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Announcements

@ Additonal office hours posted for next week.

@ Questions, comments, concerns?
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Stochastic computation graphs

e Today we will review stochastic computation graphs (SCG)
framework.

» Gradient Estimation Using Stochastic Computation Graphs (Schulman
et al., 2015).
» Credit Assignment Techniques in Stochastic Computation Graphs
(Weber et al., 2019)
@ Summarizes a great deal of the topics on gradient estimation in the
last two weeks.
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Stochastic computation graphs—basic idea

@ Suppose we have a program that
computes realizations of (X, 6) with
X ~ qy.

» X is a random variable with a prob.
density qgy.
» f: X xRP = Ris a function.

@ Can we automatically derive a program -2
that computes an estimator of -3
VGEXNqQ [f(Xa 0)]? _4—4 —I2 6 é 4
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Stochastic computation graphs

A SCG is a directed, acyclic graph (V, ).

@ An edge in £ from v to w means that
w is a (random) function of v.

stochastic

It has two types of nodes

@ Stochastic nodes S C V, which are
conditionally independent r.v.s given
their parents.

deterministic

1O

@ Deterministic nodes D C V), which are
deterministic functions of their parents.
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Stochastic computation graphs

Deterministic nodes are further specialized

stochastic

@ Inputs are deterministic nodes that have
no parents. Includes the parameters 6. deterministc

@ Losses £ C V are the deterministic
nodes whose average expectation we
aim to minimize in 6.

input

loss

SCOLIO
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Stochastic computation graphs

@ h, are the parents of a node v.

@ w descends from v, v < w, if a directed
path from v to w exists.
» Sim. X < w for X CV, if a directed
path exists from some node in X to w.

stochastic Q
deterministic D

e Can evalute a node, eval(w).
» Resolve the value of it's ancestors

Ay ={v:iv<w}

» All inputs in A,, need to have their
values given by a user or fixed.

» Value of a stochastic node is a
realization of the random variable.

@ We use v synonymously with its value
in a realization of the graph.
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Finite-horizon MDP—example

Finite-horizon MDP with policy mp(a¢|st).

T = (s0,a0..53,a3), rt = r(st,at), r(7) = Z?:o re, J(0) = E[r(7)].
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e If y is a function of x (may be a random function), then
» Jy/Ox is the direct derivative of y with respect to x.

» dy/dx is the total derivative of y with respect to x, taking into
account all paths from x to y.

» If y is a random function of x, then dy/Ox = 0 by convention.
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Stochastic computation graphs

e For L=}, / are interested in:

=E Ze]

el

VoJ(6) = E[L]

stochastic

deterministic

@ Stochastic nodes block gradients.
@ Then we have VgJ(0) =

input

loss

SOLIO

d Iogp v|h dl
E|Y L~ 70
veS eL
0<v 0=<¢
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Stochastic computation graphs

dlogp(v|h ) dt
E Y 1—=" +Z@

vesS el
O<v 0=/

We are ignoring smoothness assumptions needed to make this formal,
but at the very least we need the differentiability of all edges

Note, any paths from 6 to v that include a stochastic node will
contribute 0 to the total derivative by convention.

Pathwise gradients usually contribute very little variance.

Score function gradients or REINFORCE contribute the most variance.

Usually. There are exceptions in which score function estimators are
lower variance.
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Stochastic computation graphs—examples

g

DVDEDV
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Stochastic computation graphs—examples

<

score function gradient
estimator needed

If a path from a loss to an input is blocked by a stochastic node, we must
use score function estimators.
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Stochastic computation graphs—examples

Suppose we can reparamterize z = g(e, ¢) for some random variable € and
differentiable g.
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Stochastic computation graphs—examples

O

score function gradient pathwise gradient estimator
estimator needed available

Now we can use pathwise (which is typically lower variance!).
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Finite-horizon MDP—example

O O

S0 S1 S2 S3

3
VJ(O) =Erp [Zlo (Z ft) Vlog 7"0(3t|5t)]

t=0

(UofT) STA4273-Lec5 16 /38



Stochastic computation graphs

@ The most important thing is not the formal details of this framework
(unless you will implement a new TensorFlow package), but that you
get the intuitions.

@ We will now define values, baselines, and critics on general SCGs.

@ The reason is that these are powerful techniques for lowering the
variance of gradient estimators and this framework can help you
develop an intuition for designing new techniques.
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Values

@ Let X C V. Let x be an assignment of possible values to variables in
X. The value function of x for a scalar function S of the nodes is

Vx(x;S) =E[S(V)| X = x]
e S(V) is typically the cost-to-go of X, i.e., the sum of loss nodes that

descend from X.
SW)=L(x):=) ¢

leL
X<l
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Red nodes are conditioned on; green nodes are marginalized

’UO’UEO_'_El UQUEO+€1 ’Ugvgl

(Omitting the @ input from which all nodes descend.)
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Finite-horizon MDP—example
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Finite-horizon MDP—example

3

Vi, o) (5,3 L{su D) =E[>_

e[ =sa=a) = QT (s, a)
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Baselines

@ A baseline for a node v is a scalar-valued function B(V) of the node
values in V such that

E [dlogp(VIhv)

> B(V)] =0

o Important fact: if B C V is such that for all b € B, b is not a
descendant of w, w £ b, and B(B) is a scalar-valued function, then

d log p(v|hy) dlog p(v|hy)

E o B(B)]:IE[IE[ 0

] ElB@)I] =0
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Baselines

Values can be used as baselines. Which are valid baselines for v»?

UOU€0+£1 U2U£0+€1 U3U€1

VALID INVALID INVALID
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Baselines

o Application: L(#) — L(v) is a valid baseline for v, so we can quickly
get the following identity:

Z Ldlogp vlhy) de
veS cL do
0<v 9-<€

dlog p(v|hy,) dt
2T g 2 g
veS el

0<v 0<¢
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@ A critic for a node v is a scalar-valued function Q(V) of the node
values in V such that

. [dlogp(v|h )L( )] [dloggév!hv)Q(V)}

@ Can be designed easily using the tower property of expectation:

g | TEA) ()] | BRI gy, )

So Q,(V) = E[L(v)|v, h,] = V(v, h,; L(v)) is a valid critic.
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Critics

Values can be used as critics. Which are valid critics for v¢?

V{Ugvl}uvfo—i-fl v1 ngJrgl

VALID INVALID

Why? L(vy) is not conditionally independent of d log p(vi|vy)/d8 given vy.
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Baselines and critics

Critics and baselines are motivated by the following fact. Let @, and B,
be critics and baselines, respectively, for each stochastic node v, then

dl h, d/

VeJ(0) =E | 3 (Q(V) - va»"ggg”’ =
veS el
O<v 0=/

Depending on the choice of @, and B, we can greatly reduce variance,
while remaining unbiased.
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Finite-horizon MDP—example

u dlog 776(3t|5t)
Z I’t/ —de
=t
a

dlog Wg(at’St)]




Stochastic computation graphs

@ Framework includes other generalizations.
o Weber et al. (2019) define the following.

» Generalized Bellman equation.

» “Bootstrapping” methods, i.e., generalizations of TD learning.

» Some other slightly more exotic variance reduction ideas.

> Lots to explore, some of which may not really have been widely
applied. Opportunity?

@ Let’s look at an application: variational autoencoders.
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Variational autoencoders
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Modelling high-dimensional, multi-modal data

MNIST handwritten digit dataset.




Modelling high-dimensional, multi-modal data

CIFAR-10 small natural image dataset
=EE~ - BBl
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(Krizhevsky, 2009)
STA4273-Lec5




Modelling high-dimensional, multi-modal data

CelebA large images of celebreties

P (&

Eyeglasses Wi{a;i“g
Bangs ‘Wavy Hair |4 ‘
Poinvty ’ \ b‘ Mustache [=
Nose L\ g
(N A 4 s
Oval Face Smiling

(Liu et al., 2015)
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Variational autoencoders

1. Variational autoencoders (VAEs) are pelz) = polz) polx)

latent variables models for high | Prior distribution: pe(z) |
dimensional data x € R". !

2. A latent variable model is specified in
terms of a joint distribution between x
and a latent variable z € R that
factorizes as follows:

po(x,2) = po(2)pe(x[2)

3. Latent variable models are an expressive
class, because the marginal pg(x) can
be very complex due to the likelihood .
po(x|z) warping the probability mass of Marginal: po(x)
a simple prior py(z).

(Kingma and Welling, 2019)
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Variational autoencoders—example

1. Consider the binary data case,
x € {0,1}".

2. Consider a deep Gaussian latent
variable model.

z~ N(n,0?l)
x; ~ Bernoulli(b, ;) indept.
where b, = NN y(z) is computed using

a neural network NNy : R™ — R" with
parameters 6.

3. The marginal pg(x) can be multimodal
and expressive.
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Variational autoencoders

1. Let © = (6, u,0%). How can we do
maximum likelihood over © in this
model?

2. What we want is

arg max log pe(x)

but pe(x) = [ pe(x,z)dz is too
expensive to compute.

3. The basic idea behind the variational
autoencoder is to optimize a tractable

variational lower bound on log pg(x), in
fact the ELBO (Lecture 1)!
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Evidence lower bound

Recall the evidence lower bound (ELBO)

ELBO(©,0.x) = g, |02 ’;jg]j)’] — log po(x)—KL(4s(zlx) || po(zlx))

Where

@ gy is a density in a parametric family of probability densities.
@ The objective is called the ELBO, because:

ELBO(®, ¢,x) < log pe(x)

Idea: what if we optimized the ELBO in terms of ©, ¢7
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Variational autoencoders

1. Approximate maximum likelihood for
VAEs is carried out by introducing a

Prior distribution: pe(z)

approximate posterior qy(z|x).
2. To fit a VAE, optimize ELBO using p
gradient ascent as a surrogate for the
the marginal likelihood of x, Emiee
z,x
Erm, Pog P@(’)}
q¢ (Z | X) X-space

3. The key question is then how to

estimate Vg ELBO(O, ¢,x) and

V4 ELBO(O, ¢, x)

(Kingma and Welling, 2019)
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