## STA 4273: Minimizing Expectations Lecture 11 - Inference and control

Chris J. Maddison

University of Toronto

-∢ ∃ ▶

#### • Extension on the final project report. Now due April 14.

æ

∃ ► < ∃ ►

- Bayesian RL, distinct from RL as inference.
- Thompson Sampling.

Image: Image:

æ

< E ► < E ►</p>

For todays lecture an MDP  $M = \langle S, A, P, r, T, \rho \rangle$  will be defined by

- State space  ${\mathcal S}$
- Action space  $\mathcal{A}$
- Transition matrix  ${\cal P}$
- Initial state distribution  $\rho$
- Reward function r
- Horizon *T*

- Discussed exploration vs. exploitation tradeoff in the context of bandits (T = 1).
- Can we formalize exactly what we mean by this in a general MDP setting?
- Consider the following distinction. Suppose that either
  - 1. Observed *M*: we know the full description of the MDP *M*, in which case we can implement planning or optimal control.
  - 2. Unobserved  $M \in \mathcal{M}$ : we know that  $M \in \mathcal{M}$  is in a family of Markov decision processes, but we must explore to figure out which M we're in.

- By considering unobserved M ∈ M, we can formalize what we mean by exploration vs. exploitation. We will focus on this setting.
- This discussion is based on the following references:
  - Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, Aviv Tamar. (2015). Bayesian Reinforcement Learning: A Survey.
  - Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen. (2020). A Tutorial on Thompson Sampling.
  - Arthur Guez, David Silver, Peter Dayan. (2013). Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search.
  - Brendan O'Donoghue, Ian Osband, Catalin Ionescu. (2020). Making Sense of Reinforcement Learning and Probabilistic Inference.

# Exploration vs. exploitation

Suppose we have interacted with an MDP M for  $\ell$  episodes and t timesteps on the  $\ell + 1$  episode.

• We observe histories  $h_t^{\ell}$ ,



- An RL algorithm alg maps histories  $h_t^\ell o \pi_{\ell,t}$  to policies.
- Given *M*, alg we can define the sequence of histories *h*<sup>ℓ</sup><sub>t</sub> as those produced by iteratively interacting with *M* via π<sub>ℓ,t</sub>.

If we have a budget of  $\boldsymbol{L}$  episodes, we can evaluate algs according to

• Worst-case regret

$$\max_{M \in \mathcal{M}} \mathbb{E} \left[ \sum_{\ell=1}^{L} V_0^{M,*}(s_0^{\ell}) - \sum_{t=1}^{T} r(s_t^{\ell}, a_t^{\ell}) \, \middle| \, M, \mathsf{alg} \right]$$

• Bayesian regret for some prior p over  $\mathcal{M}$ ,

$$\mathbb{E}_{M \sim p} \left[ \mathbb{E} \left[ \sum_{\ell=1}^{L} V_0^{M,*}(s_0^{\ell}) - \sum_{t=1}^{T} r(s_t^{\ell}, a_t^{\ell}) \middle| M, \mathsf{alg} \right] \right]$$

These are the same for Dirac priors. Let's focus on Bayesian regret.

- To do well on Bayesian regret, an agent needs to be statistically efficient and consider the value of information.
- This means maintaining an estimate of *M*, so that it can direct its action to states that reveal more information about *M*.
- Yet, not sacrificing too much in terms of accumulated returns.

Consider a bandits example.

• 
$$S = \{1\}, T = 1, M = \{M^+, M^-\}, A = \{1, 2, 3, \dots, N\}.$$

• Only difference is rewards (color = optimal arm):

$$r^+(1,1) = 1, r^+(1,2) = +2, r^+(1,a) = 1 - \epsilon \text{ for } a \ge 3$$
  
 $r^-(1,1) = 1, r^-(1,2) = -2, r^-(1,a) = 1 - \epsilon \text{ for } a \ge 3$ 

Now let's consider different settings.

∃ ► < ∃ ►

$$r^{+}(1,1) = 1, r^{+}(1,2) = +2, r^{+}(1,a) = 1 - \epsilon \text{ for } a \ge 3$$
  
$$r^{-}(1,1) = 1, r^{-}(1,2) = -2, r^{-}(1,a) = 1 - \epsilon \text{ for } a \ge 3$$

• If *M* is known, then the optimal policy is trivially  $a^{\ell} = 2$  in  $M^+$  and  $a^{\ell} = 1$  in  $M^-$ .

э

A B M A B M

Image: A matrix

$$r^+(1,1) = 1, r^+(1,2) = +2, r^+(1,a) = 1 - \epsilon$$
 for  $a \ge 3$   
 $r^-(1,1) = 1, r^-(1,2) = -2, r^-(1,a) = 1 - \epsilon$  for  $a \ge 3$ 

1. Choose 
$$a^0 = 2$$
, observe  $r^0$ .

2. If 
$$r^0 = +2$$
, then pick  $a^{\ell} = 2$  for all  $\ell \ge 1$ .

3. If 
$$r^0 = -2$$
, then pick  $a^{\ell} = 1$  for all  $\ell \ge 1$ .

This achieves a regret of 3, and is worst-case optimal (also Bayes optimal as long as  $p(M^+)L > 3$ ).

- In general, policies that optimize the Bayesian regret are still poorly understood. (As I understand it, I am not an expert in this area.)
- Instead, let us consider so-called Bayes-optimal strategies that directly maximize the expected return over a single episode with unobserved *M*:

$$\arg\max_{\pi} \mathbb{E}_{M \sim \rho} \left[ \mathbb{E} \left[ \sum_{t=1}^{T} r(s_t, a_t) \middle| M \right] \right]$$

- This objective is not the expected return of an MDP. Technically, it's a POMDP, where *M* is an unobserved variable.
- Algorithms that approximate Bayes-optimal strategies often good in practice.

イロト 不得 ト イヨト イヨト

- An agent can receive higher reward, if it performs Bayes-rationally about the information it's received.
- So, Bayes-optimal strategy gives value to exploration moves.
- To see what I mean, let's consider a *T* round bandit problem as an unobserved MDP.
  - Can think of this as a single state MDP.

### Bayes-optimal strategies



(Guez, 2015)

STA4273-Lec11

2

Interaction can with an unobserved M can be formulated as a fully-observed MDP by expanding the state-space.

- Expanded state space  $S^+ = S \times H$  where H is the set of all histories  $h_t = s_0 a_0 s_1 a_1 \dots a_{t-1} s_t$  for  $t \leq T$ .
- Expanded transition probability

$$\mathcal{P}^+(s',h'|a,s,h) = \mathbb{1}(h'=has')\int \mathcal{P}(s'|s,a)p(\mathcal{P}|h)d\mathcal{P}$$

where  $p(\mathcal{P}|h) \propto p(\mathcal{P})p(h|\mathcal{P})$  is the posterior under prior p.

• Expanded reward function

$$r^+(s,h,a)=r(s,a)$$

This expanded MDP is called the Bayes-Adaptive MDP (BAMDP).

• The optimal policy of the BAMDP is also the optimal policy,

$$\arg\max_{\pi} \mathbb{E}_{M \sim p} \left[ \mathbb{E} \left[ \sum_{t=1}^{T} r(s_t, a_t) \middle| M \right] \right]$$

- The BAMDP construction is an application of a classical technique in partially observed MDPs.
- Could always do planning in the BAMDP to get the optimal policy, but this requires Bayesian inference at every node of the search tree.
- Guez et al. (2013) provide a more efficient MCTS method for approximating this Bayes-optimal policy.

BA-UCT is a MCTS method for approximating the Bayes-optimal policy.

- 1. Starting from the root in state *s* with history *h*.
- 2. For simulation  $i = 1, \ldots,$ 
  - Sample  $\mathcal{P}^i \sim p(\mathcal{P}|h)$ .
  - Run one simulation of UCT with  $\mathcal{P}^i$ .
  - Share estimates of  $Q^*(s, h, a)$  between simulations.
- 3. Return best action a according to current UCT estimates of  $Q^*(s, h, a)$ .
- 4. Get next state s' and update history h'.



. . . . . . . .

- Convergence can be slow for this algorithm.
- Thompson sampling is a heuristic approximation to Bayes-optimal strategies that converges faster.
  - Given a history  $h_{\ell}$  (from  $\ell$  episodes).
  - For episode ℓ + 1, use policy π<sub>P</sub>, which is defined as following optimal actions under a random MDP P ~ p(P|h<sub>ℓ</sub>).
- This can be implemented using Bayesian posterior updating to keep track of  $p(\mathcal{P}|h_{\ell})$

### Thompson sampling



STA4273-Lec11

2

イロト イヨト イヨト イヨト

Let's consider a detailed Beta-Bernoulli Bandit example.

- *M* is a *K* arms Bernoulli bandit problem.
  - Pulling arm k on round ℓ returns a Bernoulli reward r<sup>ℓ</sup>(k) ~ Bern(θ<sub>k</sub>) where r<sup>ℓ</sup>(k) ∈ {0,1}, θ<sub>k</sub> ∈ (0,1).
  - *M* is fully defined by  $\theta_k$  values.
- Agent has a Beta prior over  $\theta_k \sim \text{Beta}(\alpha_k, \beta_k)$  where  $\alpha_k, \beta_k > 0$ .

$$p( heta_k) \propto heta_k^{lpha_k - 1} (1 - heta_k)^{eta_k - 1}$$

• In this model, Bayesian updating has a simple form.

- In the Beta-Bernoulli Bandit model, Bayesian updating has a simple form.
- The posterior over  $\theta_k$ s is itself a Beta, after observing rewards.
- Let  $\alpha_k^{\ell}, \beta_k^{\ell}$  be the parameters of the posterior Beta after observing  $r^1, \ldots r^{\ell}$ , then if we pull arm k on round  $\ell + 1$ , we get the following update

$$\begin{aligned} \alpha_k^{\ell+1}, \beta_k^{\ell+1}) &\leftarrow (\alpha_k^{\ell} + r^{\ell}, \beta_k^{\ell} + 1 - r^{\ell}) \\ \alpha_j^{\ell+1}, \beta_j^{\ell+1}) &\leftarrow (\alpha_j^{\ell}, \beta_j^{\ell}) \text{ for } j \neq k \end{aligned}$$

- $\bullet$  In this case, Thompson sampling is: on round  $\ell$ 
  - Sample  $\theta_k \sim \text{Beta}(\alpha_k^{\ell-1}, \beta_k^{\ell-1})$  from the current posterior.
  - Pull arm  $k^* = \arg \max_k \theta_k$  and observe reward  $r^{\ell}(k^*)$ .
  - Apply Bayesian posterior updates to get  $\alpha_k^{\ell}, \beta_k^{\ell}$ .
- Can compare this to a greedy approach that has all the same updating, but uses  $\hat{\theta}_k = \mathbb{E}[\theta_k]$  to decide which arm to pull.

#### Algorithm

3.1

BernGreedy $(K, \alpha, \beta)$ 

1: for t = 1, 2, ... do 2: #estimate model: 3: for  $k = 1, \ldots, K$  do 4:  $\hat{\theta}_{k} \leftarrow \alpha_{k} / (\alpha_{k} + \beta_{k})$ 5: 6: 7: end for #select and apply action: 8:  $x_t \leftarrow \operatorname{argmax}_k \hat{\theta}_k$ 9: Apply  $x_t$  and observe  $r_t$ 10:11: *#update distribution:* 12: $(\alpha_{x_t}, \beta_{x_t}) \leftarrow (\alpha_{x_t} + r_t, \beta_{x_t} + 1 - r_t)$ 13: end for

#### Algorithm 3.2 BernTS $(K, \alpha, \beta)$

1: for t = 1, 2, ... do 2: #sample model: 3: for  $k = 1, \ldots, K$  do 4: Sample  $\hat{\theta}_k \sim \text{beta}(\alpha_k, \beta_k)$ 5:end for 6: 7: #select and apply action: 8:  $x_t \leftarrow \operatorname{argmax}_k \hat{\theta}_k$ 9: Apply  $x_t$  and observe  $r_t$ 10:11: *#update distribution:* 12: $(\alpha_{x_t}, \beta_{x_t}) \leftarrow (\alpha_{x_t} + r_t, \beta_{x_t} + 1 - r_t)$ 13: end for

25 / 29

(Russo et al., 2020)

STA4273-Lec11

## Thompson sampling—example



Figure 3.2: Regret from applying greedy and Thompson sampling algorithms to the three-armed Bernoulli bandit.

(Russo et al., 2020)

(UofT)

#### Thompson sampling—example

- Why is Thompson sampling better than greedy?
- Greedy can get stuck, but even if we allow it to take a uniform random action w.p.  $\epsilon$ , it will still ignore uncertainty.



Figure 2.2: Probability density functions over mean rewards.

(Russo et al., 2020)

STA4273-Lec11

- We can formalize the notion of exploration by considering uncertainty over the MDP M.
- This gives us a natural class of algorithms that update their posterior beliefs about the MDP specification after observing state-action histories.
- Despite having a posterior, the RL as inference that we've been seeing a lot of (VIREL, MPO, SAC, etc.) is very distinct from this view on Bayesian RL.

• Next week Brendan O'Donoghue will talk about *K*-learning and a variational inference perspective on Bayesian RL.

▶ ∢ ∃ ▶