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Brief Review from Part 1

Symmetric Matrix:
A = AT

Orthogonal Matrix:
ATA = AAT = I and A−1 = AT

L2 Norm:

||x ||2 =

√∑
i

x2
i
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Angle Between Vectors

Dot product can be written in terms of their L2 norms and the angle θ between them.

xT y =
∑
i

xiyi = ||x ||2||y ||2 cos(θ)

Orthogonal Vectors: Two vectors x and y are orthogonal to each other if xT y = 0
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Vector Projection

Given two vectors a and b, let

b̂ =
b

||b||
be the unit vector in the direction of b.
Then a1 = a1b̂ is the orthogonal projection of a onto a straight line parallel to b, where

a1 = ||a|| cos(θ) = a · b̂ = a · b

||b||
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Diagonal Matrix

Diagonal matrix has mostly zeros with non-zero entries only in the diagonal, e.g. identity
matrix.

A square diagonal matrix with diagonal elements given by entries of vector v is denoted:

diag(v)
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Determinant

Determinant of a square matrix is a mapping to a scalar.

det(A) or |A|

Measures how much multiplication by the matrix expands or contracts the space.
Determinant of product is the product of determinants:

det(AB) = det(A)det(B)

Example:

|A| =
∣∣∣∣a b
c d

∣∣∣∣ = ad − bc.
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List of Equivalencies

The following are all equivalent:

1 A is invertible, i.e. A−1 exists.
2 Ax = b has a unique solution.
3 Columns of A are linearly independent.
4 det(A) ̸= 0
5 Ax = 0 has a unique, trivial solution: x = 0.

Chris J. Maddison STA314 Linear Algebra - Part II 7 / 17



Zero Determinant

If det(A) = 0, then:

A is linearly dependent.
Ax = b has no solution or infinitely many solutions.
Ax = 0 has a non-zero solution.
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Eigenvectors

An eigenvector of a square matrix A is a nonzero vector v such that multiplication by A only
changes the scale of v .

Av = λv

The scalar λ is known as the eigenvalue.

If v is an eigenvector of A, so is any rescaled vector sv . Moreover, sv still has the same
eigenvalue. Thus, we constrain the eigenvector to be of unit length:

||v || = 1
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Characteristic Polynomial

Eigenvalue equation of matrix A:

Av = λv

Av − λv = 0
(A− λI )v = 0

If nonzero solution for v exists, then it must be the case that:

det(A− λI ) = 0

Unpacking the determinant as a function of λ, we get:

|A− λI | = (λ1 − λ)(λ2 − λ)...(λn − λ) = 0

The λ1, λ2, ..., λn are roots of the characteristic polynomial, and are eigenvalues of A.
Chris J. Maddison STA314 Linear Algebra - Part II 10 / 17



Example

Consider the matrix:

A =

[
2 1
1 2

]
The characteristic polynomial is:

det(A− λI ) = det
[
2 − λ 1

1 2 − λ

]
= 3 − 4λ+ λ2 = 0

It has roots λ = 1 and λ = 3 which are the two eigenvalues of A.

We can then solve for eigenvectors using Av = λv :

vλ=1 = [1,−1]T and vλ=3 = [1, 1]T
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Eigendecomposition

Suppose that n × n matrix A has n linearly independent eigenvectors {v (1), ..., v (n)} with
eigenvalues {λ1, ..., λn}.

Concatenate eigenvectors to form matrix V .
Concatenate eigenvalues to form vector λ = [λ1, ..., λn]

T .

The eigendecomposition of A is given by:

A = V diag(λ)V−1
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Symmetric Matrices

Every real symmetric matrix A can be decomposed into real-valued eigenvectors and
eigenvalues:

A = QΛQT

Q is an orthogonal matrix whose columns are unit eigenvectors of A, and Λ is a
diagonal matrix of eigenvalues.
We can think of A as scaling space by λj in direction v (j).
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Positive Definite Matrix

A matrix whose eigenvalues are all positive is called positive definite.
If eigenvalues are positive or zero, then matrix is called positive semidefinite.

Positive definite matrices guarantee that:

xTAx > 0 for any nonzero vector x

Similarly, positive semidefinite guarantees:

xTAx ≥ 0
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Singular Value Decomposition (SVD)

If A is not square, eigendecomposition is undefined.

SVD is a decomposition of the form:

A = UDV T

SVD is more general than eigendecomposition.
Every real matrix has a SVD.
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SVD Definition (1)

Write A as a product of three matrices: A = UDV⊤

If A is m × n, then U is m ×m, D is m × n, and V is n × n.
U and V are orthogonal matrices, and D is a diagonal matrix (not necessarily square).

Diagonal entries of D are called singular values of A.
Columns of U are the left singular vectors, and columns of V are the right singular
vectors.
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SVD Definition (2)

SVD can be interpreted in terms of eigendecompostion.

Left singular vectors of A are the eigenvectors of AAT .
Right singular vectors of A are the eigenvectors of ATA.
Nonzero singular values of A are square roots of eigenvalues of ATA and AAT .
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