STA 4273: Minimizing Expectations

Lecture 2 - Basic tools

Chris J. Maddison

University of Toronto

(UofT) STA4273-Lec2 1/61

Announcements

Project handout out later today, sorry for delay (grad admissions).
Please fill out the presentation sign-up Google Form (see
Announcements tab on Quercus)!

> | will settle those assignments soon.
> If you haven't signed up, | will assign randomly.

Office hours now held on Zoom—GatherTown was not stable enough.

A word about code notebooks.

(UofT) STA4273-Lec2 2/61

Code notebook

@ Do not re-implement the whole paper.
@ The requirement is to demonstrate one or two key ideas:

» Can reimplement a toy experiment.
» Can create an illustrative figure.

@ We will be generous, but ask me for tips if you need them

e Example codebook here (and on course website).

3/61

(UofT) STA4273-Lec2

https://colab.research.google.com/drive/1VPgGnPGFUzqHd7ePKUzye1ErMZuV5ytQ?usp=sharing

Recall

Let X be random variable taking values in X’ (some simple space, e.g.
finite set, countably infinite set, or RD). Let f: X x O =R bea
function, where Q is a set of probability densities over X. Recall, that in
this course we are interested in problems of the form

inf Exo[f(X,
inf Exqlf (X, 9)

o f itself may be an expectation over another random variable whose
distribution we do not control, as in reinforcement learning.

e Maximizing over g is equivalent.
o Captures entropy penalties.
@ We assume that the minimum is achieved (clearly will depend on Q).

(UofT) STA4273-Lec2 4/61

Recall

@ An example are Markov Decision Processes (MDP), defined by

S: State space. Discrete or continuous, but let's assume it is finite.
A: Action space. We consider finite action space.

p(St+1|st, a:): Environment transition probability distribution.
p(so): Initial state distribution.

r(st, a;): Bounded reward function (can be a random variable).

~: Discount factor (0 < v < 1).

vV VY vy VY VY

(UofT) STA4273-Lec2 5/61

Recall

@ The agent operates in an MDP environment using a policy:
» 7(as|s:): a stochastic policy that the agent uses to choose action.
» 7(s): a deterministic policy that the agent uses to choose action.

@ The agent's objectives is to maximize its return:

oo
argmax B, [ry(7)] = arg max Zo’ytr(st, ar)
t=

where 7 = (sp, a0, s1, a1, - - .) ~ p(s0)7(a0|s0)p(s1]%0, 20) - - --

(UofT) STA4273-Lec2 6/61

We will study iterative methods, which are
methods that construct a sequence of g(t)
(typically in Q) that converge

g — q*

()

to an element of Q that is either in its q
argminimum or a local minimum. q

These ideas form the foundation of the

methods that we will look at throughout the
course.

(UofT) STA4273-Lec2 7/61

@ Direct gradient-based methods

» Gradient descent
» Stochastic gradient descent

@ Dynamic programming
> Value iteration
» Policy iteration

(UofT) STA4273-Lec2 8/61

Direct gradient-based methods

(UofT) STA4273-Lec2 9/61

Policy parameters and gradients

@ For the first half of the lecture, let's assume that Q is a parametric
family of mass functions, i.e.,

Q={qp|0 € RP}

Inspired by reinforcement learning, let's call gy € Q a policy.

o We will also assume that
J(O) = EXNCle[f(Xv 9)]

is continuously differentiable in § (where we abused notation for the
second argument of f).

(UofT) STA4273-Lec2 10/ 61

Policy parameters and gradientss—example

As an example, consider a simple softmax policy family,

N
Q= q0:<ze><13((9,')> 6 € RN

jo1 exp(0)) i=1
e f:{1,...,N} — R as any function that doesn't depend on 6.

e X={1,...,N}.
@ Does VJ(0) := (0J(6)/06;) exist and is it continuous?

(UofT) STA4273-Lec2 11/61

Policy parameters and gradients—example

where e; € RV is the ith standard basis vector. This is continuous in 6.

(UofT) STA4273-Lec2 12 /61

Gradient descent

e We can use —VJ(0) to optimize J.

o Note, that VJ(0) is the direction from
0 in which J has the highest rate of

decrease. s

l 3

—VJ(0) € argmin {Cw ‘ d+# 0} j

@ Gradient descent: move in direction of a

—VJ(0) with step size n > 0, -
0 = 0 — v (61 T

which forms our sequence of iterates
q(t) = gy. Does it converge?

(UofT) STA4273-Lec2 13 /61

Lipschitz gradients

@ To guarantee convergence, the most
common sufficient condition is
L-Lipschitz gradients for L > 0, i.e., for
all x,y € RP

— J(x) ' /

——— quadratic upper bound

IVJ(x) = VI < Llix =yl

@ One can show (good practice) that this 3
implies

J) < J0) +VI) (9 + 2l y P
= Ui(x,) T

@ l.e., we can form a quadratic upper
bound Ui(x, y) of f(x) about y.

(UofT) STA4273-Lec2 14 /61

Convergence of gradient descent

o Consider iterate 6(*) (blue dot).

@ Assume J has L-Lipschitz gradients and
form the quadratic upper bound
Up(x,0() about the point 6(1).

@ The red region is the sublevel set

S ={x: Ur(x,00) < JOW)} .
@ We can pick any point x in this sublevel :3
set and be guaranteed a descent in J: -4 _2. p . 1

Vx € S, J(x) < Up(x,00) < J(0)

(UofT) STA4273-Lec2 15 /61

Convergence of gradient descent

@ Gradient descent can be re-written as a
minimization (good practice).

9(f+1) = arg min Ul/n(X7 e(t))

e So, if n =1/L, we step right to the
centre of the sublevel set. N

@ Because the quadratic upper bound -2
holds for all R, we get guaranteed
convergence in f (assuming fixed - 20 2 a
step-size).

(UofT) STA4273-Lec2 16 /61

Convergence of gradient descent

4
3
2
@ We can actually step a bit farther than y
n > 1/L, as long as we do not step past 0
the boundary of the sublevel set. -1
-2
-3

L : : :
-4 -2 0 2 4

(UofT) STA4273-Lec2 17 /61

Convergence of gradient descent

e But, if n > 2/L, we step past the 2
boundary of the sublevel set and we !
lose our descent guarantee. °
@ Divergence may happen. ,i
-3

a2 o : a

(UofT) STA4273-Lec2 18 /61

Convergence of gradient descent

e If n < 2/L, gradient descent converges to a critical point 6%, i.e.,
VJ(6*) = 0, which is not necessarily an optimum.

» This just tells us that the function is perfectly flat at this point.

o Typically, gradient descent will converge to a local minimum, and
which local minimum depends on initialization.

(UofT) STA4273-Lec2 19/61

Stochastic gradient descent

o Computing VJ is usually prohibitively expensive.

e Consider an episodic MDP with finite, fixed T, policy mg(a¢|s:) that is
continuosly differentiable in § € RP, and discount v = 1. l.e., we are
interested in

J(0) = r(m)p(s0)ma(a0ls0) - - - p(sTIsT-1,a7-1)m0(aT]|5T)

T

o Computing VJ exactly scales like O(|A|T|S|T).

(UofT) STA4273-Lec2 20 /61

Computing gradients and stochastic gradient descent

On the other hand,

VJ(0) = Z p(so)mo(aolo) - - - p(sT[sT-1,aT-1)m9(ar|sT)
= Z r(r)v (fgwo(arlst)) p(So)tlz[lp(stlstl,atl)
= th; T)Vra(ac|st) L[tw@ ap|se)p(s)tf[lp(st|st1,at1)
_Z:tz;)V log o (at|st) p(7)

_E.., [ZZ_O H7)V log Wg(at]st)]

where we used Vpy(x) = pg(x)V log pg(x).

(UofT) STA4273-Lec2 21/61

Computing gradients and stochastic gradient descent

VJ(O) =E,p [ZZ_O r(t)V log 7T6(3t|5t):|

We can use this to form a gradient estimator:

@ Simulate a random trajectory 7 ~ p in O(T) by interacting with the
MDP using mg.

e Form a Monte Carlo estimate of VJ() using
ZtT:O r(7)V log mo(ae|st).

(UofT) STA4273-Lec2 22 /61

Stochastic gradient descent (SGD)

@ The main idea behind stochastic gradient descent is to use a Monte
Carlo estimate of VJ(#) instead.

@ More precisely, we can use a gradient estimator, which is built from a
random variable £ ~ p taking value in = and a function
g : RP x = — RP such that

Eelg(0,£)] = VJI(0) = VEx~q[f(X, 0)]
» E.g. for our MDP &£ =7 and g(6,7) = Z;O r(7)V log mg(a¢|st).

o Let’'s analyze the convergence properties.

(UofT) STA4273-Lec2 23 /61

Stochastic gradient descent (SGD)

What if we use g(6,¢) instead of VJ(0)?

9t+1) — g(8) — (B g (1) ¢(¥)) (1)

Theorem

Let J have L-Lipschitz gradients and be bounded below by J*. Let g(0,¢)
be an unbiased estimate of VJ(6) for some random variable £ with
bounded E¢..,[||g(0,£)|1?] < 2. Let £ be iid. as & and let n(t) > 0.

The iterates of (1) satisfy,

t) t) * Lo? t
Zn(E[IVIEO)P] < J(6D) - + - Z()2,

t=1 t=1

(UofT) STA4273-Lec2 24 /61

E[J(60Y) — J(61)[6')]

<E [VJ(Q(t))T(e(H-l) yO) £H9(t+1) g2

g(f)]

L (t))2 .2
—E[—n(f)v J(OOYT (600, §<t)9(t] L LOrY)%e”

2
(t)y2 52
< —O|VIOD))2 + L(”z)a
Summing from for t =1,..., K we get
K K
L(n(t) 2,52
S nOEIVIEO)] < J00) ~ ELEH)] + S HD
t=1 t=1

K (t))2 -2
JOW) — s + Z L(772)U
t=1

(UofT) STA4273-Lec2 25 /61

Implications of this theorem |

Under some smoothness assumptions on J and if the step-sizes satisfy

30 = oc
t=1

then Cor. 4.12 of (Bottou et al., 2018) shows that

o0

()% < o0,
t=1

- (£)y/12] —
lim E[IVI(6)[= 0

This is intuitive from the form of the bound

K K
> nVE[VIE)) < 0 (Z(n“)f) <o

t=1 t=1

which means we get convergence in expectation to a stationary point.

(UofT) STA4273-Lec2 26 /61

Implications of this theorem Il

If the step-sizes are constant, then the result simplifies to

X

JOW) - J+ Ino?
(t) <
Z E[|[VJ(6')]1%] Ko T 2

For a fixed step-size there's some irreducible error, which shrinks as n — O.

(UofT) STA4273-Lec2 27 /61

Implications of this theorem Il

Stochastic gradient descent

Lo
Lb b e w e s
Lob b e e e s

-4 -2 o 2 4 -4 -2 0 2 a - -4 -2 0 2 a -4 -2 0 2 4

smaller fixed step-size 7 — 0 for a fixed o, K.

(UofT) STA4273-Lec2 28 /61

Implications of this theorem Il

so, we can reduce this error by decreasing the step-size. In particular, if
n « /1/K, using a crude simple Markov inequality we get

1
1 (t) > 1 _ -
KI|_r;rlOIP’(at least one [|[VJ(0'V)|| <€) > Kll_rgol O <K1/4e>
= 1

This has some implications for machine learning.

(UofT) STA4273-Lec2 29 /61

Implications of this theorem Il

By far the most common application of SGD in machine learning is for
empirical risk minimization. Here, we have an objective of the form

for f; : RP — R differentiable. A valid gradient estimator for this would be
to take & ~ unif{1,..., m}, and take

g(0,€) = V()

(UofT) STA4273-Lec2 30/ 61

Implications of this theorem Il

e To find a point |[VJ(A())| < €, gradient descent requires O(e~?)
iterations that each cost O(m).

@ Plugging through the inequality again, we find that to find a point
[VJ(6D)]|| < e with high probability, stochastic gradient descent
requires O(e*) iterations that each cost O(1).

@ So, in a very handwavy way, if m > ¢~2, we're much better off using
stochastic gradient descent.

(UofT) STA4273-Lec2 31/61

Variants of (S)GD that are common in ML

(S)GD is just the beginning of the story. You should be aware of variants.
@ Momentum-based methods.

» Polyak momentum (Polyak, 1964).
> Nesterov accelerated gradient method (Nesterov, 1983)

@ Adaptive gradient methods.
» AdaGrad (Duchi et al., 2011)
» Adam (Kingma and Ba, 2014) + most popular for deep learning

If you want to think of all of these as “just (S)GD with some tweaks",
that's probably fine for this course, but the details get quite interesting.

(UofT) STA4273-Lec2 32/61

Variance reduction and control variates

o The E[||g(,£)||?] < o2 is a bit brutal, but it can be loosened (Bottou
et al., 2018), and you should think of this as a variance bound.

@ There are a few ways to reduce the variance of g, but one of the most
popular is the use of control variates. The idea is to use

g/(eaf) = g(@,{) +c- h(@)

instead of g for ¢ > 0 and some random h(#) such that E[h(6)] = 0.

@ For one-dimensional g and h, the optimal choice c* of ¢ that
minimizes the variance of g + ch gives an overall variance of

Var (g(0.€) + ¢*h(0)) = Var(g(0.€)) - Cov(vii §<) >h)(.

@ So you want correlated h with expectation 0. Will return to this!

(UofT) STA4273-Lec2 33/61

Next two weeks—gradient estimation

@ Over the next two weeks, we will cover gradient estimation in great
detail.

@ The themes that we will consider:

Gradient estimation for different families Q.

More elaborate control variates.

Gradient estimators for higher-order derivatives.
Etc.

v

v vy

(UofT) STA4273-Lec2 34 /61

Dynamic programming

(UofT) STA4273-Lec2 35 /61

Dynamic programming

action

N

agent o . [B environment
— N

next state, reward

@ We motivated SGD for RL, but is it good enough?
» often the variance of the gradient estimator is very large and
convergence is prohibitively slow,
> it is sometimes prone to convergence to bad local optima
(deterministic, but suboptimal policies).
@ SGD does not make much use of essential structure in RL. We will
now consider dynamic programming ideas for reinforcement learning
that exploit the additive structure of the return in RL.

(UofT) STA4273-Lec2 36 /61

Value Functions

@ Let's consider the infinite horizon setting.

@ The value function V™ for a policy m measures the expected return if
you start in state s and follow policy 7(als).

V™(s) :=E, [Z vir(st,at) | so = s] :
t=0

@ V7™ measures the desirability of the state s.

@ Our ultimately goal is

arg max J(m) := argmaxEg [V (s0)]

(UofT) STA4273-Lec2 37/61

Value Function

@ Rewards: —1 per time-step and
y=1
@ Actions: N, E, S, W

Start

@ States: Agent's location

Goal @ Goal is a terminal state

[Slide credit: D. Silver]

(UofT) STA4273-Lec2 38 /61

Value Function

@ Arrows represent a
deterministic policy m(s) for
each state s

[Slide credit: D. Silver]

(UofT) STA4273-Lec2 39 /61

Value Function

14 [0] 2] 0] |

. @ Numbers represent value V7 (s)

1 of each state s

8
ﬁ
EH

[Slide credit: D. Silver]

(UofT) STA4273-Lec2 40 /61

Bellman equations

@ The foundation of many RL algorithms is the fact that value functions
satisfy a recursive relationship, called the Bellman equation:

V7(s) = Exlr(s,a0) + 7Y 7 'rlseae) [s0 = s]

:Zﬂ'(a s)
DO [690 SR |29 V)

sa+'yZp(s|asE[Z (s, ar) | s = 5]

(UofT) STA4273-Lec2 41/61

Bellman equations

e Viewing V™ as a vector (where entries correspond to
states), define the Bellman backup operator T™.

<
3

(T™V)(s) :=

S n(als) [CORRMCIED V(s)]

a

S|

@ The Bellman equation states that the value function
V™ is fixed point of the Bellman operator:

TV = V™

(UofT) STA4273-Lec2 42 /61

Value Function

A value function for golf:

Uputt

— Sutton and Barto, Reinforcement Learning: An Introduction

(UofT) STA4273-Lec2 43 /61

State-Action Value Function

A closely related but usefully different function is the state-action value
function, or Q-function, Q™ for policy 7, defined as:

Q"(s,a) :=E, [r(s, a)+ ’thzl Y (se,ar) | so = 5,80 = a} .

Qﬂ'

S|

Al

(UofT) STA4273-Lec2 44 /61

State-Action Value Function

o If you knew Q™, how would you obtain V77
Vr(s) = Y n(als) @7(s.a).

o If you knew V™, how would you obtain Q™7
> Apply a Bellman-like equation:

Q(s,a) = r(s.a) + 7Y _p(s'|a,s) V(')

» This requires knowing the dynamics, so in general it's not easy to
recover Q™ from V7.

@ QT satisfies a Bellman equation

Q(sa)_rsa)+72p(s|as)z a' Q" (s, d)

=(T"Q7)(s,a)

(UofT) STA4273-Lec2 45 /61

Value lteration

(UofT) STA4273-Lec2 46 /61

Optimal State-Action Value Function

@ A remarkable feature of MDPs is that that exists a deterministic,
stationary policy 7 that is optimal w.r.t. J(m) (even when considering
7 possibly non-stationary!) (e.g., Thm 1.7 of Agarwal et al., 2020).

o If a deterministic policy 7* is optimal, then it must be the case that
for any state s:
m*(s) = argmax Q™ (s, a),
a

otherwise you could improve the policy by changing m(s) (see Sutton
& Barto for a proper proof). Hence

Q7 (s,a) =r(s,a) +7>_p(s', [5,3)Q7 (s, 7*(s"))

=r(s,a)+~ Z p(s'|'s, a) max Q™ (s, 4)

(UofT) STA4273-Lec2 47 /61

Optimal State-Action Value Function

@ Q* is an optimal state-action value function if

Q*(s,a) = r(s,a) +~ Z p(s'|s, a) max Q*(s,d)

(&

5(T+Q%)(s.)

Note this is satisfied by Q™

e Turns out this is sufficient (e.g., Thm 1.8 of Agarwal et al., 2020) to
characterize the optimal policy. So we simply need to solve the fixed
point equation T*Q* = Q*, and then we can choose
7*(s) = arg max, Q*(s, a).

(UofT) STA4273-Lec2 48 /61

Bellman Fixed Points

@ So far: showed that some interesting problems could be reduced to
finding fixed points of Bellman backup operators:

» Evaluating a fixed policy 7
» Finding the optimal policy

(UofT) STA4273-Lec2 49 /61

Bellman Fixed Points

@ So far: showed that some interesting problems could be reduced to
finding fixed points of Bellman backup operators:

» Evaluating a fixed policy 7
TTR™ = Q7
» Finding the optimal policy
T°Q* = Q*
@ ldea: keep iterating the backup operator over and over again.

R+ T"Q (policy evaluation)
Q+TQ (value iteration)

» We're treating Q™ or Q* as a vector with |S| - |A| entries.
» This type of algorithm is an instance of dynamic programming.

(UofT) STA4273-Lec2 49 /61

Bellman Fixed Points

@ An operator f (mapping from vectors to vectors) is a contraction map
if
[f(x1) = f(x2)[| < allx1 — %2

for some scalar 0 < o < 1 and vector norm || - ||.

(UofT) STA4273-Lec2 50 /61

Bellman Fixed Points

@ An operator f (mapping from vectors to vectors) is a contraction map
if
[f(x1) = f(x2)[| < allx1 — %2

for some scalar 0 < o < 1 and vector norm || - ||.

o Let f(K) denote f iterated k times. A simple induction shows

17 (x1) — FO (xa) | < 0¥]|x1 — x|l

(UofT) STA4273-Lec2 50 /61

Bellman Fixed Points

@ An operator f (mapping from vectors to vectors) is a contraction map
if

1 (x1) = f(x2)l| < allx1 —xaf

for some scalar 0 < o < 1 and vector norm || - ||.

o Let f(K) denote f iterated k times. A simple induction shows
18 (x1) = FP(x) | < ¥ lxa = xe.
@ Let x* be a fixed point of f. Then for any x,
IFF(x) = x| < ¥ flx = x|

@ Hence, iterated application of f, starting from any x, converges
exponentially to a unique fixed point.

(UofT) STA4273-Lec2 50 /61

Finding the Optimal Value Function: Value Iteration

@ Let's use dynamic programming to find Q*.

@ Value lteration: Start from an initial function Q;. For each k =1,2,...,

apply
Qus1 < T7Qx

@ Writing out the update in full,

Qe1(s; a) < r(s,a) + 7% p(s'ls, a) max Qu(s', 4')

@ Observe: a fixed point of this update is exactly a solution of the optimal
Bellman equation, which we saw characterizes the Q-function of an optimal

policy.

(UofT) STA4273-Lec2 51 /61

Value lteration

Q1’
; T
1 T (or T7) 9
Qz.V T*.Qz

@ Claim: The value iteration update is a contraction map:
[T°Q1 — T" Qo[<7 I[Q1— @l
@ |||, denotes the L norm, defined as:

I/, = max b

(UofT) STA4273-Lec2 52 /61

Value lteration

Q1’
: T s
1 T (or T7) 9

; ¢
Q-° T"Qo

Claim: The value iteration update is a contraction map:
[T°Q1 — T" Qo[<7 I[Q1— @l

|-l denotes the L norm, defined as:

I/, = max b

If this claim is correct, then value iteration converges exponentially to the
unique fixed point.

@ The exponential decay factor is -y (the discount factor), which means longer
term planning is harder.

(UofT) STA4273-Lec2 52 /61

Bellman Operator is a Contraction

Z p(s'|s,a) {melxx Qi(s',a) — max Qs(s', a’)} ‘

s/

(T7Qu)(s,a) = (T"R)(s,a)| = v

max Qi(s',a') — max Q:(s',a)

<> p(s'|s,a)
S/

< ’yz p(s'|'s, a) nL§X|Ql(S’, a) — Qs d)]

s/

= ymax|Qi(s’,a") — Q(s',)|
s’,a

= 7||Ql - Qz“oo

@ This is true for any (s, a), so
IT°Q - T "l <7 - Q.
From which we get that for the iterates Qx of value iteration:

[T°Qut1 = Qe <VIT" R — Q7

(UofT) STA4273-Lec2 53 /61

Policy iteration

Policy evaluation Value iteration

Fork=1,... For k=1,...
Qr+1 — T Qx Qr+1 < T7Qx

converges to Q™ converges to Q*

@ Both iterations are contractions.

@ They seem different, but we can actually re-write value iteration using
a policy evaluation update.

(UofT) STA4273-Lec2 54 /61

Policy iteration

@ Define greedy policy with respect to Q:
mQ(s) € argmax Q(s, a).
a

@ With this notation, we can re-write the operator T* using T™

7r<—7rQ
Q+T*Q = Q+T"Q

@ This suggests an algorithm that runs the policy evaluation
Qk11 + T™ Qg to convergence in an inner loop. This is the
generalization known as policy iteration.

(UofT) STA4273-Lec2 55 /61

Policy iteration

Value iteration Policy iteration

For k=1,... For k=1,...
Th+1 € TQ, Th+1 € TQ,
Q1 < T Q Qu+1 < QT+

@ Recall that Q™ is the @ function corresponding to policy 7, so the
second line of policy iteration is equivalent to running policy
evaluation to convergence with policy g, .

@ Policy iteration has more expensive iterations, but it sometimes
converges in fewer iterations.

(UofT) STA4273-Lec2 56 /61

Policy iteration—convergence

@ Policy iteration’s convergence is guaranteed by the following facts:

1. QT"k+1 > T*Qﬂ'k > Qﬂk

2. QM = Qe < I1@Q™ — Q7

@ Sketch (see, e.g., Lemma 1.13 in Agarwal et al., 2020)

1. T*Q™ > Q™, because T* is a greedy improvement of Q™ for each
(s, a), i.e., maximize Q™ over the next action.

2. QM > Q7. Q™ gives us the value from (s, a) assuming we will
continue playing with 7. mg, locally optimizes Q™* at each iteration.
Induction over times gives us our result.

3. QT > T*Q™«, follows from 1. and 2. You can think of it like, take

one greedy step using mq, and then follow .
4. Finally, using these results and the fact that Q* > Q for all Q:

Q" = Q™| < QT =T Q™[= IT"Q" = T Q™|

<A@ = Q™
@ Policy iteration is no worse than value iteration. One iteration is
typically more expensive, but overall can have better complexity.

(UofT) STA4273-Lec2 57 /61

We looked at

@ Gradient descent and stochastic gradient descent.
» Assumed a (differentiable) parametric family for the policy.
» Assumed that we could simulate X ~ gq.
» Might converge to a local optima.

e Dynamic programming (value iteration and policy iteration).
» Assumed that we have access to the transition distribution mass

function that |S| and |.A| are small. An instance of planning.

» Can converge quickly to global solution.

(UofT) STA4273-Lec2 58 /61

@ What are the limitations of dynamic programming?
» requires explicitly representing Q* as a vector
> |S| can be extremely large, or infinite
> |A| can be infinite (e.g. continuous voltages in robotics)
@ But value iteration is still a foundation for a lot of more practical RL
algorithms.
» Most approaches soften the requirements.
» Can we implement under the same assumptions as SGD?
» We could simulate from the policy and the environment, can we still
perform value iteration? policy iteration?
» Stochastic variants harder to understand, but well-studied.

(UofT) STA4273-Lec2 59 /61

Classifying agents

More broadly, the central theme in this course will be how different
methods are appropriate under different assumptions on the family of
policies Q, the structure of the function f(X, q), and the access we
assume to other sources of randomness. Roughly speaking:

@ Model-based: in RL, we assume full access to the environment'’s
transition dynamics. Sometimes we learn this.

@ Model-free: in RL, we assume the ability to simulate an interaction,
but otherwise we do not have access to the transition dynamics.

Implicit distribution: we do not assume access to the densities of
g € Q, but we assume the ability to simulate from them.

On-policy: We use X ~ g to improve our policy q.

Off-policy: We use some other random variable Y taking values in X
to improve our policy q.

(UofT) STA4273-Lec2 60 /61

Some things to ponder

@ Can we use value iteration or policy iteration for problems in
probabilistic inference (e.g. latent time series models)?

@ Can we exploit the temporal structure of the return in RL to
implement better SGD methods?

(UofT) STA4273-Lec2 61/61

