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Announcements

@ Do you want your slides and colab shared?

@ Extension on the final project report. Now due April 14.
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@ Planning in MDPs.

» Given access to the transition distribution of the MDP (i.e., assume the
ability to sample as many transitions as you want starting in any state,
action pair) , can we compute an optimal action?

@ Monte Carlo Tree Search.

o But first, we will review a classic problem: multi-armed bandits.
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Multi-armed bandit problem

Imagine a row of slot machines with different expected payouts.

",
»
.
'
'
:
.
1
!

You have limited money, how do you pick which ones to play?
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Multi-armed bandit problem

@ Classic exploration vs. exploitation tradeoff.
» You need to explore to get an estimate of the expected payoffs, but
this costs you money.
» When should you switch to exploiting your knowledge, i.e., playing just
what you think is the best machine?
@ Classical problem, but insights from this model are core to efficient
algorithms for planning in MDPs.
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Multi-armed bandit problem

e Multiple rounds.

@ Each round n, your algorithm picks 1 of
K arms. X1 Xi2 Xs.1
@ If you pick arm i on round n, you Xas Xz X3
receive a random reward X; , € [0,1]
» For each i, Xj , arei.id. X, are
mutually independent for all i, n. Xin
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Multi-armed bandit problem

o Let pj = E[X;,]. We want to achieve
an expected reward of u* = max; ;.

@ To quantify the optimal algorithm for n
rounds we want to minimize its regret

K X1,1 X1,2 X3,1
E[R(n)] = np* = Y E[N(m)u; Xor Ko Ko
i=1
where
Xi,n

Ni(n) = Z]I[pulled arm i in round t].

t=1
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Non, je ne regrette rien

@ Lai and Robbins (1985) proved that any algorithm, which performs
“consistently” across a family of bandit problems, must pull
sub-optimal arms logarithmically many times, i.e., for i # arg max; y;,

E[N;(n)] = Q(log n)

@ They also gave an algorithm that achieved this and has an overall
logarithmic regret bound (with instance dependent constants):

E[R(n)] = O(log n)
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An upper confidence bound algorithm (UCB1)

UCBL1 (Auer et al., 2002) is a modern simple version that achieves this
logarithmic regret:

L. Initialize X; o = co.

2. For each round n pull the following arm:

arg max )_C’n + 2log n
&MY Ni(n) Ni(n)

3. Update X;, = 37, X; [ pulled arm i in round t]
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Multi-armed bandits and UCB1

arg max Xi’n + 2logn
&MY Ni(n) N;(n)

e UCBI (Auer et al., 2002) has a very intuitive interpretation.
» Exploration term is balanced by exploitation term.

@ UCB1 keeps visiting all arms forever, but eventually pulls the optimal
arm exponentially many times.

» Must be true if suboptimal arms are pulled logarithmically many times.
» Solves the exploration-exploitation tradeoff.
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Can we use this to find the optimal policy of an MDP?
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Planning in an MDP

@ You are an agent in an finite-horizon T, finite state space, finite
action space MDP.

@ Suppose you have your own model p(s’|s, a) of the transition function
that you can call as many times as you want.

» Let's assume it's deterministic.

@ Can you use this model to do lookahead planning to compute good
moves? Let's consider some special cases.
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Planning in an MDP

@ Suppose you are in state s in the final
time step T.

@ This is just a bandit problem! Taking
an action is like pulling an arm.

@ Idea: Run UCB1 for n rounds, finally
take the action that was most pulled.

ar—1

7'(3T—17aT—1)
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Planning in an MDP

@ Suppose you are in state s, but it is not
the final time step.
@ We can still think of this as a type of
bandit problem. (50, o)
@ Taking an action is like pulling an arm
that returns an immediate reward {51, 01)
r(s,a) and a new bandit problem over
the future return. l

T-1 r(s2,a2)

r(so,a0) 7Y _ 7" Mr(se ar)
t=1
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Upper confidence trees (UCT)

@ The upper confidence trees
(UCT, Kocsis & Szepesviri,
2006) algorithm takes this
recursive perspective.

o Organize sequences of actions
(ag,...,ar_1) into a tree.

@ Nodes v represent action
sequences with a common prefix
and have a state s(v) associated
with them.

(UofT) STA4273-Lecl10 15 /21



Upper confidence trees (UCT)

For each explored node v, UCT
maintains u,a)
e Estimate Q(v, a) of the optimal
state-action value function
Q*(s(v), a) at each node

@ The count N(v, a) of times
action a was chosen in node v.

» Let N(v) =5, N(v,a).
Qw,a)
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Upper confidence trees (UCT)

1: function MonteCarloPlanning(state)
2: repeat

3: search(state, 0)

4: until Timeout

5: return bestAction(state,0)

6: function search(state, depth)

7: if Terminal(state) then return 0

8: if Leaf(state,d) then return Evaluate(state)

9: action := selectAction(state, depth)

10: (nextstate, reward) := simulateAction(state, action)
11: q := reward + ~ search(nextstate, depth + 1)

12: UpdateValue(state, action, q, depth)

13: return q

@ UCT "rollsout” by selecting actions according to the UCB1 rule

arg max
a

@ Then updates the estimates Qin a “backup” phase up the tree.
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Monte Carlo tree search

@ To pick an action from state s, run UCT and pick the action
arg max, N(v, a) where v is the root.

o Kocsis & Szepesvari (2006) showed that at all nodes

N(v, a)
N(s)

Qv,a) = V*(s(v))

a

» For all v, the prob. that UCT picks a suboptimal arm goes to 0.
» The recursive argument relies on the fact that UCB1 has low regret
and converges quickly at all nodes.
@ Vanilla UCT is memory intensive, so there are many practical
variants, collectively called Monte Carlo tree search (MCTS, Browne
et al., 2012).
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Monte Carlo tree search

K_> Selection —> Expansion —— Simulation —> Backpropagation \

Tree Def.ault

Policy Pogicy
v
- A J

(Browne et al., 2012)
Maintain a depth-limited subtree, select nodes using UCBL.
Expand the tree to include excluded children, then run a simulation.
Evaluate nodes by rolling out a default policy (not UCB1).

Noisy evaluations are backed-up the tree.
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Monte Carlo tree search

o MCTS is fundamentally an enumerative algorithm, i.e., it must visit
the whole tree.
» But it balances exploration and exploitation and does not spend too
much time on suboptimal trajectories.
@ In practice, it can scale very well and discover very good actions.
» Be careful with the scale of returns and the bandit assumption that
they are in [0, 1].
o It is typically applied to two-player, zero-sum, perfect information
games (requires some slight modifications to the backup operator).

@ Notice: MCTS can be thought of as an policy improvement operator
that takes a default policy and returns a better action (i.e., policy).
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Today's talks

@ AlphaZero.
@ MCTS as policy optimization.
o MENTS.
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