STA 4273: Minimizing Expectations

Lecture 6 - Variational Objectives II

Chris J. Maddison

University of Toronto

Announcements

- Working to get marks / feedback on the proposals by EOW.
- I'm interested in sharing your great work! Email me:
 - ► Can I share your slides on Quercus?
 - Can I share your slides on the course website?
 - Can I share your code notebook on Quercus?
 - Can I share your code notebook on the course website?
- Questions, comments, concerns?

Modelling high-dimensional, multi-modal data

MNIST handwritten digit dataset.

(UofT)

3/25

Modelling high-dimensional, multi-modal data

CIFAR-10 small natural image dataset.

4 / 25

(UofT) STA4273-Lec6

Modelling high-dimensional, multi-modal data

CelebA large images of celebreties

(Liu et al., 2015) 5 / 25

(UofT) STA4273-Lec6

- 1. Variational autoencoders (VAEs) are latent variables models for high dimensional data $\mathbf{x} \in \mathbb{R}^n$.
- 2. A latent variable model is specified in terms of a joint distribution between \mathbf{x} and a latent variable $\mathbf{z} \in \mathbb{R}^m$ that factorizes as follows:

$$p_{\theta}(\mathbf{x}, \mathbf{z}) = p_{\theta}(\mathbf{z})p_{\theta}(\mathbf{x}|\mathbf{z})$$

3. Latent variable models are an expressive class, because the marginal $p_{\theta}(\mathbf{x})$ can be very complex due to the likelihood $p_{\theta}(\mathbf{x}|\mathbf{z})$ warping the probability mass of a simple prior $p_{\theta}(\mathbf{z})$.

(Kingma and Welling, 2019)

(UofT) STA4273-Lec6 6 / 25

Variational autoencoders—example

- 1. Consider the binary data case, $\mathbf{x} \in \{0,1\}^n$.
- 2. Consider a deep Gaussian latent variable model.

$$\mathbf{z} \sim \mathcal{N}(\mu, \sigma^2 I)$$

 $\mathbf{x}_i \sim \mathrm{Bernoulli}(b_{\mathbf{z},i}) \text{ indept.}$

where $b_{\mathbf{z}} = \mathcal{NN}_{\theta}(\mathbf{z})$ is computed using a neural network $\mathcal{NN}_{\theta} : \mathbb{R}^m \to [0,1]^n$ with parameters θ .

3. The marginal $p_{\Theta}(\mathbf{x})$ can be multimodal and expressive.

(UofT) STA4273-Lec6 7 /

- 1. Let $\Theta = (\theta, \mu, \sigma^2)$. How can we do maximum likelihood over Θ in this model?
- 2. What we want is

$$\arg\max_{\Theta}\log p_{\Theta}(\mathbf{x})$$

but $p_{\Theta}(\mathbf{x}) = \int p_{\Theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z}$ is too expensive to compute.

3. The basic idea behind the variational autoencoder is to optimize a tractable variational lower bound on $\log p_{\Theta}(\mathbf{x})$, in fact the ELBO (Lecture 1)!

(UofT) STA4273-Lec6 8 / 25

Evidence lower bound

Recall the evidence lower bound (ELBO)

$$\mathsf{ELBO}(\Theta, \phi, \mathbf{x}) = \mathbb{E}_{\mathbf{z} \sim q_{\phi}} \left[\log \frac{p_{\Theta}(\mathbf{z}, \mathbf{x})}{q_{\phi}(\mathbf{z} | \mathbf{x})} \right] = \log p_{\Theta}(\mathbf{x}) - \mathsf{KL}(q_{\phi}(\mathbf{z} | \mathbf{x}) \parallel p_{\Theta}(\mathbf{z} | \mathbf{x}))$$

Where

- ullet q_ϕ is a density in a parametric family of probability densities.
- The objective is called the ELBO, because:

$$\mathsf{ELBO}(\Theta, \phi, \mathbf{x}) \leq \log p_{\Theta}(\mathbf{x})$$

Idea: what if we optimized the ELBO in terms of Θ, ϕ ?

(UofT) STA4273-Lec6 9/

- 1. Approximate maximum likelihood for VAEs is carried out by introducing a approximate posterior $q_{\phi}(\mathbf{z}|\mathbf{x})$.
- To fit a VAE, optimize ELBO using gradient ascent as a surrogate for the the marginal likelihood of x,

$$\mathbb{E}_{\mathbf{z} \sim q_{\phi}} \left[\log rac{p_{\Theta}(\mathbf{z}, \mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})}
ight]$$

3. The key question is then how to estimate $\nabla_{\Theta} \operatorname{ELBO}(\Theta, \phi, \mathbf{x})$ and $\nabla_{\phi} \operatorname{ELBO}(\Theta, \phi, \mathbf{x})$

(Kingma and Welling, 2019)

(UofT) STA4273-Lec6 10 / 25

1. In practice, q_{ϕ} is also implemented using neural network to make it more expressive.

$$\mathbf{z} \sim \mathcal{N}(\mu_{\mathbf{x}}, \mathrm{diag}(\sigma_{\mathbf{x}}^2))$$

where $\mu_{\mathbf{x}}, \sigma_{\mathbf{x}}^2$ are computed using neural networks with parameters ϕ , as with $b_{\mathbf{z}}$.

- 2. OK, we defined both p_{Θ} and q_{ϕ} , but how can we estimate gradients of ELBO(Θ , ϕ , \mathbf{x})?
- 3. Let's consider the SCG that simulates a realization of the ELBO.

(UofT) STA4273-Lec6 11 / 25

Let's first add the graph that samples from q_{ϕ} , called the encoder.

$$\mathsf{ELBO}(\Theta, \phi, \mathbf{x}) = \mathbb{E}_{\mathbf{z} \sim q_{\phi}} \left[\log p_{\Theta}(\mathbf{z}) + \log p_{\Theta}(\mathbf{x}|\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}) \right]$$

(UofT) STA4273-Lec6 12 / 25

Now, a graph that computes the statistics of $p_{\theta}(\mathbf{x}|\mathbf{z})$, called the decoder.

$$\mathsf{ELBO}(\Theta, \phi, \mathbf{x}) = \mathbb{E}_{\mathbf{z} \sim q_{\phi}} \left[\log p_{\Theta}(\mathbf{z}) + \log p_{\Theta}(\mathbf{x}|\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}) \right]$$

(UofT) STA4273-Lec6 13 / 25

Finally, the graph that computes the losses.

$$\mathsf{ELBO}(\Theta, \phi, \mathbf{x}) = \mathbb{E}_{\mathbf{z} \sim q_{\phi}} \left[\log p_{\Theta}(\mathbf{z}) + \log p_{\Theta}(\mathbf{x}|\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}) \right]$$

(UofT) STA4273-Lec6 14 / 25

To optimize the expected losses over Θ, ϕ , consider the gradients that we want.

$$\mathsf{ELBO}(\Theta, \phi, \mathbf{x}) = \mathbb{E}_{\mathbf{z} \sim q_{\phi}} \left[\log p_{\Theta}(\mathbf{z}) + \log p_{\Theta}(\mathbf{x}|\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}) \right]$$

(UofT) STA4273-Lec6 15/25

First, simplify. Goal: find all of the paths from loss nodes to orange nodes.

$$\mathsf{ELBO}(\Theta, \phi, \mathbf{x}) = \mathbb{E}_{\mathbf{z} \sim q_{\phi}} \left[\log p_{\Theta}(\mathbf{z}) + \log p_{\Theta}(\mathbf{x}|\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}) \right]$$

(UofT) STA4273-Lec6 16 / 25

z blocks 2 paths. Can use score function est., but high variance.

$$\mathsf{ELBO}(\Theta, \phi, \mathbf{x}) = \mathbb{E}_{\mathbf{z} \sim q_{\phi}} \left[\log p_{\Theta}(\mathbf{z}) + \log p_{\Theta}(\mathbf{x}|\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}) \right]$$

(UofT) STA4273-Lec6 17 / 25

Luckily, we can reparameterize the graph with $\mathbf{z} = \sigma_{\mathbf{x}} \epsilon + \mu_{\mathbf{x}}$:

$$\mathsf{ELBO}(\Theta, \phi, \mathbf{x}) = \mathbb{E}_{\mathbf{z} \sim q_{\phi}} \left[\log p_{\Theta}(\mathbf{z}) + \log p_{\Theta}(\mathbf{x}|\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}) \right]$$

(UofT) STA4273-Lec6 18 / 25

Now we get pathwise gradients! Much lower variance!

$$\mathsf{ELBO}(\Theta, \phi, \mathbf{x}) = \mathbb{E}_{\mathbf{z} \sim q_{\phi}} \left[\log p_{\Theta}(\mathbf{z}) + \log p_{\Theta}(\mathbf{x}|\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}) \right]$$

(UofT) STA4273-Lec6 19 / 25

Variational autoencoders—summary

- 1. A VAE is a latent variable model $p_{\Theta}(\mathbf{x}, \mathbf{z})$.
- 2. To fit a VAE,

(UofT)

- introduce an approximate posterior $q_{\phi}(\mathbf{z}|\mathbf{z})$.
- optimizing the ELBO using gradient ascent

$$\mathbb{E}_{\mathsf{z} \sim q_{\phi}} \left[\log rac{p_{\Theta}(\mathsf{z}, \mathsf{x})}{q_{\phi}(\mathsf{z}|\mathsf{x})}
ight]$$

 compute ELBO gradients by reparameterizing a SCG that simulates the ELBO.

(Kingma and Welling, 2019)

- Variational autoencoders can get quite elaborate.
- A (now old, but cool) example is the DRAW model (Gregor et al., 2015).
 - ▶ DRAW: A Recurrent Neural Network For Image Generation
- This is a time-series model that turns generation in an iterative process using attention.
- It is basically an elaborate VAE.

(UofT) STA4273-Lec6 21 / 25

Variational bayes

- The idea of variational inference is applicable beyond latent variable models.
- We can use variational inference for the problem of Bayesian inference.
- Suppose we have a regression or classification task from inputs $\mathbf{x} \in \mathbb{R}^d$ to labels $\mathbf{y} \in \mathcal{Y}$. We can use a neural network with parameters $\mathbf{w} \in \mathbb{R}^n$ that parameterizes a distribution $p(\mathbf{y}|_{\mathbf{y}}\mathbf{w})$.
- Maximum likelihood corresponds to

$$\max_{\mathbf{w} \in \mathbb{R}^n} \log p(\mathbf{y}|\mathbf{x},\mathbf{w})$$

Variational bayes

- Maximum likelihood is prone to overfitting, why not "be Bayesian"?
 - ► This course is not about statistical inference, so I don't want to get into pointless arguments about whether being Bayesian is correct.
 - Training multiple diverse models and averaging their predictions (ensembling) is a very effective technique for reducing variance (overfitting) in practice (and theory in some settings).
- Being Bayesian ultimately amounts to saying that you want to average over multiple parameter settings, instead of maximize. I.e., you want to use the following to predict:

$$p(\mathbf{y}|\mathbf{x}) = \int p(\mathbf{y}|\mathbf{x}, \mathbf{w}) p(\mathbf{w}|\mathbf{y}, \mathbf{x}) d\mathbf{w}$$

Variational bayes

- What the heck is $p(\mathbf{w}|\mathbf{y},\mathbf{x})$ and how do we get it?
- $p(\mathbf{w}|\mathbf{y},\mathbf{x}) \propto p(\mathbf{y}|\mathbf{x},\mathbf{w})p(\mathbf{w})$ is the "posterior" and it is determined by some choice of prior $p(\mathbf{w})$.
- The topic of Bayesian inference ultimately amounts to computing expectations w.r.t. $p(\mathbf{w}|\mathbf{y},\mathbf{x})$, and we can approximate it with variational inference! Variational bayes:

$$p(\mathbf{w}|\mathbf{y},\mathbf{x}) = \arg\max_{q} \mathbb{E}\left[\log\frac{p(\mathbf{y}|\mathbf{x},\mathbf{w})p(\mathbf{w})}{q(\mathbf{w}|\mathbf{y},\mathbf{x})}\right]$$

 Main idea is, we can use variational inference (and the techniques we've learned today) for more than just latent variable models.

◆□▶◆□▶◆壹▶◆壹▶ 壹 める◆

(UofT) STA4273-Lec6 24 / 25

Talks today

- Variational bayes for neural network parameters using the reparameterization trick (just like VAEs!).
- Variational bayes over the neural network function space using ideas from gradient estimation for implicit models.
- Optimizing variational objectives that are not the ELBO (KLs in the other direction).