
Linear Algebra Review and NumPy Basics1

Chris J. Maddison

University of Toronto

1Slides adapted from Ian Goodfellow’s Deep Learning textbook lectures
Intro ML (UofT) STA314-Tut02 1 / 27



About this tutorial

Not a comprehensive survey of all of linear algebra.

Focused on the subset most relevant to machine learning.

Larger subset: e.g., Linear Algebra by Gilbert Strang
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Scalars

A scalar is a single number

Integers, real numbers, rational numbers, etc.

Typically denoted in italic font:

a, n, x
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Vectors

A vector is an array of d
numbers

xi be integer, real, binary, etc.

Notation to denote type and
size:

x ∈ Rd

x =




x1
x2
...
xd



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Matrices

A matrix is an array of numbers
with two indices

Ai ,j be integer, real, binary, etc.

Notation to denote type and
size:

A ∈ Rm×n

A =

[
A1,1 A1,2

A2,1 A2,2

]
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Matrix (Dot) Product

Matrix product AB is the matrix such that

(AB)i ,j =
∑

k

Ai ,kBk,j .

(Goodfellow 2016)

Matrix (Dot) Product

CHAPTER 2. LINEAR ALGEBRA

define a vector by writing out its elements in the text inline as a row matrix,
then using the transpose operator to turn it into a standard column vector, e.g.,
x = [x1, x2, x3]

>.
A scalar can be thought of as a matrix with only a single entry. From this, we

can see that a scalar is its own transpose: a = a>.
We can add matrices to each other, as long as they have the same shape, just

by adding their corresponding elements: C = A + B where Ci,j = Ai,j + Bi,j .

We can also add a scalar to a matrix or multiply a matrix by a scalar, just
by performing that operation on each element of a matrix: D = a · B + c where
Di,j = a · Bi,j + c.

In the context of deep learning, we also use some less conventional notation.
We allow the addition of matrix and a vector, yielding another matrix: C = A + b,
where Ci,j = Ai,j + bj . In other words, the vector b is added to each row of the
matrix. This shorthand eliminates the need to define a matrix with b copied into
each row before doing the addition. This implicit copying of b to many locations
is called broadcasting.

2.2 Multiplying Matrices and Vectors

One of the most important operations involving matrices is multiplication of two
matrices. The matrix product of matrices A and B is a third matrix C. In order
for this product to be defined, A must have the same number of columns as B has
rows. If A is of shape m⇥ n and B is of shape n⇥ p, then C is of shape m⇥ p.
We can write the matrix product just by placing two or more matrices together,
e.g.

C = AB. (2.4)

The product operation is defined by

Ci,j =
X

k

Ai,kBk,j . (2.5)

Note that the standard product of two matrices is not just a matrix containing
the product of the individual elements. Such an operation exists and is called the
element-wise product or Hadamard product, and is denoted as A�B.

The dot product between two vectors x and y of the same dimensionality is the
matrix product x>y. We can think of the matrix product C = AB as computing
Ci,j as the dot product between row i of A and column j of B.
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34

This also defines matrix-vector products Ax and x>A.
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Identity Matrix

The identity matrix for Rd is the matrix Id such that

∀x ∈ Rd , Idx = x

For example, I3:

I3 =




1 0 0
0 1 0
0 0 1



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Matrix Transpose

The transpose of a matrix A is the matrix A> such that (A>)i ,j = Aj ,i .

A =



A1,1 A1,2

A2,1 A2,2

A3,1 A3,2


 =⇒ A> =

[
A1,1 A2,1 A3,1

A1,2 A2,2 A3,2

]

The transpose of a matrix can be thought of as a mirror image across the
main diagonal. The transpose switches the order of the matrix product.

(AB)> = B>A>
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Systems of equations

The matrix equation
Ax = b

expands to

A1,1x1 + A1,2x2 + · · ·A1,nxn = b1

A2,1x1 + A2,2x2 + · · ·A2,nxn = b2
...

Am,1x1 + Am,2x2 + · · ·Am,nxn = bm
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Solving Systems of Equations

A linear system of equations can have:

No solution

Many solutions

Exactly one solution, i.e. multiplying by the matrix is an invertible
function
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Matrix Inversion

The matrix inverse of A is the matrix A−1 such that

A−1A = Id

Solving a linear system using an inverse:

Ax = b

A−1Ax = b

Idx = A−1b

Can be numerically unstable to implement it this way in the computer, but
useful for abstract analysis.
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Invertibility

Be careful, the matrix inverse does not always exist. For example, a matrix
cannot be inverted if...

More rows than columns

More columns than rows

Rows or columns can be written as linear combinations of other rows
or columns (“linearly dependent”)
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Norms

A norm is a function that measures how “large” a vector is

Similar to a distance between zero and the point represented by the
vector

f (x) = 0 =⇒ x = 0

f (x + y) ≤ f (x) + f (y) (the triangle inequality)

∀a ∈ R, f (ax) = |a|f (x)
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Norms

Lp norm

‖x‖p =

(∑

i

|xi |p
) 1

p

Most popular norm: L2 norm, p = 2, i.e., the Euclidean norm.

L1 norm:
‖x‖1 =

∑

i

|xi |

Max norm, infinite norm:

‖x‖∞ = max
i
|xi |
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Special Matrices and Vectors

Unit vector:
‖x‖2 = 1

Symmetric matrix:
A = A>

Orthogonal matrix

A>A = AA> = Id

A> = A−1
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Trace

The trace of an n × n matrix is the sum of the diagonal

Tr(A) =
∑

i

Ai ,i

It satisfies some nice commutative properties

Tr(ABC ) = Tr(CAB) = Tr(BCA)
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How to learn linear algebra

Lots of practice problems.

Start writing out things explicitly with summations and individual
indexes.

Eventually you will be able to mostly use matrix and vector product
notation quickly and easily.
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NumPy

NumPy is a software package written for the Python programming
language the helps us perform vector-matrix operations very
efficiently.

We will be running through some examples today to get a sense of
how to use NumPy.

First, we will show you how to open a Python Jupyter Notebook in
the UofT Jupyter Hub.
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Note

This tutorial is completely optional, we do not expect you to be
able to use Python Jupyter Notebooks for any assessments.
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Python Jupyter Notebooks (.ipynb)

.ipynb files are python scripts that organize code in to runnable cells (will
see examples today)

Can run them on UofT Jupyter Hub or Google Colab.
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Python Jupyter Notebooks

UofT Jupyter Hub: go to https://jupyter.utoronto.ca and log in.
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Python Jupyter Notebooks

When you log in, you should see this:
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Python Jupyter Notebooks

To load a Jupyter Notebook, click on the Upload button:
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Python Jupyter Notebooks

You will get a dialog. Select the .ipynb you want and open it:
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Python Jupyter Notebooks

Finally, click the blue Upload button:
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Python Jupyter Notebooks

Now you should have it uploaded!
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Python Jupyter Notebooks

Click on the link to open the Notebook.

Now we will show you how to run things.
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