STA 4273: Minimizing Expectations

Lecture 4 - Gradient Estimation II

Chris J. Maddison

University of Toronto

(UofT) STA4273-Lec4

Announcements

- None.
- Questions, comments, concerns?

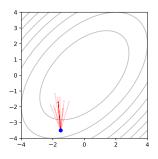
(UofT) STA4273-Lec4

Gradient estimation

• Recall, we aim to design gradient estimators, i.e., $G(\theta)$ such that

$$\mathbb{E}[G(\theta)] = \nabla_{\theta} \mathbb{E}_{X \sim q_{\theta}}[f(X, \theta)]$$

- Assume it exists.
- ▶ X is a random variable with a prob. density q_{θ} .
- $f: \mathcal{X} \times \mathbb{R}^D \to \mathbb{R}$ is a function.
- Will briefly discuss two (pretty distinct) important ideas.
 - Policy gradient theorem.
 - Stochastic computation graphs.



(UofT)

Recall

• Infinite-horizon MDP, finite action space, finite state space. An agent interacts with the environment $p(s_{t+1}|s_t, a_t)$ using a policy $\pi_{\theta}(a_t|s_t)$ for $T = \infty$ steps.

The agent's objectives is to maximize its return:

$$J(\theta) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)\right]$$

- This is finite if r is bounded, but can we get gradients $\nabla_{\theta} J(\theta)$ if the process is actually infinite-horizon???
 - As we saw last week in one of the talks, we can simulate episodic MDPs in this framework by introducing absorbing states.

(UofT) STA4273-Lec4 4 / 21

Recall

 In the finite-horizon setting, i.e., T is finite, we had a simple expression that we've seen now a couple times:

$$abla_{ heta} J(heta) = \mathbb{E}_{ au \sim p} \left[\sum_{t=0}^{\mathcal{T}} r(au)
abla_{ heta} \log \pi_{ heta}(a_t | s_t)
ight]$$

 The policy gradient theorem gives us a very simple and intuitive expression for the policy gradient in the infinite horizon setting.

(UofT) STA4273-Lec4 5 /

Recall:

$$egin{aligned} Q^{\pi_{ heta}}(s,a) &= \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t,a_t) \,\middle|\, s_0 = s, a_0 = a
ight] \ V^{\pi_{ heta}}(s) &= \sum_{a} \pi_{ heta}(a|s) Q^{\pi_{ heta}}(s,a) \end{aligned}$$

• Let's start by trying to compute the gradient $\nabla_{\theta} V^{\pi_{\theta}}(s)$.

(UofT) STA4273-Lec4 6/:

$$\begin{split} &\nabla_{\theta}V^{\pi_{\theta}}(s) \\ &= \nabla_{\theta}\sum_{a_{0}}Q^{\pi_{\theta}}(s,a_{0})\pi_{\theta}(a_{0}|s) \\ &= \sum_{a_{0}}\left[Q^{\pi_{\theta}}(s,a_{0})\nabla_{\theta}\pi_{\theta}(a_{0}|s) + \pi_{\theta}(a_{0}|s)\nabla_{\theta}Q^{\pi_{\theta}}(s,a_{0})\right] \\ \text{define } g(\theta,s) &= \sum_{a}Q^{\pi_{\theta}}(s,a)\nabla_{\theta}\pi_{\theta}(a|s) \\ &= g(\theta,s) + \sum_{a_{0}}\pi_{\theta}(a_{0}|s)\nabla_{\theta}Q^{\pi_{\theta}}(s,a_{0}) \\ &= g(\theta,s) + \sum_{a_{0}}\left[\pi_{\theta}(a_{0}|s)\nabla_{\theta}\left(r(s,a_{0}) + \gamma\sum_{s_{1}}p(s_{1}|s,a_{0})V^{\pi_{\theta}}(s_{1})\right)\right] \end{split}$$

(□) (□) (三) (三) (□)

(UofT) STA4273-Lec4 7 / 21

$$= g(\theta, s) + \sum_{a_0} \left[\pi_{\theta}(a_0|s) \nabla_{\theta} \left(r(s, a_0) + \gamma \sum_{s_1} p(s_1|s, a_0) V^{\pi_{\theta}}(s_1) \right) \right]$$

$$= g(\theta, s) + \gamma \sum_{a_0} \sum_{s_1} \pi_{\theta}(a_0|s) p(s_1|s, a_0) \nabla_{\theta} V^{\pi_{\theta}}(s_1)$$

$$= g(\theta, s) + \gamma \sum_{a_0} \sum_{s_1} \pi_{\theta}(a_0|s) p(s_1|s, a_0) g(\theta, s_1)$$

$$+ \gamma^2 \sum_{s_1} \sum_{s_2} \sum_{s_3} \sum_{s_4} \sum_{s_4} \pi_{\theta}(a_0|s) p(s_1|s, a_0) \pi_{\theta}(a_1|s_1) p(s_2|s_1, a_1) \nabla_{\theta} V^{\pi_{\theta}}(s_2)$$

◆□▶◆□▶◆■▶◆■▶ ● 900

(UofT) STA4273-Lec4 8/21

If we keep unrolling we get this:

$$\sum_{k=0}^{\infty} \sum_{s'} g(\theta, s') \left(\sum_{\substack{a_{0:k-1} \\ s_{1:k-1}}} \gamma^k \pi_{\theta}(a_0|s) p(s_1|s, a_0) ... \pi_{\theta}(a_{k-1}|s_{k-1}) p(s'|s_{k-1}, a_{k-1}) \right)$$

What the heck is this?

$$\sum_{k=0}^{\infty} \sum_{s'} g(\theta, s') \left(\sum_{\substack{a_{0:k-1} \\ s_{1:k-1}}} \gamma^k \pi_{\theta}(a_0|s) p(s_1|s, a_0) ... \pi_{\theta}(a_{k-1}|s_{k-1}) p(s'|s_{k-1}, a_{k-1}) \right)$$

(UofT) STA4273-Lec4 9/21

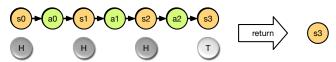
The discounted state visitation distribution

• Define the following distribution:

```
Input: Initial state s_0 = s flip coin with prob. \gamma, init. k = 0; while coin is heads do  \begin{vmatrix} a_k \sim \pi_\theta(\cdot|s_k) \ \vdots \\ s_{k+1} \sim p(\cdot|s_k, a_k) \ \vdots \\ \text{flip coin with prob. } \gamma \text{, increment } k; \\ \text{end}  \end{vmatrix}
```

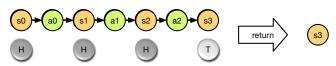
return s_k ;

• Start in s, at each iteration flip a coin with $\mathbb{P}(\text{heads}) = \gamma$, terminate if tails, else continue.



The discounted state visitation distribution

• Start in s, at each iteration flip a coin with $\mathbb{P}(\text{heads}) = \gamma$, terminate if tails, else continue.



• What is the probability $\mathbb{P}(\text{returned on iteration } k \text{ and } s_k = s')$?

$$\gamma^{k}(1-\gamma)\sum_{a_{0:k-1}\atop s_{1:k-1}}\pi_{\theta}(a_{0}|s)p(s_{1}|s,a_{0})..\pi_{\theta}(a_{k-1}|s_{k-1})p(s'|s_{k-1},a_{k-1})$$

• The marginal is the discounted state visitation distribution:

$$d_{\gamma}^{\pi_{\theta}}(s'|s) := \sum_{k=0}^{\infty} \gamma^{k}(1-\gamma) \sum_{\substack{a_{0:k-1} \\ s_{1:k-1}}} \pi_{\theta}(a_{0}|s) ... \pi_{\theta}(a_{k-1}|s_{k-1}) p(s'|s_{k-1}, a_{k-1})$$

Let's get back to business

$$egin{aligned}
abla_{ heta} V^{\pi_{ heta}}(s) \ &= \sum_{k=0}^{\infty} \sum_{s'} g(heta, s') \left(\sum_{\substack{a_0: k-1 \ s_1: k-1}} \gamma^k \pi_{ heta}(a_0|s) ... \pi_{ heta}(a_{k-1}|s_{k-1}) p(s'|s_{k-1}, a_{k-1})
ight) \ &= \sum_{s'} \frac{g(heta, s')}{1-\gamma} d^{\pi_{ heta}}_{\gamma}(s'|s) \ &= \sum_{s'} \sum_{a} d^{\pi_{ heta}}_{\gamma}(s'|s) \pi_{ heta}(a|s') rac{Q^{\pi_{ heta}}(s', a)
abla_{ heta} \log \pi_{ heta}(a|s')}{1-\gamma} \end{aligned}$$

(UofT) STA4273-Lec4 12 / 21

• All together, with $s_0 \sim p(s_0)$, $s \sim d_{\gamma}^{\pi_{\theta}}(s|s_0)$, $a \sim \pi_{\theta}(a|s)$:

$$(1 - \gamma) \nabla_{\theta} J(\theta) = \mathbb{E} \left[Q^{\pi_{\theta}}(s, a) \nabla_{\theta} \log \pi_{\theta}(a|s) \right]$$

- Very satisfying form! This is the policy gradient theorem.
- Again, we can use control variates:

$$(1 - \gamma)\nabla_{\theta}J(\theta) = \mathbb{E}\left[\left(Q^{\pi_{\theta}}(s, a) - V^{\pi_{\theta}}(s)\right)\nabla_{\theta}\log \pi_{\theta}(a|s)\right]$$
(1)
= $\mathbb{E}\left[A^{\pi_{\theta}}(s, a)\nabla_{\theta}\log \pi_{\theta}(a|s)\right]$ (2)

 Because of discounting, we can get an unbiased estimator of this infinite-horizon return!

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

(UofT) STA4273-Lec4 13 / 21

Critics

Let's compare the policy gradient theorem in the infinite-horizon

$$(1 - \gamma)\nabla_{\theta}J(\theta) = \mathbb{E}\left[Q^{\pi_{\theta}}(s, a)\nabla_{\theta}\log \pi_{\theta}(a|s)\right]$$

with the finite-horizon setting:

$$abla_{ heta} J(heta) = \mathbb{E}_{ au \sim p} \left[\sum_{t=0}^{T} r(au)
abla_{ heta} \log \pi_{ heta}(a_t | s_t)
ight]$$

 Notice that the policy gradient in the infinite-horizon does not depend on the return that was actually achieved by the agent in its rollout.

(UofT) STA4273-Lec4 14 / 21

Critics

• This motives so-call actor-critic methods, in which the true $Q^{\pi_{\theta}}(s, a)$ is replaced by a learned $\hat{Q}(s, a)$.

$$\mathbb{E}\left[Q^{\pi_{\theta}}(s, a) \nabla_{\theta} \log \pi_{\theta}(a|s)\right] \approx \mathbb{E}\left[\hat{Q}(s, a) \nabla_{\theta} \log \pi_{\theta}(a|s)\right]$$

• $\hat{Q}(s,a)$ is called the critic. This is a very successful family of methods.

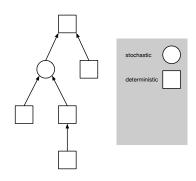
(UofT) STA4273-Lec4 15 / 21

- So far we've talked about:
 - Pathwise gradient estimators.
 - Score function gradient estimators.
 - Control variates and baselines.
 - Critics.
- These ideas can be mixed-and-matched. How exactly to mix-and-match them is formalized in a framework called stochastic computation graphs (SCG).
 - Gradient Estimation Using Stochastic Computation Graphs (Schulman et al., 2015).
 - Credit Assignment Techniques in Stochastic Computation Graphs (Weber et al., 2019)
- Briefly mention today, more next week.

(UofT) STA4273-Lec4 16 / 21

A SCG is a directed, acyclic graph with nodes ${\cal V}$ has two types of nodes

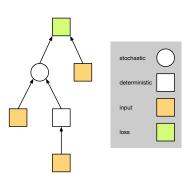
- Stochastic nodes $S \subseteq V$, which are conditionally independent r.v.s given their parents.
- Deterministic nodes $\mathcal{D} \subseteq \mathcal{V}$, which are deterministic functions of their parents.



(UofT) STA4273-Lec4 17 / 21

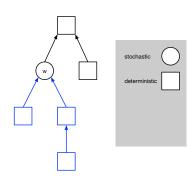
Deterministic nodes are further specialized

- Inputs are deterministic nodes that have no parents. Includes the parameters θ .
- Losses $\mathcal{L} \subseteq \mathcal{V}$ are the deterministic nodes whose average expectation we aim to minimize in θ .



(UofT) STA4273-Lec4 18 / 21

- We say that w descends from v,
 v ≺ w, if a path from w to v exists.
- Can request the value of node w.
 - ► Resolve the value of it's ancestors $A_w = \{v : v \prec w\}.$
 - ► In particular, all inputs in A need to have their values given by a user or fixed.
- Value of a stochastic node is a realization of the random variable.



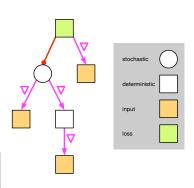
(UofT) STA4273-Lec4 19 / 21

• For $L := \sum_{\ell \in \mathcal{L}} \ell$ are interested in:

$$abla_{ heta} J(heta) = \mathbb{E}\left[L
ight] = \mathbb{E}\left[\sum_{\ell \in \mathcal{L}} \ell
ight]$$

- The partial derivative of stochastic nodes w.r.t. their parents is 0 by convention.
- Then we have

$$\nabla_{\theta} J(\theta) = \mathbb{E}\left[\sum_{\substack{v \in \mathcal{S} \\ \theta \prec v}} L \frac{d \log p(v)}{d\theta} + \sum_{\substack{\ell \in \mathcal{L} \\ \theta \prec \ell}} \frac{d\ell}{d\theta}\right]$$



(UofT) STA4273-Lec4 20 / 21

Talks today

- Can we use SCG to compute higher order derivatives?
- Can we derive a policy gradient when our data is not generated with $d_{\gamma}^{\pi_{\theta}}(s|s_0)$?
- Can we compute gradients when we do not have the density of the random variables?