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Announcements

Presentation assignments are out.

Project handout(s) are out.
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Presentation assignments

Quercus: People → Groups → look for yourself in the Week N
Presentation Assignments groups.

Please let me know ASAP, if you cannot do your week.

If you have not gotten an assignment, either I made a mistake or you
didn’t send in your rankings. Email me!
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Project

Handouts are up. Apologies for the delay. Come to office hours or
email me for help!

I’ve moved the due date of the Proposal back to Feb 22.
I Reduce conflict Prof. Grosse’s course.
I I was late on getting the handout up.

The proposal is to get you started. You do not have to end up
working on the same project that you propose!

Can I work alone? Yes, but standards will be just as high as for
groups of 4.

(UofT) STA4273-Lec3 4 / 20



Gradient estimation

Assuming it exists, today and next week we will consider the problem of
gradient estimation, i.e. computing

∇θEX∼qθ [f (X , θ)]

Same old beloved assumptions.

X is a random variable taking values in X with a prob. density qθ in
a parametric family of densities parameterized by θ ∈ RD .

f : X × RD → R is a function.
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Gradient estimation

A gradient estimator is a random
variable G (θ) such that

E[G (θ)] = ∇θEX∼qθ [f (X , θ)]

Will briefly introduce two basic
approaches.

I Score function estimator (we’ve
actually seen this).

I Pathwise gradient estimator, also
called reparameterization estimator.
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Pathwise gradient

Let’s start with pathwise gradient.

Example: Let f : R→ R be
continuously differentiable,
X ∼ N (m, 1) be a Gaussian with mean
m ∈ R. We want to compute:

∇mE[f (X )]

Imagine the flow of computation
required to compute a sample f (X )
using numpy.

Can we use the state of this
computation to compute an estimator?

f

x

randn(loc = m)

m
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Pathwise gradient

Naive idea: compute ∇mf (X ) using the
chain rule given a realization like the
one to the right.

What is the partial derivative of
randn(loc=m)??

Intuitively, it should be 0.

f

x

randn(loc = m)

m
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Pathwise gradient

One idea that works: reparameterize
the sampling process of X :

ε ∼ N (0, 1) X
d
= ε+ m

E[f (X )] = E[f (ε+ m)]

Assuming we can exchange the
derivative and the integral, we now get

∇mE[f (X )] = E[∇mf (ε+ m)]

Suggesting the estimator ∇mf (ε+ m)

Key idea: ε does not depend on m.

f

x

m

+ randn
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Pathwise gradient

The pathwise gradient estimator is based on a change of variables.

More generally, suppose there exists a random variable ε ∈ E with
density p(ε) and a function y : E × Rd → X such that

X
d
= y(ε, θ)

Then, assuming we can exchange the derivative and integral
operation:

∇θEX∼qθ [f (X , θ)] = ∇θEε∼p(ε)[f (y(ε, θ), θ)]

= Eε∼p(ε)[∇θf (y(ε, θ), θ)]

Suggesting the pathwise gradient estimator:

∇θf (y(ε, θ), θ)
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Pathwise gradient

When can we exchange derivative and integral operators?

Asmussen and Glynn (2007) give some simple conditions in Chap.
7.2, prop. 2.3.

Rule-of-thumb:
I Typically valid when Z (θ) := f (y(ε, θ), θ) is continuous and

differentiable except at finitely many points.
I Does NOT hold for reparameterizations of discrete X !
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Score function gradient

Let’s move to the score function
gradient.

Example: Let f : R→ R be
continuously differentiable,
X ∼ N (m, 1) be a Gaussian with mean
m ∈ R. We want to compute:

∇mE[f (X )]

Let’s see if we can attack this directly.

f

x

randn(loc = m)

m
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Score function gradient

Assuming we can exchange derivative and integral,

∇mE[f (X )] = ∇m

∫
x
f (x)

exp
(
− (x−m)2

2

)
√

2π
dx

=

∫
x
f (x)∇m

exp
(
− (x−m)2

2

)
√

2π
dx

=

∫
x
f (x)

exp
(
− (x−m)2

2

)
√

2π
∇m(−(x −m)2/2) dx

=

∫
x
f (x)

exp
(
− (x−m)2

2

)
√

2π
(x −m)

= E[f (X )(X −m)]

i.e., weight the function value by the distance to the mean, very intuitive!
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Score function gradient

More generally, the score function gradient is based on the following
identity

∇θqθ(x) = qθ(X )∇θ log qθ(x)

Assuming we can exchange derivative and integral:

∇θEX∼qθ [f (X )] = EX∼qθ [f (X )∇θ log qθ(X )]

Suggesting the score function gradient gradient estimator:

f (X )∇θ log qθ(X )

Note, this is for the case in which f does not depend on θ. To get a
gradient with dependence on θ, just add ∂θf (X , θ), where ∂θ is the
vector of partial derivatives of f w.r.t. θ.
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Control variates

The score function has an important property that makes it easy to
design control variates.

Let C be any real-valued random variable that is uncorrelated to X

EX∼qθ [C∇θ log qθ(X )] = E[C ]EX∼qθ [∇θ log qθ(X )]

= E[C ]∇θEX∼qθ [1]

= 0

We can use this to reduce the variance of score function estimators!
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Control variates–RL

Recall our gradient estimator for the finite-horizon MDP:

∇J(θ) = Eτ∼p
[∑T

t=0
r(τ)∇ log πθ(at |st)

]

Simulate a random trajectory τ ∼ p.∑T
t=0 r(τ)∇ log πθ(at |st) is a score function estimator! We can

reduce the variance using our new knowledge.
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Control variates–RL

Given st , r(st′ , at′) is independent of at for t ′ < t, so,

∇J(θ) = Eτ∼p
[∑T

t=0
r(τ)∇ log πθ(at |st)

]
= Eτ∼p

[∑T

t=0

(
T∑

t′=0

r(st′ , at′)

)
∇ log πθ(at |st)

]

= Eτ∼p

∑T

t=0

∑
t′<t

r(st′ , at′) +
∑
t′≥t

r(st′ , at′)

∇ log πθ(at |st)


= Eτ∼p

∑T

t=0

∑
t′≥t

r(st′ , at′)

∇ log πθ(at |st)



This is lower variance. But we can do more...
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Control variates–RL

Given st , the value V π
t (st) is independent of at , so,

∇J(θ) = Eτ∼p

∑T

t=0

∑
t′≥t

r(st′ , at′)

∇ log πθ(at |st)


= Eτ∼p

∑T

t=0

∑
t′≥t

r(st′ , at′)− V π
t (st)

∇ log πθ(at |st)


= Eτ∼p

[∑T

t=0
Aπt (st , at)∇ log πθ(at |st)

]

This quantity

Aπt (st , at) =
∑
t′≥t

r(st′ , at′)− V π
t (st)

is an example of an advantage, i.e., how much better is it to take action at
at time t than the average value.
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Control variates–RL

(4) much lower variance gradient estimator than (3):

∑T

t=0

(
T∑

t′=0

r(st′ , at′)

)
∇ log πθ(at |st) (1)

∑T

t=0

∑
t′≥t

r(st′ , at′)− V π
t (st)

∇ log πθ(at |st) (2)
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Talks today

Can we use pathwise gradients for discrete random variables?

Can we reduce the variance of the score function estimator for
discrete random varibles using clever subset structure?

Can we reduce the variance of RL gradients by estimating the
advantage in more clever ways?
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