STA314 Linear Algebra - Part II Projection, Eigendecomposition, SVD

Chris J. Maddison

Brief Review from Part 1

Symmetric Matrix:

$$A = A^T$$

Orthogonal Matrix:

$$A^T A = AA^T = I$$
 and $A^{-1} = A^T$

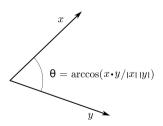
• L2 Norm:

$$||x||_2 = \sqrt{\sum_i x_i^2}$$

Angle Between Vectors

Dot product can be written in terms of their L2 norms and the angle θ between them.

$$x^T y = \sum_i x_i y_i = ||x||_2 ||y||_2 \cos(\theta)$$



Orthogonal Vectors: Two vectors x and y are orthogonal to each other if $x^Ty = 0$

Vector Projection

Given two vectors a and b, let

$$\hat{b} = \frac{b}{||b||}$$

be the unit vector in the direction of b.

Then $a_1 = a_1 \hat{b}$ is the orthogonal projection of a onto a straight line parallel to b, where

$$a_1 = ||a||\cos(\theta) = a \cdot \hat{b} = a \cdot \frac{b}{||b||}$$



Diagonal Matrix

Diagonal matrix has mostly zeros with non-zero entries only in the diagonal, e.g. identity matrix.

A square diagonal matrix with diagonal elements given by entries of vector v is denoted:

Determinant

• Determinant of a square matrix is a mapping to a scalar.

$$det(A)$$
 or $|A|$

- Measures how much multiplication by the matrix expands or contracts the space.
- Determinant of product is the product of determinants:

$$\det(AB) = \det(A)\det(B)$$

• Example:

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

List of Equivalencies

The following are all equivalent:

- **1** A is **invertible**, i.e. A^{-1} exists.
- 2 Ax = b has a unique solution.
- Oclumns of A are linearly independent.
- \bullet det(A) \neq 0
- **5** Ax = 0 has a unique, trivial solution: x = 0.

Zero Determinant

If
$$det(A) = 0$$
, then:

- A is linearly dependent.
- Ax = b has no solution or infinitely many solutions.
- Ax = 0 has a non-zero solution.

Eigenvectors

An eigenvector of a square matrix A is a nonzero vector v such that multiplication by A only changes the scale of v.

$$Av = \lambda v$$

The scalar λ is known as the eigenvalue.

If v is an eigenvector of A, so is any rescaled vector sv. Moreover, sv still has the same eigenvalue. Thus, we constrain the eigenvector to be of unit length:

$$||v|| = 1$$

Characteristic Polynomial

Eigenvalue equation of matrix A:

$$Av = \lambda v$$
$$Av - \lambda v = 0$$
$$(A - \lambda I)v = 0$$

If nonzero solution for v exists, then it must be the case that:

$$\det(A - \lambda I) = 0$$

Unpacking the determinant as a function of λ , we get:

$$|A - \lambda I| = (\lambda_1 - \lambda)(\lambda_2 - \lambda)...(\lambda_n - \lambda) = 0$$

The $\lambda_1, \lambda_2, ..., \lambda_n$ are roots of the characteristic polynomial, and are eigenvalues of A.

Example¹

Consider the matrix:

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

The characteristic polynomial is:

$$\det(A - \lambda I) = \det\begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} = 3 - 4\lambda + \lambda^2 = 0$$

It has roots $\lambda = 1$ and $\lambda = 3$ which are the two eigenvalues of A.

We can then solve for eigenvectors using $Av = \lambda v$:

$$v_{\lambda=1} = \begin{bmatrix} 1,-1 \end{bmatrix}^T$$
 and $v_{\lambda=3} = \begin{bmatrix} 1,1 \end{bmatrix}^T$

Eigendecomposition

Suppose that $n \times n$ matrix A has n linearly independent eigenvectors $\{v^{(1)},...,v^{(n)}\}$ with eigenvalues $\{\lambda_1,...,\lambda_n\}$.

- ullet Concatenate eigenvectors to form matrix V.
- Concatenate eigenvalues to form vector $\lambda = [\lambda_1, ..., \lambda_n]^T$.

The **eigendecomposition** of *A* is given by:

$$A = V \operatorname{diag}(\lambda) V^{-1}$$

Symmetric Matrices

Every real symmetric matrix A can be decomposed into real-valued eigenvectors and eigenvalues:

$$A = Q\Lambda Q^T$$

- Q is an orthogonal matrix whose columns are unit eigenvectors of A, and Λ is a diagonal matrix of eigenvalues.
- We can think of A as scaling space by λ_j in direction $v^{(j)}$.

Positive Definite Matrix

- A matrix whose eigenvalues are all positive is called positive definite.
- If eigenvalues are positive or zero, then matrix is called positive semidefinite.

• Positive definite matrices guarantee that:

$$x^T Ax > 0$$
 for any nonzero vector x

• Similarly, positive semidefinite guarantees:

$$x^T A x \ge 0$$

Singular Value Decomposition (SVD)

If A is not square, eigendecomposition is undefined.

SVD is a decomposition of the form:

$$A = UDV^T$$

- SVD is more general than eigendecomposition.
- Every real matrix has a SVD.

SVD Definition (1)

Write A as a product of three matrices: $A = UDV^{\top}$

- If A is $m \times n$, then U is $m \times m$, D is $m \times n$, and V is $n \times n$.
- ullet U and V are orthogonal matrices, and D is a diagonal matrix (not necessarily square).

- Diagonal entries of *D* are called **singular values** of *A*.
- Columns of *U* are the **left singular vectors**, and columns of *V* are the **right singular vectors**.

SVD Definition (2)

SVD can be interpreted in terms of eigendecompostion.

- Left singular vectors of A are the eigenvectors of AA^T .
- Right singular vectors of A are the eigenvectors of A^TA .
- Nonzero singular values of A are square roots of eigenvalues of A^TA and AA^T .