density functions over mean rewards.

(Russo et al., 2020)

(UofT) STA4273-Lecll 27/29



@ We can formalize the notion of exploration by considering uncertainty
over the MDP M.

@ This gives us a natural class of algorithms that update their posterior
beliefs about the MDP specification after observing state-action
histories.

@ Despite having a posterior, the RL as inference that we've been seeing
a lot of (VIREL, MPO, SAC, etc.) is very distinct from this view on
Bayesian RL.
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@ Next week Brendan O'Donoghue will talk about K-learning and a
variational inference perspective on Bayesian RL.
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