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This course

An exploration of the frontiers in (variational) Bayesian machine
learning and reinforcement learning.

I Gradient estimation, variational inference, offline policy evaluation,
policy optimization, and the interplay between control and inference.

These two subfields have very different motivations and are studied by
different communities. But, they share a common mathematical
structure and (increasingly) influence each other.

This is a seminar course, so the majority of the course will consist of
readings, student presentations, discussions.

I For the first two weeks I’ll be going through motivation, basic tools,
and jargon.
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This course

What I hope you get out of this:
I A unified view of two subfields that are rarely taught together.
I A chance to practice research skills.
I A chance to discover new subfields and open questions.
I The assessment worth the most marks is a final project.

I You will have a lot of freedom and input / feedback from.
I I want to give you the room to really engage.
I A wildly successful project might be submitted to a conference, but this

is not necessary for top marks.

My role:
I Curate the readings, guide the discussion, and help explain how our

readings connect to a broader context.
I I want to put most of my energy into helping you give high-quality

presentations and produce high-quality projects.
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Outline

Admin

A tale of two problems
I Unsupervised learning & variational inference
I Reinforcement learning

A common problem: minizing expectations
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Course Information

Course Website:
https://www.cs.toronto.edu/~cmaddis/courses/sta4273_w21/

We will use Quercus for announcements and assignments.
I You should all have been automatically signed up. Did anyone not

receive the announcements this week?

We will use Piazza for discussions and forming groups.

We will try GatherTown for office hours.
I Chris Maddison, Thursdays 4PM-5PM.

URLs for all of this are on Quercus.

The only things you need to pay attention to are the course website for
content updates and Quercus (i.e., email) for announcements.
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Course Information

Lectures will be delivered synchronously via Zoom, and recorded for
asynchronous viewing by enrolled students and auditors.

You may download recorded lectures for your own academic use, but
you should not copy, share, or use them for any other purpose.

During lecture, please keep yourself on mute unless called upon.

In case of illness, you should fill out the absence declaration form on
ACORN and notify the instructors to request special consideration.

For accessibility services: If you require additional academic
accommodations, please contact UofT Accessibility Services as soon
as possible, studentlife.utoronto.ca/as.
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Course Information

Recommended readings will be given for each lecture. But the following
will be useful throughout the course:

Asmussen and Glynn: “Stochastic Simulation: Algorithms and
Analysis”

Wainwright and Jordan: “Graphical Models, Exponential Families,
and Variational Inference”

Sutton and Barto: “Reinforcement Learning: An Introduction”

Bertsekas: “Dynamic Programming and Optimal Control”

Even more on the course website.
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Assignments and Grading

25% – Paper presentation and code notebook
I Handout on course website

15% – Project proposal
I Due Feb. 17, handout coming soon!

60% – Project report
I Due April 7, handout coming soon!
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Presentation

You will present a paper and your goal is to communicate the key
ideas of the paper. See handout on the website for more details.

To make things run smoothly, you will be assigned a week to present
(weeks 3 - 12).

I We are collecting your preferences via a Google form (see Quercus
announcements).

I Please fill this out ASAP.

If you decide to drop the course (don’t feel bad), but please email me
so that I can make sure we have enough presenters!
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Presentation Timeline

Two weeks before your presentation
I Meet me after class and we will decide on which papers to present and

how to organize teams.

A few days before your presentation
I Meet with one of the teaching staff to practice your presentation and

get feedback.

Day of your presentation
I Present!
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Presentation Tips

Cite the paper and the paper’s authors on the first slide.

You will need to build a bit of a background in order to understand
the key contribution of your paper.

I Read / skim some of the other papers in the same stack for your
presentation week.

I Follow the citation graph, use Google Scholar.
I Your presentation should be able to comment on where your paper sits

in the literature.

Literally script your first sentence.

Ask for help!
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Code notebook

You will be submitting a code notebook (Jupyter or Google colab)
that demonstrates a key idea of the paper that you are presenting.

I Can be a toy experiment or a visualization.
I It can be the same toy experiment as in the paper, or one you design.

Extra marks for originality.

You can write this notebook in Python or R.
I We strongly recommend Python, because we cannot provide support

for R.
I Must be runnable on Google Colab or UToronto’s Jupyter Hub.

Due the same day as your presentation.

See handout for details.
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More on Assignments

Collaboration on the assignments is allowed. You can use Piazza to find teammates. We will
restrict the size of teams for various reasons. We are capping the size of presentation teams at 2
and project teams at 4. You can work alone, but we will not modify the marking scheme.

The schedule of assignments will be posted on the course web page.

Assignments should be handed in by 11:59pm; a late penalty of 10% per day will be assessed
thereafter (up to 3 days, then submission is blocked).

Extensions will be granted only in special situations, and you will need a Student Medical
Certificate or a written request approved by the instructor at least one week before the due date.
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Prerequisites

No formal prerequisites, but I assume you know the basic language of
machine learning or statistics. The course is designed to be flexible
otherwise.

I Your project can be more applied to more theoretical, so you can play
to your strengths.

I For your presentation, we can try to get you a paper that you feel
comfortable with.

The marking schemes are there to help guide your efforts.

This being said, I would recommend a certain level of mathematical
maturity to get the most out of the course. This will involve linear
algebra, calculus, basic probability, and programming skills.
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Questions?

?
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Unsupervised learning & variational inference
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Unsupervised learning

Most statistical problems do better if you have more data, but we
very often have limited data.

What about generating our own data?

Suppose we have a dataset of observation {xi}ni=1 (e.g., each xi is a
vector containing the pixel values of a color image).

I Can we learn to generate new data points x that look like the ones in
our dataset?

I This is an example of the problem of unsupervised learning.
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Unsupervised learning

One of the major paradigms of unsupervised learning is based on
maximum likelihood estimation.

I Assume x = (xi )
n
i=1 is generated from a probability distribution with

density p ∈ P in some family of densities. Try to find

p∗ = arg max
p∈P

log p(x)

This paradigm is one of the most successful in machine learning.
Let’s see some recent examples.
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Variational autoencoders

1. Variational autoencoders model the
data by mapping a simple distribution
(e.g., a multivariate Gaussian) through
a decoder that warps and stretches out
the probability mass.

I NVAE (Vahdat and Kautz, 2020) is a
latest advance.

2. They can be trained to model very high
dimensional xi .

2.8. Challenges 31

Decoder: pθ(x|z)

Prior distribution: pθ(z)

Marginal: pθ(x)

x-space

z-space

Encoder: qφ(z|x)

Marginal: qφ(z)

Data distribution: qD(x)

ML objective = - DKL( qD(x) || pθ(x) ) 
   ELBO objective = - DKL( qD,φ(x,z) || pθ(x,z) )

qD,φ(x,z) = qD(x) qφ(z|x) pθ(x,z) = pθ(z) pθ(x|z)

Figure 2.4: The maximum likelihood (ML) objective can be viewed as the mini-
mization of DKL(qD,„(x)||p◊(x)), while the ELBO objective can be viewed as the
minimization of DKL(qD,„(x, z)||p◊(x, z)), which upper bounds DKL(qD,„(x)||p◊(x)).
If a perfect fit is not possible, then p◊(x, z) will typically end up with higher variance
than qD,„(x, z), because of the direction of the KL divergence.

(Kingma and Welling, 2019)
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NVAE

Each xi is an arrays of pixel intensities for a handwritten digit.

(a) MNIST (t = 1.0) (b) CIFAR-10 (t = 0.7) (c) CelebA 64 (t = 0.6)

(d) CelebA HQ (t = 0.6) (e) FFHQ (t = 0.5)

(f) MaCow [67] trained on CelebA HQ (t = 0.7) (g) Glow [62] trained on CelebA HQ (t = 0.7)

Figure 4: (a)-(e) Sampled images from NVAE with the temperature in prior (t). (f)-(g) A few images
generated by MaCow [67] and Glow [62] are shown for comparison (images are from the original
publications). NVAE generates diverse high quality samples even with a small temperature, and it
exhibits remarkably better hair details and diversity (best seen when zoomed in).

This is done by scaling down the standard deviation of the Normal distributions in each conditional
in the prior, and it often improves the quality of the samples, but it also reduces their diversity.

In NVAE, we observe that if we use the single batch statistics during sampling for the BN layers,
instead of the default running averages, we obtain much more diverse and higher quality samples
even with small temperatures3. A similar observation was made in BigGAN [78] and DCGAN [79].
However, in this case, samples will depend on other data points in the batch. To avoid this, similar to
BigGAN, we readjust running mean and standard deviation in the BN layers by sampling from the
generative model 500 times for the given temperature, and then we use the readjusted statistics for
the final sampling4. We visualize samples with the default BN behavior in Sec. B.2 in the appendix.

3For the evaluation in Sec. 4.1, we do use the default setting to ensure that our reported results are valid.
4This intriguing effect of BN on VAEs and GANs requires further study in future work. We could not obtain

the same quantitative and qualitative results with instance norm which is a batch-independent extension to BN.

7

(Vahdat and Kautz, 2020)
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NVAE

Each xi is an arrays of RGB pixel values for a face.(a) MNIST (t = 1.0) (b) CIFAR-10 (t = 0.7) (c) CelebA 64 (t = 0.6)

(d) CelebA HQ (t = 0.6) (e) FFHQ (t = 0.5)

(f) MaCow [67] trained on CelebA HQ (t = 0.7) (g) Glow [62] trained on CelebA HQ (t = 0.7)

Figure 4: (a)-(e) Sampled images from NVAE with the temperature in prior (t). (f)-(g) A few images
generated by MaCow [67] and Glow [62] are shown for comparison (images are from the original
publications). NVAE generates diverse high quality samples even with a small temperature, and it
exhibits remarkably better hair details and diversity (best seen when zoomed in).

This is done by scaling down the standard deviation of the Normal distributions in each conditional
in the prior, and it often improves the quality of the samples, but it also reduces their diversity.

In NVAE, we observe that if we use the single batch statistics during sampling for the BN layers,
instead of the default running averages, we obtain much more diverse and higher quality samples
even with small temperatures3. A similar observation was made in BigGAN [78] and DCGAN [79].
However, in this case, samples will depend on other data points in the batch. To avoid this, similar to
BigGAN, we readjust running mean and standard deviation in the BN layers by sampling from the
generative model 500 times for the given temperature, and then we use the readjusted statistics for
the final sampling4. We visualize samples with the default BN behavior in Sec. B.2 in the appendix.

3For the evaluation in Sec. 4.1, we do use the default setting to ensure that our reported results are valid.
4This intriguing effect of BN on VAEs and GANs requires further study in future work. We could not obtain

the same quantitative and qualitative results with instance norm which is a batch-independent extension to BN.

7

(Vahdat and Kautz, 2020)
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DALL-E

1. DALL-E (built by OpenAI in San
Francisco) is the most recent
excitement in generative models,
released just a few weeks ago.

2. It models text-image (s, x) pairs using
neural networks, and some ideas related
to variational autoencoders.

3. The model architecture makes it easy to
generate images given a text prompt
p(x|s).

I Let’s play with the model...

DALL-E, OpenAI
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Latent variable models

Both of these examples use a latent variable model. Assume that
each p ∈ P is the marginal distribution of a probability distribution
over an extended space with a latent variable z:

p(x) =

∫
p(x, z)dz

Learning in this setting is challenging, and most methods rely on
Bayesian inference, i.e., computing p(z|x).

This is where variational inference shines, as we will illustrate with an
example.
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Example

We observe a dataset of points {xi}ni=1 ⊆ RD .

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

This data seems to clump, let’s design a model that can capture “clumps”.
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Bayesian mixture of Gaussians

Consider the following latent variable model for our data.

1. Latent: µ ∈ RK×d is a matrix of independent, latent,
normal, random variables with mean 0 and variance σ2.

2. Latent:ci ∈ {0, 1}K for i = 1, . . . , n are independent
one-hot, uniform, latent, categorical random variables.

3. Observed: xi ∈ RD for i = 1, . . . , n, which are
independent, normal random variables with mean cTi µ
and variance 1.

<latexit sha1_base64="fLBAq4QNHt6x49astMKifX19cb0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kokoeix68diC/YA2lM120q7dbMLuRiyhv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtR1Sax/LejBP0IzqQPOSMGivVn3qlsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveZcWtX5SrN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHpwX5935mLeuOPnMEfyB8/kD54uNAA==</latexit>x

<latexit sha1_base64="DMhI+j9WmrSyME+AaEzbcfnxi+A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUYP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpaF1Xvquo2Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4Ax7eM6w==</latexit>c

<latexit sha1_base64="F1SstRATZTWwDwZvBN806C5UjPA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUkP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpaF1Xvquo2Liu12zyOIpzAKZyDB9dQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4A2GOM9g==</latexit>n

<latexit sha1_base64="4FepPQ3b5wj5ICQQkrRs3VkMmM0=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKQY9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWtW/v6zUb/I4inACp3AOAVxBHe6gAU0g8AjP8ApvnvJevHfvY9Fa8PKZY/gD7/MHnbGPJw==</latexit>�
<latexit sha1_base64="ACNGEjjvss5WmavH8RIHsRzLeok=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVRJRdFl047KCfUATymQybYfOI8xMCiX0T9y4UMStf+LOv3HSZqHVA8MczrmXOXPilFFtfP/Lqaytb2xuVbdrO7t7+wfu4VFHy0xh0saSSdWLkSaMCtI21DDSSxVBPGakG0/uCr87JUpTKR7NLCURRyNBhxQjY6WB64axZImecXvlIc/mA7fuN/wFvL8kKEkdSrQG7meYSJxxIgxmSOt+4KcmypEyFDMyr4WZJinCEzQifUsF4kRH+SL53DuzSuINpbJHGG+h/tzIEddFODvJkRnrVa8Q//P6mRneRDkVaWaIwMuHhhnzjPSKGryEKoINm1mCsKI2q4fHSCFsbFk1W0Kw+uW/pHPRCK4a/sNlvXlb1lGFEziFcwjgGppwDy1oA4YpPMELvDq58+y8Oe/L0YpT7hzDLzgf306tlBg=</latexit>µ

(UofT) STA4273-Lec1 25 / 62



Bayesian mixture of Gaussians

Consider the following latent variable model for our data.

µk ∼ N (0, σ2I ) k = 1, . . . ,K

ci ∼ cat(1/K , . . . , 1/K ) i = 1, . . . , n

xi |ci ,µ ∼ N (cTi µ, 1) i = 1, . . . , n
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Toy Example

In fact, our data was a sample from this model!

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Here the points are coloured according to ci and black stars are µk .
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Our goal: Bayesian inference

Recall: we want the conditional distribution of µ, {ci}ni=1 given
{xi}ni=1, i.e.,

p(µ, {ci}ni=1|{xi}ni=1)

Could use MCMC, but that might be slow and hard to scale.

The main idea behind variational inference is to turn our Bayesian
inference problem into an optimization problem.
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Variational inference

Let z = {µ} ∪ {ci}ni=1, x = {xi}ni=1 and consider the following
optimization problem.

q∗(z) = arg max
q∈Q

Ez∼q

[
log

p(z, x)

q(z)

]
Where

q ∈ Q is a probability density in a family of probability densities.

The objective is called the evidence lower bound (ELBO):

Ez∼q

[
log

p(z, x)

q(z)

]
=

∫
q(z) log

p(z, x)

q(z)
dz := ELBO(p, q, x)
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KL Divergence

Let us re-write this problem to understand its optimum:

arg max
q∈Q

Ez∼q

[
log

p(z, x)

q(z)

]
= arg max

q∈Q
Ez∼q

[
log

p(z|x)

q(z)
+ log p(x)

]
= arg max

q∈Q
Ez∼q

[
log

p(z|x)

q(z)

]
= arg min

q∈Q
KL(q(z) ‖ p(z|x))

KL(q(z) ‖ p(z|x)) = 0 iff q(z) = p(z|x) almost everywhere.
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Variational inference

Thus, for this variational objective,

q∗(z) = arg max
q∈Q

Ez∼q

[
log

p(z, x)

q(z)

]

its solution is is equal to p(z|x) a.e. if Q is the set of all possible
probability densities.

But this problem is as hard as our original problem!
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Variational inference

This is a variational objective,

q∗(z) = arg max
q∈Q

Ez∼q

[
log

p(z, x)

q(z)

]
The main idea of variational inference is

to restrict the family Q to make this optimization (more) tractable.

use q∗ in lieu of p(z|x).
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Mean-field VI

The mean-field assumption is to assume very strong independence
structure in Q, i.e.,

q(z) =
m∏
j=1

qj(zj)

I Typically qj is taken to be in some restricted family, e.g., it is assumed
to be N (νj , s

2
j ).

I See Parisi, G. (1988) Statistical Field Theory for the physics origins of
these ideas.

In our example, we would have a separate Gaussian qj for each
element of the matrix µ and a separate categorical for each ci , so
m = K × d + n.
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CAVI

Coordinate ascent mean-field variational inference (CAVI) is a general
optimization routine for the variational problem under the mean-field
assumption that performs coordinate descent by optimizing on qj at a
time, holding the others fixed.

Coordinate descent

Source: Wikipedia
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CAVI

This is CAVI is a bit more detail.

1. Initialize the parameters of qj for all j = 1, . . . ,m.

2. Until convergence, for j = 1, . . . ,m find

q∗j = arg max
qj

ELBO(p,
∏

j
qj , x)

and set qj = q∗j .

Note: ELBO is not (generally) convex in q, so this procedure converges to
a local optimum.

Let’s see how to compute one of the inner optimizations.
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CAVI

Now, assume that qj for each µkd is N (νkd , s
2
kd) for k = 1, . . . ,K and

d = 1, . . . ,D and that qj for each ci is a categorical.

Consider the case where zj is one of the categoricals,

arg max
qj

ELBO(p,
∏

j
qj , x)

= arg max
qj

Ez∼
∏

j qj
[log p(z, x)− log qj(zj)]

= arg max
qj

∑
k

(
qjk

(∑
d

µkdνkd − s2
kd/2− ν2

kd/2

)
− qjk log qjk

)

where qjk is the probability that zjk = 1 (equiv. cik = 1).
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CAVI

Let’s unpack what this looks like,

arg max
qj

∑
k

(
qjk

(∑
d

µkdνkd − s2
kd/2− ν2

kd/2

)
− qjk log qjk

)

Notice that it has the following form:

arg max
q

Ec∼q[f (c)] + H(q).

where H is the entropy of the one-hot categorical c ∼ q and
f : {0, 1}K → R is some function.
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Entropy-regularized objectives

We have reduced the inner optimization to a problem of the following form.

arg max
q

Ec∼q[f (c)] + H(q).

Notice these two terms “compete”

Ec∼q[f (c)] encourages q to be “peaked” about c∗ = arg maxc f (c).

H(q) encourages q to be “broad”

Problems of this type will be a recurring theme throughout the course.
They are sometimes called entropy regularized objectives. Actually the
ELBO is itself an example.
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Entropy-regularized objectives

To solve this problem, define

q∗(c) =
exp(f (c))∑
c ′ exp(f (c ′))

and notice

arg max
q

Ec∼q[f (c)] + H(q)

= arg max
q

Ec∼q[f (c)]− log

(∑
c ′

exp(−f (c ′))

)
+ H(q)

= arg max
q

Ec∼q[log q∗(c)] + H(q)

= arg min
q

KL(q(c) ‖ q∗(c))

This means that q∗ is the optimum of our subproblem!
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CAVI

Going back to CAVI, we have just derived the solution of the subproblem
for the qj for the categoricals.

q∗j (c) =
exp(µT ccTν −

∥∥cT s∥∥2
/2−

∥∥cTν∥∥2
/2)∑

c ′ exp(µT c ′c ′Tν − ‖c ′T s‖2
/2− ‖c ′Tν‖2

/2)

One can go through similar reasoning to derive the mean and variance of
q∗j for the Gaussians µkd .

Let’s see a visualization of the algorithm.
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CAVI

Initialization Iteration 20

Iteration 28 Iteration 35 Iteration 50
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Figure 1: Main caption

1

Figure 3: A simulation study of a two dimensional Gaussian mixture model. The ellipses
are 2� contours of the variational approximating factors.

15
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Variational inference and the evidence lower bound

What does this have to do with pretty pictures? Well, you can show

ELBO(p, q, x) ≤ log p(x)

The ELBO can be used as a surrogate objective for maximum
likelihood estimation in very complex latent variable models, which we
will look at.

arg max
p∈P

max
q∈Q

ELBO(p, q, x)

Those fancy image models were trained using an ELBO.
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Variational inference and this course

This course will explore optimizing ELBOs (and related objectives) in
a variety of settings.

The emphasis will be on deep learning settings (i.e., we will assume
far less structure)

We will be exploring the following themes:
I Using ELBO to train deep generative models (pretty pictures).
I More exotic state spaces for z, e.g., the space of functions.
I Tighter variational bounds for maximum likelihood.
I Variational objectives for other objectives (even supervised learning!).
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Reinforcement learning
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Reinforcement learning

We just assumed that the data {xi}ni=1 was collected once and i.i.d.
I i.i.d. = independent and identically distributed, which is the most

common assumption.

Reinforcement learning is a subfield that makes very different
assumptions on how data is collected.

I Sometimes called control, but there are subtle differences in the
communities that study this, etc.

The main idea in reinforcement learning is that data is collected via
an interactive process over a series of timesteps and the goal is to
maximize a reward that is additive in time.

The framework is useful when we have a desired outcome for some
process, but we cannot characterize its optimal behaviour explicitly.
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Atari

Interaction: player pushes buttons and
the games changes its state.

You know the goal (maximize your
points), but optimal behaviour is not
always known explicitly.

In 2013 DeepMind published a
landmark paper that showed how to
train neural networks to play a huge
suite of Atari games.

I Let’s watch it play Breakout.

(Mnih et al., 2013)
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Go

Go was the last classical board games
that humans still outperformed
computers.

Interaction: player picks a move and
then the opponent picks a move.

You know the goal (win), but optimal
behaviour is not always known explicitly.

DeepMind produced a Go bot
(AlphaGo) that defeated the world
champion Lee Sedol in 2016.

I I was one of the founding members of
this team! Wired
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Data-driven Algorithm Design

Many iterative algorithms include
heuristic decisions at each iteration.

I E.g., combinatorial solvers.

Interaction: heuristic picks from a set of
choices and the algorithm executes an
iteration.

Typically we have some goal (minimize
run time), but the best heuristic for
that goal is not known.

I We can use reinforcement learning to
optimize!
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Data-driven Algorithm Design

Consider branch-and-bound for discrete optimization.

(Shokry et al., 2018)

This method iteratively partitions a discrete optimization problem.
Partition forms the leaves of a tree. Choosing which leaf to split next is a
heuristic decision.
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Reinforcement learning

agent environment

action

next state, reward

An agent (e.g. an Atari player, the player in Go, the heuristic)
interacts with an environment (e.g. game of Breakout, the opponent
in Go, the algorithm state)
In each time step t,

I in st agent picks an action at (e.g. keystrokes)
I the environment transition to st+1 ∼ p(st+1 | st , at)
I the agent receives the next state st+1 (e.g. positions of the ball and

paddle) and a reward r(st , at) (e.g. points)

Let’s assume, for now that there are finitely many possible actions at
and finitely many states st .
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Reinforcement learning

agent environment

action

next state, reward

An agent (e.g. an Atari player, the player in Go, the heuristic)
interacts with an environment (e.g. game of Breakout, the opponent
in Go, the algorithm state)

The agent wants to learn a policy π(at | st)
I Distribution over actions depending on the current state.
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Markov Decision Processes

The environment is represented as a Markov decision process M.

Markov assumption: all relevant information is encapsulated in the
current state; i.e. the policy, reward, and transitions are all
independent of past states given the current state

Components of an MDP:
I S: State space. Discrete or continuous, but let’s assume it is finite.
I A: Action space. We consider finite action space.
I p(st+1|st , at): Environment transition probability distribution.
I p(s0): Initial state distribution.
I r(st , at): Bounded reward function (can be a random variable).
I γ: Discount factor (0 ≤ γ < 1).

The agent operates in an MDP environment using a policy:
I π(at |st): a stochastic policy that the agent uses to choose action.
I π(st): a deterministic policy that the agent uses to choose action.
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Markov Decision Processes

Rollout, or trajectory τ = (s0, a0, s1, a1, . . . , sT , aT )

Probability of a rollout

p(τ) = p(s0)π(a0 | s0) p(s1 | s0, a0) · · · p(sT | sT−1, aT−1)π(aT | sT )
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Markov Decision Processes

Continuous control in simulation, e.g. teaching an ant to walk

State: positions, angles, and velocities of the joints

Actions: apply forces to the joints

Reward: distance from starting point

Policy: output of an ordinary MLP, using the state as input

More environments: https://gym.openai.com/envs/#mujoco
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Markov Decision Processes

Return for a rollout: r(τ) =
∑T

t=0 r(st , at)
I Note: This is assuming that T is fixed and finite. We’ll discuss other

cases shortly.

Goal: maximize the expected return

max
π

Eτ∼p[r(τ)]

The expectation is over both the environment’s dynamics and the
policy, but we only have control over the policy.
The stochastic policy is important, since it makes R a continuous
function of the policy parameters.

I Reward functions and are often discontinuous (e.g. collisions)
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Markov Decision Processes—Jargon

Reinforcement learning is not one problem. It is a collection of problems.

Fully-observed. The policy fully observes the state st .

Partially-observed. There is an observation distribution p(ot |st) and
the agent observes ot ∼ p(ot |st) at time t. Policy π(at |ot) now
depends on the observation ot .
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Markov Decision Processes—Jargon

Reinforcement learning is not one problem. It is a collection of problems.

Bandits. T = 1, and we care about how much reward we get during
training.

Infinite horizon. T =∞, and r(τ) may diverge, so we typically
discount the return with 0 < γ < 1:

rγ(τ) =
∞∑
t=0

γtr(st , at)

Episodic. 1 < T <∞, and T may be random or fixed. rγ(τ) may be
discounted or not.
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Markov Decision Processes—Jargon

Reinforcement learning is not one problem. It is a collection of problems.

Stationary policy. π does not depend on t.

Non-stationary policy. πt does depend on t.
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Markov Decision Processes—Jargon

I hope you get the picture.

Technically, a great deal depends on all of these choices (e.g.,
stationary policies are not optimal for finite horizon MDPs), and the
theory can get a bit daunting. But the details can be a distraction.
They key paradigm to remember is:

I An interactive process between an agent and an environment.
I The goal of the agent is to find a policy that maximizes its return,

which is additive across time.
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Reinforcement learning and this course

We will focus on offline reinforcement learning and policy
optimization

I Offline RL: how can you use a fixed dataset of data to improve your
policy?

I Policy optimization: methods that attempt to directly optimize the
policy (we will see alternatives next week).

Why? These are among the most useful perspectives in practice, and
very actively studied.

In a bit more detail
I How can we evaluate the quality of our policy without deploying the

agent? Off-policy policy evaluation.
I How can we directly optimize the policy? Policy optimization.
I How can we optimize the policy using stored data? Offline policy

optimization.
I The relationship between tree search and policy optimization

(AlphaGo).
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A common problem
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A common problem

Consider the two problems that we encountered

arg max
q

Ec∼q[f (c)] + H(q) arg max
π

Eτ∼p[r(τ)]

The only difference seems to be the temporal aspect of reinforcement
learning and the entropy regularizer of variational inference.

I However, entropy regularizers are often added to the reward in
reinforcement learning!

I However, many variational inference problems have time as a dimension
and decompose additively over time!

The main themes of this course are how to cope with restrictions on
the family of q or π and how methods exploit specific structure in the
model / environment.

Next time: basic tools for solving these problems.
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