## STA 4273: Minimizing Expectations

Lecture 5 - Variational Objectives I

Chris J. Maddison

University of Toronto

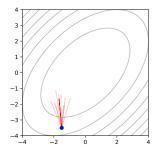
#### **Announcements**

- Additional office hours posted for next week.
- Questions, comments, concerns?

- Today we will review stochastic computation graphs (SCG) framework.
  - Gradient Estimation Using Stochastic Computation Graphs (Schulman et al., 2015).
  - Credit Assignment Techniques in Stochastic Computation Graphs (Weber et al., 2019)
- Summarizes a great deal of the topics on gradient estimation in the last two weeks.

## Stochastic computation graphs—basic idea

- Suppose we have a program that computes realizations of  $f(X, \theta)$  with  $X \sim q_{\theta}$ .
  - ► X is a random variable with a prob. density  $q_{\theta}$ .
  - $f: \mathcal{X} \times \mathbb{R}^D \to \mathbb{R}$  is a function.
- Can we automatically derive a program that computes an estimator of  $\nabla_{\theta} \mathbb{E}_{X \sim q_{\theta}}[f(X, \theta)]$ ?



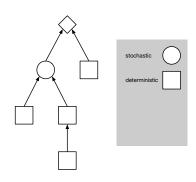
(UofT) STA4273-Lec5 4 / 38

A SCG is a directed, acyclic graph  $(\mathcal{V}, \mathcal{E})$ .

 An edge in E from v to w means that w is a (random) function of v.

It has two types of nodes

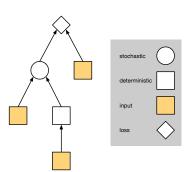
- Stochastic nodes  $S \subseteq V$ , which are conditionally independent r.v.s given their parents.
- Deterministic nodes D⊆ V, which are deterministic functions of their parents.



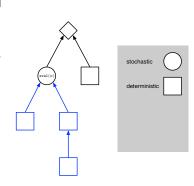
(UofT)

Deterministic nodes are further specialized

- Inputs are deterministic nodes that have no parents. Includes the parameters  $\theta$ .
- Losses  $\mathcal{L} \subseteq \mathcal{V}$  are the deterministic nodes whose average expectation we aim to minimize in  $\theta$ .



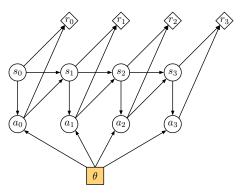
- $h_v$  are the parents of a node v.
- w descends from v,  $v \prec w$ , if a directed path from v to w exists.
  - ▶ Sim.  $\mathcal{X} \prec w$  for  $\mathcal{X} \subseteq \mathcal{V}$ , if a directed path exists from some node in  $\mathcal{X}$  to w.
- Can evalute a node, eval(w).
  - ► Resolve the value of it's ancestors  $A_w = \{v : v \prec w\}.$
  - ► All inputs in A<sub>w</sub> need to have their values given by a user or fixed.
  - Value of a stochastic node is a realization of the random variable.
- We use v synonymously with its value in a realization of the graph.



(UofT) STA4273-Lec5

### Finite-horizon MDP—example

Finite-horizon MDP with policy  $\pi_{\theta}(a_t|s_t)$ .



$$\tau = (s_0, a_0 ... s_3, a_3), r_t = r(s_t, a_t), r(\tau) = \sum_{t=0}^3 r_t, J(\theta) = \mathbb{E}[r(\tau)].$$

- 4 ロ ト 4 個 ト 4 重 ト 4 重 ト 9 Q G

(UofT) STA4273-Lec5 8 / 38

#### Notation

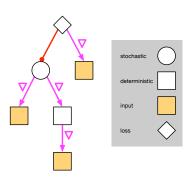
- If y is a function of x (may be a random function), then
  - ▶  $\partial y/\partial x$  is the direct derivative of y with respect to x.
  - ▶ dy/dx is the total derivative of y with respect to x, taking into account all paths from x to y.
  - ▶ If y is a random function of x, then  $\partial y/\partial x = 0$  by convention.

• For  $L := \sum_{\ell \in \mathcal{L}} \ell$  are interested in:

$$abla_{ heta}J( heta)=\mathbb{E}\left[L
ight]=\mathbb{E}\left[\sum_{\ell\in\mathcal{L}}\ell
ight]$$

- Stochastic nodes block gradients.
- Then we have  $\nabla_{\theta} J(\theta) =$

$$\mathbb{E}\left[\sum_{\substack{v \in \mathcal{S} \\ \theta \prec v}} L \frac{d\log p(v|h_v)}{d\theta} + \sum_{\substack{\ell \in \mathcal{L} \\ \theta \prec \ell}} \frac{d\ell}{d\theta}\right]$$

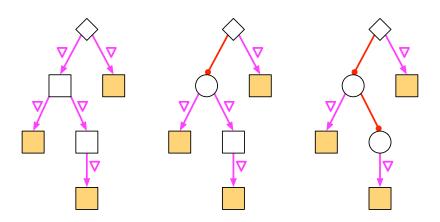


(UofT) STA4273-Lec5 10 / 38

$$\mathbb{E}\left[\sum_{\substack{v \in \mathcal{S} \\ \theta \prec v}} L \frac{d \log p(v|h_v)}{d\theta} + \sum_{\substack{\ell \in \mathcal{L} \\ \theta \prec \ell}} \frac{d\ell}{d\theta}\right]$$

- We are ignoring smoothness assumptions needed to make this formal, but at the very least we need the differentiability of all edges
- Note, any paths from  $\theta$  to v that include a stochastic node will contribute 0 to the total derivative by convention.
- Pathwise gradients usually contribute very little variance.
- Score function gradients or REINFORCE contribute the most variance.
- Usually. There are exceptions in which score function estimators are lower variance.

(UofT) STA4273-Lec5 11 / 38

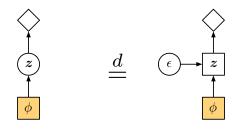




If a path from a loss to an input is blocked by a stochastic node, we must use score function estimators.

(UofT) STA4273-Lec5 13 / 38

score function gradient estimator needed



Suppose we can reparamterize  $z=g(\epsilon,\phi)$  for some random variable  $\epsilon$  and differentiable g.

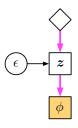
◆ロ ト ◆ 部 ト ◆ 差 ト ◆ 差 ・ 夕 へ ⊙

14 / 38

(UofT) STA4273-Lec5



score function gradient estimator needed

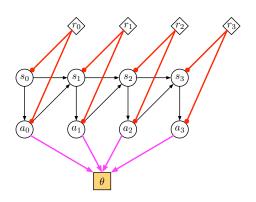


pathwise gradient estimator available

Now we can use pathwise (which is typically lower variance!).

(UofT)

### Finite-horizon MDP—example



$$abla J( heta) = \mathbb{E}_{ au \sim p} \left[ \sum
olimits_{t=0}^{3} \left( \sum_{t=0}^{3} r_{t} 
ight) 
abla \log \pi_{ heta}(a_{t}|s_{t}) 
ight]$$

(UofT) STA4273-Lec5 16 / 38

- The most important thing is not the formal details of this framework (unless you will implement a new TensorFlow package), but that you get the intuitions.
- We will now define values, baselines, and critics on general SCGs.
- The reason is that these are powerful techniques for lowering the variance of gradient estimators and this framework can help you develop an intuition for designing new techniques.

#### **Values**

• Let  $\mathcal{X} \subseteq \mathcal{V}$ . Let x be an assignment of possible values to variables in  $\mathcal{X}$ . The value function of x for a scalar function S of the nodes is

$$V_{\mathcal{X}}(x;S) = \mathbb{E}[S(\mathcal{V}) | \mathcal{X} = x]$$

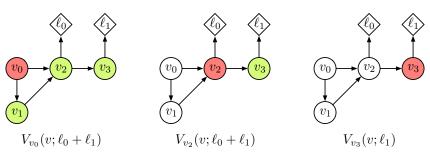
•  $S(\mathcal{V})$  is typically the cost-to-go of  $\mathcal{X}$ , i.e., the sum of loss nodes that descend from  $\mathcal{X}$ .

$$S(\mathcal{V}) = L(\mathcal{X}) := \sum_{\substack{\ell \in \mathcal{L} \\ \mathcal{X} \prec \ell}} \ell$$

(UofT) STA4273-Lec5 18 / 38

#### **Values**

Red nodes are conditioned on; green nodes are marginalized.



(Omitting the  $\theta$  input from which all nodes descend.)

## Finite-horizon MDP—example



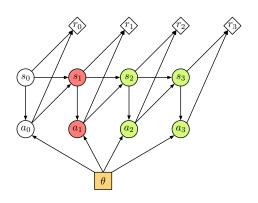
$$V_{s_1}(s; L(s_1)) = \mathbb{E}\left[\sum_{t=1}^3 r_t \,\middle|\, s_1 = s\right] = V_1^{\pi}(s)$$

→ □ ト → □ ト → 三 ト → 三 → つへの

20/38

(UofT) STA4273-Lec5

### Finite-horizon MDP—example



$$V_{\{s_1,a_1\}}(s,a;L(\{s_1,a_1\})) = \mathbb{E}\left[\sum_{t=1}^3 r_t \mid s_1=s, a_1=a\right] = Q_1^{\pi}(s,a)$$

- 4 ロト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q C

(UofT) STA4273-Lec5 21 / 38

#### **Baselines**

• A baseline for a node v is a scalar-valued function  $B(\mathcal{V})$  of the node values in  $\mathcal{V}$  such that

$$\mathbb{E}\left[\frac{d\log p(v|h_v)}{d\theta}B(\mathcal{V})\right]=0$$

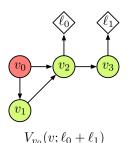
• Important fact: if  $\mathcal{B} \subseteq \mathcal{V}$  is such that for all  $b \in \mathcal{B}$ , b is not a descendant of w,  $w \not\prec b$ , and  $B(\mathcal{B})$  is a scalar-valued function, then

$$\mathbb{E}\left[\frac{d\log p(v|h_v)}{d\theta}B(\mathcal{B})\right] = \mathbb{E}\left[\mathbb{E}\left[\frac{d\log p(v|h_v)}{d\theta}\middle|h_v\right]\mathbb{E}\left[B(\mathcal{B})\middle|h_v\right]\right] = 0$$

(UofT)

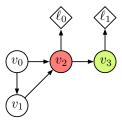
### Baselines

Values can be used as baselines. Which are valid baselines for  $v_2$ ?



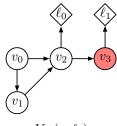
$$(v; \ell_0 + \ell_1)$$

VALID



$$V_{v_2}(v;\ell_0+\ell_1)$$

INVALID



$$V_{v_3}(v;\ell_1)$$

INVALID

#### **Baselines**

• Application:  $L(\theta) - L(v)$  is a valid baseline for v, so we can quickly get the following identity:

$$\mathbb{E}\left[\sum_{\substack{v \in \mathcal{S} \\ \theta \prec v}} L \frac{d \log p(v|h_v)}{d\theta} + \sum_{\substack{\ell \in \mathcal{L} \\ \theta \prec \ell}} \frac{d\ell}{d\theta}\right]$$

$$= \mathbb{E}\left[\sum_{\substack{v \in \mathcal{S} \\ \theta \prec v}} L(v) \frac{d \log p(v|h_v)}{d\theta} + \sum_{\substack{\ell \in \mathcal{L} \\ \theta \prec \ell}} \frac{d\ell}{d\theta}\right]$$

24 / 38

(UofT)

#### Critics

• A critic for a node v is a scalar-valued function  $Q(\mathcal{V})$  of the node values in  $\mathcal{V}$  such that

$$\mathbb{E}\left[\frac{d\log p(v|h_v)}{d\theta}L(v)\right] = \mathbb{E}\left[\frac{d\log p(v|h_v)}{d\theta}Q(\mathcal{V})\right]$$

Can be designed easily using the tower property of expectation:

$$\mathbb{E}\left[\frac{d\log p(v|h_v)}{d\theta}L(v)\right] = \mathbb{E}\left[\frac{d\log p(v|h_v)}{d\theta}\mathbb{E}[L(v)|v,h_v]\right]$$

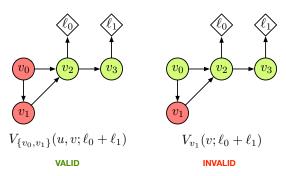
So  $Q_v(V) = \mathbb{E}[L(v)|v, h_v] = V(v, h_v; L(v))$  is a valid critic.



(UofT) STA4273-Lec5 25 / 38

### Critics

Values can be used as critics. Which are valid critics for  $v_1$ ?



Why?  $L(v_1)$  is not conditionally independent of  $d \log p(v_1|v_0)/d\theta$  given  $v_1$ .

(UofT) STA4273-Lec5 26 / 38

#### Baselines and critics

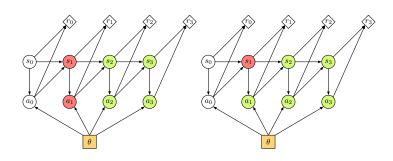
Critics and baselines are motivated by the following fact. Let  $Q_v$  and  $B_v$  be critics and baselines, respectively, for each stochastic node v, then

$$abla_{ heta}J( heta) = \mathbb{E}\left[\sum_{\substack{v \in \mathcal{S} \ heta \prec v}} (Q_v(\mathcal{V}) - B_v(\mathcal{V})) rac{d\log p(v|h_v)}{d heta} + \sum_{\substack{\ell \in \mathcal{L} \ heta \prec \ell}} rac{d\ell}{d heta}
ight]$$

Depending on the choice of  $Q_{\nu}$  and  $B_{\nu}$  we can *greatly* reduce variance, while remaining unbiased.

(UofT) STA4273-Lec5 27 / 3

### Finite-horizon MDP—example



$$egin{aligned} 
abla J( heta) &= \mathbb{E}\left[\sum_{t=0}^T \left(\sum_{t'=t}^T r_{t'}
ight) rac{d\log \pi_{ heta}(a_t|s_t)}{d heta}
ight] \ &= \mathbb{E}\left[\sum_{t=0}^T \left(Q_t^\pi(s_t,a_t) - V_t^\pi(s_t)
ight) rac{d\log \pi_{ heta}(a_t|s_t)}{d heta}
ight] \end{aligned}$$

- Framework includes other generalizations.
- Weber et al. (2019) define the following.
  - ► Generalized Bellman equation.
  - "Bootstrapping" methods, i.e., generalizations of TD learning.
  - ▶ Some other slightly more exotic variance reduction ideas.
  - ► Lots to explore, some of which may not really have been widely applied. Opportunity?
- Let's look at an application: variational autoencoders.

Variational autoencoders

### Modelling high-dimensional, multi-modal data

MNIST handwritten digit dataset.



(UofT) STA4273-Lec5

### Modelling high-dimensional, multi-modal data

CIFAR-10 small natural image dataset.



(UofT) STA4273-Lec5 32 / 38

### Modelling high-dimensional, multi-modal data

### CelebA large images of celebreties



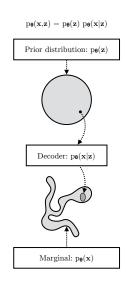
(Liu et al., 2015) ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □ ► ← □

#### Variational autoencoders

- 1. Variational autoencoders (VAEs) are latent variables models for high dimensional data  $\mathbf{x} \in \mathbb{R}^n$ .
- 2. A latent variable model is specified in terms of a joint distribution between  $\mathbf{x}$  and a latent variable  $\mathbf{z} \in \mathbb{R}^m$  that factorizes as follows:

$$p_{\theta}(\mathbf{x}, \mathbf{z}) = p_{\theta}(\mathbf{z})p_{\theta}(\mathbf{x}|\mathbf{z})$$

3. Latent variable models are an expressive class, because the marginal  $p_{\theta}(\mathbf{x})$  can be very complex due to the likelihood  $p_{\theta}(\mathbf{x}|\mathbf{z})$  warping the probability mass of a simple prior  $p_{\theta}(\mathbf{z})$ .



(Kingma and Welling, 2019)

(UofT) STA4273-Lec5 34 / 38

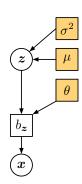
### Variational autoencoders—example

- 1. Consider the binary data case,  $\mathbf{x} \in \{0,1\}^n$ .
- 2. Consider a deep Gaussian latent variable model.

$$\mathbf{z} \sim \mathcal{N}(\mu, \sigma^2 I)$$
  
 $\mathbf{x}_i \sim \mathrm{Bernoulli}(b_{\mathbf{z},i}) \; \mathrm{indept.}$ 

where  $b_{\mathbf{z}} = \mathcal{NN}_{\theta}(\mathbf{z})$  is computed using a neural network  $\mathcal{NN}_{\theta} : \mathbb{R}^m \to \mathbb{R}^n$  with parameters  $\theta$ .

3. The marginal  $p_{\Theta}(\mathbf{x})$  can be multimodal and expressive.



(UofT) STA4273-Lec5 35 / 38

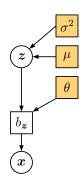
#### Variational autoencoders

- 1. Let  $\Theta = (\theta, \mu, \sigma^2)$ . How can we do maximum likelihood over  $\Theta$  in this model?
- 2. What we want is

$$\arg\max_{\Theta}\log p_{\Theta}(\mathbf{x})$$

but  $p_{\Theta}(\mathbf{x}) = \int p_{\Theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z}$  is too expensive to compute.

3. The basic idea behind the variational autoencoder is to optimize a tractable variational lower bound on  $\log p_{\Theta}(\mathbf{x})$ , in fact the ELBO (Lecture 1)!



(UofT) STA4273-Lec5 36 / 38

#### Evidence lower bound

Recall the evidence lower bound (ELBO)

$$\mathsf{ELBO}(\Theta, \phi, \mathbf{x}) = \mathbb{E}_{\mathbf{z} \sim q_{\phi}} \left[ \log \frac{p_{\Theta}(\mathbf{z}, \mathbf{x})}{q_{\phi}(\mathbf{z} | \mathbf{x})} \right] = \log p_{\Theta}(\mathbf{x}) - \mathsf{KL}(q_{\phi}(\mathbf{z} | \mathbf{x}) \parallel p_{\Theta}(\mathbf{z} | \mathbf{x}))$$

#### Where

- ullet  $q_\phi$  is a density in a parametric family of probability densities.
- The objective is called the ELBO, because:

$$\mathsf{ELBO}(\Theta, \phi, \mathbf{x}) \leq \log p_{\Theta}(\mathbf{x})$$

Idea: what if we optimized the ELBO in terms of  $\Theta, \phi$ ?

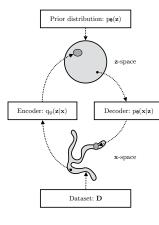
◆ロト ◆個ト ◆ 恵ト ◆ 恵ト ・ 恵 ・ かへで

#### Variational autoencoders

- 1. Approximate maximum likelihood for VAEs is carried out by introducing a approximate posterior  $q_{\phi}(\mathbf{z}|\mathbf{x})$ .
- To fit a VAE, optimize ELBO using gradient ascent as a surrogate for the the marginal likelihood of x,

$$\mathbb{E}_{\mathbf{z} \sim q_{\phi}} \left[ \log rac{p_{\Theta}(\mathbf{z}, \mathbf{x})}{q_{\phi}(\mathbf{z}|\mathbf{x})} 
ight]$$

3. The key question is then how to estimate  $\nabla_{\Theta} \operatorname{ELBO}(\Theta, \phi, \mathbf{x})$  and  $\nabla_{\phi} \operatorname{ELBO}(\Theta, \phi, \mathbf{x})$ 



(Kingma and Welling, 2019)

(UofT) STA4273-Lec5 38 / 38