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Research opportunity

| am looking for undergraduates to study the dynamics of large language
model training.

Please fill out this form: https://docs.google.com/forms/d/e/
1FATpQLSf6xRSgxIiK0Xx7X90vqP73B4dh9P1bcEobXJd8-vDIbMmKxg/
viewform?usp=dialog.
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Recall

@ We showed that N'(u, X) is N(0, 1) shifted by p and “scaled” by
%3

@ So, how can you think of “scaling” space by the square root of a
matrix?

@ Recall, for a PSD matrix X, its spectral decomposition is
¥ =QAQ"

@ Since Q is orthonormal, we have QTQ = |, and that:

1

1
o = Q/\EQT
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Matrix Square Roots & the Multivariate Gaussian

1
@ We want to understand what it means to scale space by X2x.

@ Multiplying a vector x by QTx is the same as projecting x onto the
columns of Q, so this is like rotating spaces so that the basis of Q
becomes the standard basis.

@ Since A is diagonal, it is easy to calculate

VM 0 ... 0
NIRRT
o 0 ... Vo
and multiplying by is the same as scaling the (current) standard basis
by V.
@ Multiplying by Q rotates the standard basis back into the basis of Q.
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Matrix Square Roots & the Multivariate Gaussian

1
@ To to summarize, you can think of scaling space by X2x as the effect
1

of expanding space along the eigenvectors of X2 by their
corresponding eigenvalues.

@ So multivariate “scaling” has both magnitude and direction.
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Back to PCA

Back to principal component analysis (PCA)

Dimensionality reduction: map data to a lower dimensional space

PCA is a linear model. It's useful for understanding lots of other
algorithms.

PCA is about finding linear structure in data.
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Recall: Multivariate Parameters

@ Setup: given a iid dataset D = {x", ... x™} c R".

@ N instances/observations/examples

[xV1" xfj xéj xéj
O S L B I ™
XML M M Y
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Recall: Mean and Covariance Estimators

@ We can estimate mean p and covariance X using these sample
approximations:

N
PO W)
Sample mean: i = N Zx
1=
Sample covariance:

N
s _ 1 () _ avee) _ anT
z-m;(x - - )

@ i quantifies where your data is located in space (shift)

o X quantifies the shape of spread of your data points (scale)
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Goal: Low dimensional representation

@ In practice, even though data is very high dimensional, its important features
can be accuratelv captured in a low dimensional subspace.

05

00

/// M///

Second principal component

-05

-1.0 -05 0.0 05 1.0
First principal component

Image credit: Elements of Statistical Learning
@ Find a low dimensional representation of your data.

» Computational benefits
» Interpretability, visualization
» Generalization
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Goal: Low dimensional representation

More specifically, our goal:

o Given a dataset D = {x(l), ... ,x(N)} cRrP

@ Find a K-dimensional subspace S C R® such that x
“well-represented” by its projection onto S

(")—ﬁis

PCA step-by-step:

@ Center data
@ Project onto S

» Coordinates in S give us a low dimensional representation.
@ Add back mean.

» This gives us a low dimensional reconstruction of the data to visualize
our approximation.

Now, let's see what this looks like in 2D.
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We are looking for directions

For example, in a 2-dimensional problem, we are looking for the unit vector u;
along which the data is well represented. We don't want location of data to
influence our calculations, i.e., we are not interested in us.
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First step: Center data

X3

. X3

@ We are only interested in finding the direction of highest variance.
Directions pass through the origin.

@ So, we need to center our data since we don't want location of data to
influence our calculation of direction.
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Second step: Project onto subspace spanned by u;

Uzt il

@ Let u; be the direction of highest variance (we will discuss how to find) and
u, be an orthogonal direction to uj;.

@ We want to reduce dimensionality of the data by projecting onto u;. This is
just a multivariate “scale” by 0 in the pruned directions. You already know
how to do this!
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Second step: Project onto subspace spanned by u;

Uz, ol ,

Assuming you know unit vectors uy, u,, use positive semi-definite matrix:

[
Proj,, = Q ((1) 8 )QT = u1u1T where Q=|u; up
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Second step: Project onto subspace spanned by u;

R ———

@ Coordinates z = ulT(x — [1) along the direction u; centered at fi are lower
dimensional representations of x.

@ Projection ululT(x — [1) is the projection onto u; centered at fi.
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Third step: Add back mean

X3 X3

To get a low dimensional reconstruction for x:

1. Subtract mean: x — &
2. Project on S: ululT(x —[).
3. Add back mean to get low dimensional reconstruction: X = f1 + ulu;r(x -p)
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Third step: Add back mean

u>

U,

X1

X1

And that's it! We've done Principal Components Analysis (PCA)!
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Goal: find a low dimensional representation z of data x (or alternatively, a
low dimensional reconstruction X of x).

Outline:

Review projection onto a K dimensional subspace S.
Review projection onto a K dimensional affine space.

Selecting the best affine space onto which to project.

Internal coordinates in that affine space centered at fi give us our low
dimensional representation z.

The projection of x onto the affine space is our low dimensional
reconstruction X.
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Euclidean projection

Projection onto a 1-D subspace

T

% @ Subspace S is the line along the

unit vector u
» {u} is a basis for S: any point in
S can be written as zu for some z.

@ Projection of x on u is the closest point to x on u denoted by Proj,(x)
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Euclidean projection

Projection onto a 1-D subspace

e To derive Proj,(x), let's solve the minimization problem directly.
. 2
min1/2 ||zu — x||
z
@ The gradient of this objective is (assuming u is a unit vector)

91f2 ||lzu - x||>
0z -

(zu - x)Tu =z-x'u

. . T
@ Solving for 0 gives us z = x u and our formula :

Proj,(x) = (xTu)u

) STA314-Lec8 20 /37



Projection onto subspaces

@ How to project onto a K-dimensional subspace?

» Idea: choose an orthonormal basis {u;, u,, -+, ux} for S (i.e. all unit
vectors and orthogonal to each other)

» Project onto each unit vector individually (as in previous slide), and
sum together the projections.

@ Mathematically, the projection is given as:

K
Projs(x) = Zz,-u,- where z; =
i=1

[
x
£

@ In vector form:

Projs(x) = Uz where z = U'xand U= u; e ug
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Projection onto an affine space

@ So far, we assumed the subspace passes through 0.
@ In mathematical terminology, the “subspaces” we want to project
onto are really affine spaces, and can have an arbitrary origin f&.

T .
:\.\ :Uz+ﬁ:21U1+22U2+fb z=U (X—[l,)

k\ﬁ\\ﬁx

\ \ %=Uz+f
\/’ P =UU' (x— @) + /1

= Projy(x — ) + /1

%

@ In machine learning, X is also called the reconstruction of x.

@ z is its representation, or code.
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Projection onto an affine space

@ If we have a K-dimensional subspace in a
D-dimensional input space, then x € RP and
K
zeR".
o If the data points x all lie close to their
reconstructions, then we can approximate
distances, etc. in terms of these same ) :
operations on the code vectors z. \ =~ )
o If K << D, then it's much cheaper to work
with z than x. U:\/v -\.
@ A mapping to a space that's easier to -
manipulate or visualize is called a \
representation, and learning such a mapping
is representation learning.
@ Mapping data to a low-dimensional space is
called dimensionality reduction.
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How to learn the subspace?

@ How to choose a good subspace S§7

» Origin f1 is the empirical mean of the data
» Need to choose a D X K matrix U with orthonormal columns.

@ Two criteria:
» Minimize the reconstruction error:

mln_zllx() ~()||

» Maximize the variance of reconstructions: Find a subspace where data
has the most variability.

1 (D) a2
max — Z X =
a1 Y 157 -
1
> Note: The data and its reconstruction have the same means (exercise)!
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Learning a Subspace

@ These two criteria are equivalent! l.e., we'll show

N
1 M) <2 _ 1 () A2
N;nx =&V = const = g ) IIX7 ~ A

o Recall &) = o+ Uz and 2 = UT(x(i) - 0).
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Learning a Subspace

@ Warmup Observation: Because the columns of U are orthogonal,
T
UU=Iso

o a2 2 _ Ty, T T 2
Ix =2l = lUz]|" =z U Uz=2z z = [|]|".

== norm of centered reconstruction is equal to norm of representation.
(If you draw it, this is obvious).

» Variance of reconstructions is equal to variance of code vectors:
(i A2 N2 . A
% 2 157 - al|* = % Y. 1127 (exercise % Ziz(’) = 0)
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Pythagorean Theorem

o Key Observation: orthogonality of g — ft and g — %)

(Two vectors a, b are orthogonal < a'b= 0)

o Recall ¥ = g+ U™ (x'") - p).

(i(i) _ ﬂ)T(i(i) _ X(i))

=" =) "uuT(a - x? +uuT (< - )

=(x" =) "uU T (a—x") + (- p) "o T (< - )
=0
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Pythagorean Theorem

The Pythagorean Theorem tells us:
K = 2l + [x” =717 = 17 = al” for each i

By averaging over data and from observation 2, we obtain

IR0 2, LS 002
Nan ol +WZ”" -2

projected variance reconstruction error

1< o
i A 112
=NZI|X'—MII
i=1

constant

Therefore,
projected variance = constant — reconstruction error

Maximizing the variance is equivalent to minimizing the reconstruction error!
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Principal Component Analysis

Choosing a subspace to maximize the projected variance, or minimize the

reconstruction error, is called principal component analysis (PCA).

o Consider the empirical covariance matrix:

N
c__1 () _ gD _ ayT
z—m;u - (" = )

o Recall: ¥ is symmetric and positive semidefinite.

@ The optimal PCA subspace is spanned
by the top K eigenvectors of X.

» More precisely, choose the first K of
any orthonormal eigenbasis for X.
» We'll show this for K = 1.

@ These eigenvectors are called principal
components, analogous to the principal

axes of an ellipse.
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Supplement: Deriving PCA

@ For K =1, we are fitting a unit vector u, and the code is a scalar
20 = uT(x(') — [1). Let’s maximize the projected variance. From our
warmup observation, we have

1 <) ap2 1 2 1 T, () ay2
WZ-”" ~ il —NZ[z ] —nZ<u (" = )
1 - -
=N ZuT(x(') )" =) u (a'b)>=a'bb'a

LS () vl -
=u' NZ(x“—u)(x”—mT}u

<u Xu
=u' QAQ'u Spectral Decomposition ¥ = QAQT
=a'Aa for a = QTu
D
= Z N
j=1
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Supplement: Deriving PCA

LT D | 2 T
o Maximizea Aa =}, \jaj fora=Q u.

» This is a change-of-basis to the eigenbasis of 3.

Assume the ); are in sorted order, A1 = Ay, = ...

Observation: since u is a unit vector, then by unitarity, a is also a unit
T T T T . 2
vectorr a a=u QQ u=u uie, ) a =1

By inspection, set a; = 1 and a; = 0 for j # 1.

Hence, u = Qa = q; (the top eigenvector).

A similar argument shows that the kth principal component is the kth
eigenvector of X.
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Decorrelation

@ Interesting fact: the dimensions of z are decorrelated. For now, let
Cov denote the empirical covariance.

Cov(z) = Cov(U (x — )

=U" Cov(x)U

-u'fu

= UTQI\QTU D> spectral decomposition
=(1 0)A ( (I)> > by orthogonality

= top left K X K block of A

@ If the covariance matrix is diagonal, this means the features are
uncorrelated.
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Recap:

@ Dimensionality reduction aims to find a low-dimensional
representation of the data.

@ PCA projects the data onto a subspace which maximizes the
projected variance, or equivalently, minimizes the reconstruction error.

@ The optimal subspace is given by the top eigenvectors of the
empirical covariance matrix.

@ PCA gives a set of decorrelated features.
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Applying PCA to faces

@ Consider running PCA on 2429 19x19 grayscale images (CBCL data)

Can get good reconstructions with only 3 components

(]S s P bl gl s

@ PCA for pre-processing: can apply classifier to latent representation

» Original data is 361 dimensional

» For face recognition PCA with 3 components obtains 79% accuracy on
face/non-face discrimination on test data vs. 76.8% for a Gaussian
mixture model (GMM) with 84 states. (We'll cover GMMs later in the
course.)

@ Can also be good for visualization
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Applying PCA to faces: Learned basis

Principal components of face images ( “eigenfaces”)
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Applying PCA to digits

reconstructed with 2 bases reconstructed with 10 bases

E

reconstructed with 100 bases reconstructed with 506 bases

HEEEHB
2,
BEEBEa
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One more interpretation of PCA, which has an interesting generalization:
Matrix factorization.
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