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Announcements

@ None.

@ Questions, comments, concerns?
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Gradient estimation

@ Recall, we aim to design gradient
estimators, i.e., G(#) such that

E[G(0)] = VoEx~q[f (X, 0)] ‘

» Assume it exists.

» X is a random variable with a prob.
density qgy.

» f: X xRP - Ris a function. - \

e Will briefly discuss two (pretty distinct)
important ideas.

» Policy gradient theorem.
» Stochastic computation graphs.
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Recall

@ Infinite-horizon MDP, finite action space, finite state space. An agent
interacts with the environment p(s¢+1|st, a) using a policy my(a|st)
for T = oo steps.

@-@-@-@---

@ The agent's objectives is to maximize its return:

Z’er(sn at)]
t=0

e This is finite if r is bounded, but can we get gradients VyJ(0) if the
process is actually infinite-horizon?7?

J(O) =E

» As we saw last week in one of the talks, we can simulate episodic
MDPs in this framework by introducing absorbing states.
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Recall

@ In the finite-horizon setting, i.e., T is finite, we had a simple
expression that we've seen now a couple times:

VoJ(0) =Ervp [Zz—:o r(7)Volog mg(a|st)

@ The policy gradient theorem gives us a very simple and intuitive
expression for the policy gradient in the infinite horizon setting.
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Policy gradient theorem

@ Recall:

Q™(s,a) [27 r(st, ar)

t=0

V7o (s ZT[‘@ als)Q™ (s, a)

So =S, ao—a]

o Let's start by trying to compute the gradient Vy V7 (s).
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Policy gradient theorem

VoV™(s)
=V > _ Q™(s,a0)mg(aols)

ag

= [Q™(s, a0)Vamg(aols) + ma(a0ls) Ve Q™ (s, a0)]

a0

define g(0,s) =>_, Q™ (s, a)Vgmy(als)

=g(f,s) + Zﬂg(ao|s)V9Q7r9 (s, a0)

ao

mo(aols)Vy <r(s, ag) + Z p(s1|s, ap) V™ (51)>]

S1

=g(0,s) + Z
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Policy gradient theorem

=g(0,s) + Z

0

= g(0,5)+7>_ > mo(aols)p(s1]s, 20) Vo V™ (s1)

ap S1

=g(0,5)+v> > mo(aols)p(s1ls, 20)g(0, 51)

a s

mo(aols) Ve <r(s, ag) + 7 Z p(sils, ao)V’Te(sl))]

S1

2SS ST S wolaols)p(sils, ao)ma(als)p(sals, a1) VoV (s2)

a S1 a1 S
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Policy gradient theorem

If we keep unrolling we get this:

D> g0.8) | D v*malaols)p(sils, a0)..mo(ak—1]sk—1)p(s|Sk—1, 3k—1)

k=0 s’ a0:k—1
S1:k—1

What the heck is this?

D) g0.5) | DY A<mo(aols)p(sils, a0)..mo(ak—1]sk—1)p(s |sk—1, ak—1)

k=0 s’ a0:k—1
S1tk—1
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The discounted state visitation distribution

@ Define the following distribution:
Input: Initial state sp = s
flip coin with prob. «, init. k = 0;
while coin is heads do
ax ~ mo(+|sk) ;
Sk+1 ~ p(+|sk, ak) ;
flip coin with prob. ~, increment k;

end
return s;;

e Start in s, at each iteration flip a coin with P(heads) =+, terminate
if tails, else continue.

® ® ® o = ©
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The discounted state visitation distribution

e Start in s, at each iteration flip a coin with P(heads) =+, terminate
if tails, else continue.

®o © © o = ©

@ What is the probability P(returned on iteration k and s, = s’)?

YL =) > 7olaols)p(sils, a0).-mo(ak—11sk-1)p(s Isk-1, ak-1)
a0:k—1
Sl:k—1

@ The marginal is the discounted state visitation distribution:

(s Zv (1=9) > 7o(aols).-mo(ak—1]sk-1)p(s|sk-1, ak-1)

a0:k—1
S1:k—1
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Policy gradient theorem

Let's get back to business
VoV (s)

=> > 8(0,5) | Y v*mo(aols).mo(ak—1lsk—1)p(5'|k—1, ak-1)

k=0 s’ a0:k—1
S1:k—1

&8s .
=2 Al

= Z Z d;r9(5/|5)7'r9(a|5/) QT (5 , 3)1Vj |;g 7r9(a‘5 )
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Policy gradient theorem

o All together, with sp ~ p(s0), s ~ d7?(s|s0), a ~ mg(als):
(1 =7)VeJ(0) = E[Q™(s,a) Vg logmy(als)]

o Very satisfying form! This is the policy gradient theorem.

@ Again, we can use control variates:

(L =7)VeJ(6) = E[(Q™(s,a) — V™(s)) Vylogme(als)] (1)
= E[A™(s, a)Vylogmy(als)] (2)

@ Because of discounting, we can get an unbiased estimator of this
infinite-horizon return!
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@ Let's compare the policy gradient theorem in the infinite-horizon
(1 =7)VeJ(0) = E[Q™(s,a)Vylogmy(als)]
@ with the finite-horizon setting:

V9J(6) = E,op [Zf_o F(7) Vg log 7o (a:st)

o Notice that the policy gradient in the infinite-horizon does not depend
on the return that was actually achieved by the agent in its rollout.
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@ This motives so-call actor-critic methods, in which the true Q™ (s, a)
is replaced by a learned Q(s, a).

E[Q™(s,a)Vglogmy(als)] ~ E [O(s, a)Vylog we(a]s)]

° Q(s, a) is called the critic. This is a very successful family of methods.
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Stochastic computation graphs

@ So far we've talked about:
» Pathwise gradient estimators.
» Score function gradient estimators.
» Control variates and baselines.
» Critics.

@ These ideas can be mixed-and-matched. How exactly to
mix-and-match them is formalized in a framework called stochastic
computation graphs (SCG).

» Gradient Estimation Using Stochastic Computation Graphs (Schulman
et al., 2015).

» Credit Assignment Techniques in Stochastic Computation Graphs
(Weber et al., 2019)

@ Briefly mention today, more next week.
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Stochastic computation graphs

A SCG is a directed, acyclic graph with
nodes V has two types of nodes

@ Stochastic nodes S C V, which are
conditionally independent r.v.s given
their parents.

stochastic

deterministic

O

@ Deterministic nodes D C V), which are
deterministic functions of their parents.
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Stochastic computation graphs

Deterministic nodes are further specialized

stochastic

@ Inputs are deterministic nodes that have
no parents. Includes the parameters 6. deterministc

@ Losses £ C V are the deterministic
nodes whose average expectation we
aim to minimize in 6.

input

loss

Hnne
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Stochastic computation graphs

@ We say that w descends from v,
v < w, if a path from w to v exists.
@ Can request the value of node w. S

» Resolve the value of it's ancestors
Ay ={v:iv=<w}

» In particular, all inputs in A need to
have their values given by a user or
fixed.

@ Value of a stochastic node is a
realization of the random variable.

deterministic

1O
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Stochastic computation graphs

o For L:=3", ./ are interested in:

2

lel

VeJ(O) =E[L] =E

stochastic

@ The partial derivative of stochastic
nodes w.r.t. their parents is 0 by
convention.

deterministic

input

loss

Hinne

@ Then we have

d Iog p dl
veS lel
O<v 6<¢
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Talks today

@ Can we use SCG to compute higher order derivatives?

@ Can we derive a policy gradient when our data is not generated with
d?(slso0)?

@ Can we compute gradients when we do not have the density of the
random variables?
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