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Announcements

@ Presentation assignments are out.

@ Project handout(s) are out.
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Presentation assignments

@ Quercus: People — Groups — look for yourself in the Week N
Presentation Assignments groups.

@ Please let me know ASAP, if you cannot do your week.

@ If you have not gotten an assignment, either | made a mistake or you
didn't send in your rankings. Email me!
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@ Handouts are up. Apologies for the delay. Come to office hours or
email me for help!
@ |'ve moved the due date of the Proposal back to Feb 22.
» Reduce conflict Prof. Grosse's course.
> | was late on getting the handout up.
@ The proposal is to get you started. You do not have to end up
working on the same project that you propose!
@ Can | work alone? Yes, but standards will be just as high as for
groups of 4.
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Gradient estimation

Assuming it exists, today and next week we will consider the problem of
gradient estimation, i.e. computing

VoEx~q,[f (X, 0)]

@ Same old beloved assumptions.

@ X is a random variable taking values in X with a prob. density gy in
a parametric family of densities parameterized by 6 € RP.

@ f: X xRP — R is a function.
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Gradient estimation

@ A gradient estimator is a random

variable G(#) such that .
3
E[G(0)] = VoEx~q,[f (X, 0)] 2
o Will briefly introduce two basic 0
approaches. o
» Score function estimator (we've -2
actually seen this). -3
» Pathwise gradient estimator, also T T > 1

called reparameterization estimator.
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Pathwise gradient

o Let's start with pathwise gradient.

@ Example: Let f: R — R be
continuously differentiable,
X ~ N(m,1) be a Gaussian with mean
m € R. We want to compute:

VmE[f(X)]

@ Imagine the flow of computation randn(loc = m)
required to compute a sample f(X)
using numpy.

@ Can we use the state of this
computation to compute an estimator?
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Pathwise gradient

o Naive idea: compute V,,f(X) using the
chain rule given a realization like the
one to the right.

@ What is the partial derivative of

=m)??7
randn(loc=m)?" randn(loc = m)

@ Intuitively, it should be 0.
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Pathwise gradient

@ One idea that works: reparameterize
the sampling process of X:

e ~N(0,1) XZ<e+rm

E[F(X)] = E[f(c + m)] °

@ Assuming we can exchange the
derivative and the integral, we now get @

VmE[f(X)] = E[V mf (€ + m)]

Suggesting the estimator V,f (e + m)

@ Key idea: € does not depend on m.
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Pathwise gradient

@ The pathwise gradient estimator is based on a change of variables.

@ More generally, suppose there exists a random variable € € £ with
density p(€) and a function y : £ x R? — X such that

X2 y(e,6)

@ Then, assuming we can exchange the derivative and integral
operation:

VGEXng[f(Xy 9)] - VOEeNp(e)[f(y(eﬂ 0)7 9)]
= IEEwp(s) [V@f(y(E, 0)? 9)]

@ Suggesting the pathwise gradient estimator:
V@"(Y(@ 6)7 0)
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Pathwise gradient

@ When can we exchange derivative and integral operators?

@ Asmussen and Glynn (2007) give some simple conditions in Chap.
7.2, prop. 2.3.

@ Rule-of-thumb:

» Typically valid when Z(0) := f(y(e,8), ) is continuous and
differentiable except at finitely many points.
» Does NOT hold for reparameterizations of discrete X!
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Score function gradient

@ Let's move to the score function
gradient.

o Example: Let f: R — R be
continuously differentiable,
X ~ N(m,1) be a Gaussian with mean
m € R. We want to compute:

randn(loc = m)

VmE[f(X)]

o Let’s see if we can attack this directly.
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Score function gradient

Assuming we can exchange derivative and integral,

exp (— =m)?
VnE[F(X)] = Vi /X f(x)p(@r2> dx

_Gemp?
:/Xf(x)Vmexp<\/2TT2> dx

exp (- =m)?
:/f(x)p(\ﬁﬁvm(—(x—m)zﬂ)dx

—E[f (X - m)]

i.e., weight the function value by the distance to the mean, very intuitive!
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Score function gradient

@ More generally, the score function gradient is based on the following
identity
Vogs(x) = qo(X) Vg log qo(x)
@ Assuming we can exchange derivative and integral:
VoEx~qy [f (X)] = Exng, [f (X) Vo log go(X)]
@ Suggesting the score function gradient gradient estimator:

f(X)Vglog gg(X)

@ Note, this is for the case in which f does not depend on 6. To get a
gradient with dependence on 6, just add 9pf(X,0), where 9 is the
vector of partial derivatives of f w.r.t. 6.
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Control variates

@ The score function has an important property that makes it easy to
design control variates.

@ Let C be any real-valued random variable that is uncorrelated to X

Ex~qs[CVglog go(X)] = E[C]Ex~q,[Vg log go(X)]
= E[C]V)Ex~q,[1]
=0

@ We can use this to reduce the variance of score function estimators!
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Control variates—RL

Recall our gradient estimator for the finite-horizon MDP:

VJ(O) =E,p [Z;o r(t)V log 7T6(3t|5t):|

@ Simulate a random trajectory 7 ~ p.

° ZtT:O r(7)V log mp(a¢|st) is a score function estimator! We can
reduce the variance using our new knowledge.
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Control variates—RL

Given s;, r(sy, ay) is independent of a; for t/ < t, so,

vJ(0)

=Erep

= Ermp

— ]ETNP

= Erep

)V ogma(ads)
2

-
: (Z
t=0

t'=

T
o Z r(sy,ay)+ Z r(sy,ay) | Vlogmg(at|st)

t'<t t'>t

o

r( Sy, ay > VIOgTrO(at’St)]
T
tho Zr(st’7at’) V log mg(at|st)

t'>t

This is lower variance. But we can do more...
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Control variates—RL

Given s;, the value V[ (s;) is independent of a;, so,

VJ(0) = E,p

=Ervp

=Ervp

This quantity

T

Zt—O Zr(st/,at/) V log mp(at|st)

O \>t

)
S 3 e ae) = ViCs) | Viogma(aclse)

t'>t

.
50T A2V og mals)|

A?(St, at) = Z r(St’a at') - Vt?r(st)

t'>t

is an example of an advantage, i.e., how much better is it to take action a;
at time t than the average value.
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Control variates—RL

(4) much lower variance gradient estimator than (3):

-
ZZ—:O (Z r(se, 3t’)> V log mg(at|s¢) (1)

t'=0

ZZ——O Z r(sy,ap) — Vi (st) | Vlogmg(ar|st) (2)

T\t
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Talks today

@ Can we use pathwise gradients for discrete random variables?

@ Can we reduce the variance of the score function estimator for
discrete random varibles using clever subset structure?

@ Can we reduce the variance of RL gradients by estimating the
advantage in more clever ways?
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