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Announcements

e Working to get marks / feedback on the proposals by EOW.
@ |I'm interested in sharing your great work! Email me:

Can | share your slides on Quercus?

Can | share your slides on the course website?

Can | share your code notebook on Quercus?

Can | share your code notebook on the course website?

vV vyVvYyy

@ Questions, comments, concerns?
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Modelling high-dimensional, multi-modal data

MNIST handwritten digit dataset.




Modelling high-dimensional, multi-modal data

CIFAR-10 small natural image dataset
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(Krizhevsky, 2009)
STA4273-Lec6




Modelling high-dimensional, multi-modal data

CelebA large images of celebreties
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Variational autoencoders

1. Variational autoencoders (VAEs) are pelz) = polz) polx)

latent variables models for high | Prior distribution: pe(z) |
dimensional data x € R". !

2. A latent variable model is specified in
terms of a joint distribution between x
and a latent variable z € R that
factorizes as follows:

po(x,2) = po(2)pe(x[2)

3. Latent variable models are an expressive
class, because the marginal pg(x) can
be very complex due to the likelihood .
po(x|z) warping the probability mass of Marginal: po(x)
a simple prior py(z).

(Kingma and Welling, 2019)
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Variational autoencoders—example

1. Consider the binary data case,
x € {0,1}".

2. Consider a deep Gaussian latent
variable model.

z~ N(,uv 021)
x; ~ Bernoulli(b, ;) indept.

where b, = NN y(z) is computed using
a neural network NNy : R™ — [0,1]"
with parameters 6.

3. The marginal pg(x) can be multimodal
and expressive.
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Variational autoencoders

1. Let © = (6, u,0%). How can we do
maximum likelihood over © in this
model?

2. What we want is

arg max log pe(x)

but pe(x) = [ pe(x,z)dz is too
expensive to compute.

3. The basic idea behind the variational
autoencoder is to optimize a tractable

variational lower bound on log pg(x), in
fact the ELBO (Lecture 1)!
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Evidence lower bound

Recall the evidence lower bound (ELBO)

ELBO(©,0.x) = g, |02 ’;jg]j)’] — log po(x)—KL(4s(zlx) || po(zlx))

Where

@ gy is a density in a parametric family of probability densities.
@ The objective is called the ELBO, because:

ELBO(®, ¢,x) < log pe(x)

Idea: what if we optimized the ELBO in terms of ©, ¢7
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Variational autoencoders

1. Approximate maximum likelihood for
VAEs is carried out by introducing a

Prior distribution: pe(z)

approximate posterior qy(z|x).
2. To fit a VAE, optimize ELBO using p
gradient ascent as a surrogate for the
the marginal likelihood of x, Emiee
z,x
Erm, Pog P@(’)}
q¢ (Z | X) X-space

3. The key question is then how to

estimate Vg ELBO(O, ¢,x) and

V4 ELBO(O, ¢, x)

(Kingma and Welling, 2019)
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Variational autoencoders

1. In practice, gy is also implemented
using neural network to make it more
expressive.

z ~ N(pix, diag(a2))

where i, 02 are computed using neural
networks with parameters ¢, as with b,.

2. OK, we defined both pg and gy, but
how can we estimate gradients of
ELBO(O, ¢,x)?

3. Let's consider the SCG that simulates a
realization of the ELBO.
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SCG for the ELBO

Let's first add the graph that samples from g, called the encoder.

encoder

ELBO(©, ¢, x) = E;~q, [log pe(2z) + log pe(x|z) — log g4(z|x)]

(UofT) STA4273-Lec6 12/25



SCG for the ELBO

Now, a graph that computes the statistics of py(x|z), called the decoder.

decoder

ELBO(O, ¢,x) = Ezq, [log po(z) + log pe(x|z) — log q4(z|x)]
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SCG for the ELBO

Finally, the graph that computes the losses.

Mg]ﬂe(@ — log gy (2| iz, 02)

log pe (/b-)
ELBO(O, ¢, x) = Ezq, [log po(z) + log pe(x|z) — log q4(z|x)]
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SCG for the ELBO

To optimize the expected losses over ©, ¢, consider the gradients that we
want.

ELBO(O, ¢,x) = Ezvq, [log po(z) + log pe(x|z) — log q4(z|x)]
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SCG for the ELBO

First, simplify. Goal: find all of the paths from loss nodes to orange nodes.

ELBO(©, ¢, x) = E;~q, [log pe(z) + log pe(x|z) — log g4(z|x)]
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SCG for the ELBO

z blocks 2 paths. Can use score function est., but high variance.

R
(=)
0]
@)=

ELBO(©, ¢, x) = E;~q, [log pe(z) + log pe(x|z) — log g4(z|x)]
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SCG for the ELBO

Luckily, we can reparameterize the graph with z = oxe + x:

ELBO(©, ¢, x) = E;~q, [log pe(z) + log pe(x|z) — log g4(z|x)]
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SCG for the ELBO

Now we get pathwise gradients! Much lower variance!

ELBO(©, ¢, x) = E;~q, [log pe(z) + log pe(x|z) — log g4(z|x)]
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Variational autoencoders—summary

1. A VAE is a latent variable model Prior dm,bumn m
Po (X, Z).
2. To fit a VAE,
» introduce an approximate posterior
as(zl2).
» optimizing the ELBO using gradient
ascent

z-space

Encoder: q,(z|x) | | Decoder: pe(x|z)

X-space

Pe(zax)]

E,. |
=9 [°g 90 (/)

» compute ELBO gradients by

reparameterizing a SCG that simulates
the ELBO. (Kingma and Welling, 2019)
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Variational autoencoders

@ Variational autoencoders can get quite elaborate.

@ A (now old, but cool) example is the DRAW model (Gregor et al.,
2015).

» DRAW: A Recurrent Neural Network For Image Generation

@ This is a time-series model that turns generation in an iterative
process using attention.

@ It is basically an elaborate VAE.
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Variational bayes

@ The idea of variational inference is applicable beyond latent variable
models.

@ We can use variational inference for the problem of Bayesian inference.

@ Suppose we have a regression or classification task from inputs
x € RY to labels y € V. We can use a neural network with
parameters w € R"” that parameterizes a distribution p(y|,w).

@ Maximum likelihood corresponds to

max log p(y|x, w)
weR”?
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Variational bayes

@ Maximum likelihood is prone to overfitting, why not “be Bayesian”?

» This course is not about statistical inference, so | don’t want to get
into pointless arguments about whether being Bayesian is correct.

» Training multiple diverse models and averaging their predictions
(ensembling) is a very effective technique for reducing variance
(overfitting) in practice (and theory in some settings).

@ Being Bayesian ultimately amounts to saying that you want to
average over multiple parameter settings, instead of maximize. l.e.,
you want to use the following to predict:

p(y|x) = /p(y\x,W)p(WIy,X) dw
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Variational bayes

What the heck is p(wly, x) and how do we get it?

p(wly, x) o< p(y|x,w)p(w) is the “posterior” and it is determined by
some choice of prior p(w).

The topic of Bayesian inference ultimately amounts to computing
expectations w.r.t. p(wl|y,x), and we can approximate it with
variational inference! Variational bayes:

py|x, w)p(w)
p(wly,x) = argmaxE |log ——————
(wly.x) & q & q(wly,x)

Main idea is, we can use variational inference (and the techniques
we've learned today) for more than just latent variable models.
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Talks today

@ Variational bayes for neural network parameters using the
reparameterization trick (just like VAEs!).

@ Variational bayes over the neural network function space using ideas
from gradient estimation for implicit models.

e Optimizing variational objectives that are not the ELBO (KLs in the
other direction).
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