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Projection, Eigendecomposition, SVD
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Brief Review from Part 1

@ Symmetric Matrix:
A=AT

@ Orthogonal Matrix:
ATA=AAT = and A 1=AT

Ixll = [>x?
i

e L2 Norm:
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Angle Between Vectors

Dot product can be written in terms of their L2 norms and the angle 6 between them.

xTy = " xiyi = [x[[a]ly||2 cos(8)

1

0 = arccos(z+y/1z11y1)

Y

Orthogonal Vectors: Two vectors x and y are orthogonal to each other if x"y =0
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Vector Projection

Given two vectors a and b, let
A b
b=—
|[b]|

be the unit vector in the direction of b.

Then a; = a1 b is the orthogonal projection of a onto a straight line parallel to b, where
A b

a; =|lal|cos(f) =a-b=a - —

/

|A| cos6
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Diagonal Matrix

Diagonal matrix has mostly zeros with non-zero entries only in the diagonal, e.g. identity
matrix.

A square diagonal matrix with diagonal elements given by entries of vector v is denoted:

diag(v)
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Determinant of a square matrix is a mapping to a scalar.

det(A) or |A]

Measures how much multiplication by the matrix expands or contracts the space.

Determinant of product is the product of determinants:

det(AB) = det(A)det(B)

Example:
b

a
|A|_ c d

‘:ad—bc.
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List of Equivalencies

The following are all equivalent:

O A is invertible, i.e. A~ exists.

@ Ax = b has a unique solution.

© Columns of A are linearly independent.
Q det(A) #0

@ Ax =0 has a unique, trivial solution: x = 0.
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Zero Determinant

If det(A) =0, then:

@ A is linearly dependent.
@ Ax = b has no solution or infinitely many solutions.

@ Ax = 0 has a non-zero solution.
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An eigenvector of a square matrix A is a nonzero vector v such that multiplication by A only
changes the scale of v.

Av = \v

The scalar X is known as the eigenvalue.

If v is an eigenvector of A, so is any rescaled vector sv. Moreover, sv still has the same
eigenvalue. Thus, we constrain the eigenvector to be of unit length:

vl =1
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Characteristic Polynomial

Eigenvalue equation of matrix A:

Av = \v
Av—-Av =0
(A= X)v=0

If nonzero solution for v exists, then it must be the case that:
det(A—A)=0
Unpacking the determinant as a function of \, we get:
A= XM= —A)A2—=A)...(Ap—A) =0

The A1, A2, ..., A\, are roots of the characteristic polynomial, and are eigenvalues of A.
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Consider the matrix:
A 21
T 2

The characteristic polynomial is:
_ 2—-X 1 | _ . 2
det(A—)\l)—det[ 1 2_)\}—3 AN+ X =0

It has roots A = 1 and A = 3 which are the two eigenvalues of A.

We can then solve for eigenvectors using Av = Av:

vzt =[1,-1]7 and vz =[1,1]7
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Eigendecomposition

Suppose that n x n matrix A has n linearly independent eigenvectors {v(}), ..., v("} with
eigenvalues {1, ..., Ap}.

e Concatenate eigenvectors to form matrix V.

o Concatenate eigenvalues to form vector A = [\, ..., A\,] "

The eigendecomposition of A is given by:

A = Vdiag(\)V !
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Symmetric Matrices

Every real symmetric matrix A can be decomposed into real-valued eigenvectors and
eigenvalues:

A=QAQT

@ @ is an orthogonal matrix whose columns are unit eigenvectors of A, and A'is a
diagonal matrix of eigenvalues.

@ We can think of A as scaling space by J; in direction vU),
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Positive Definite Matrix

@ A matrix whose eigenvalues are all positive is called positive definite.

o If eigenvalues are positive or zero, then matrix is called positive semidefinite.

@ Positive definite matrices guarantee that:
xTAx >0 for any nonzero vector x
@ Similarly, positive semidefinite guarantees:

xTAx >0
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Singular Value Decomposition (SVD)

If Ais not square, eigendecomposition is undefined.

SVD is a decomposition of the form:

A= UDVT

@ SVD is more general than eigendecomposition.

e Every real matrix has a SVD.

Chris J. Maddison STA314 Linear Algebra - Part Il



SVD Definition (1)

Write A as a product of three matrices: A= UDV'T

If Ais mx n, then Uis mx m, Dis mxn, and V is n x n.

e U and V are orthogonal matrices, and D is a diagonal matrix (not necessarily square).

Diagonal entries of D are called singular values of A.

@ Columns of U are the left singular vectors, and columns of V are the right singular
vectors.
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SVD Definition (2)

SVD can be interpreted in terms of eigendecompostion.

o Left singular vectors of A are the eigenvectors of AAT.
e Right singular vectors of A are the eigenvectors of AT A.
o Nonzero singular values of A are square roots of eigenvalues of AT A and AAT.

STA314 Linear Algebra - Part Il

Chris J. Maddison



