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@ Support vector machines, elegant binary linear classifiers that
generalize very well.

e Multiclass classification: predicting a discrete(> 2)-valued target.

@ Stochastic gradient descent, which lets us scale up gradient descent
to large data sets.
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Binary Classification with a Linear Model (Small Change)

Binary classification: predicting a target with two values

Targets (small change from last week): t € {-1,+1}

Linear model (small change from last week):
z=w'x+b
y = sign(z)

@ This is an equivalent formulation of binary linear classification.

@ Last week we considered how to get any w and b that minimized the cost
on the training set.

Question: How should we choose w and b to get the best generalization?
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Separating Hyperplanes

Suppose we are given these data points from two different classes and want to
find a linear classifier that separates them.

*
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Separating Hyperplanes

@ The decision boundary looks like a line because x € R?, but think about it
as a D — 1 dimensional hyperplane.

@ Recall that a hyperplane is described by points x € R® such that
f(x)=w' x+b=0.
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Separating Hyperplanes

by +wy =0

by +wiz=0

@ There are multiple separating hyperplanes, described by different parameters
(w, b).
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Separating Hyperplanes
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Optimal Separating Hyperplane

Optimal Separating Hyperplane: A hyperplane that separates two classes and

maximizes the distance to the closest point from either class, i.e., maximize the
margin of the classifier.

Intuitively, ensuring that a classifier is not too close to any data points leads to
better generalization on the test data.
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Geometry of Points and Planes

w

[wll

*

4 w'z+b
el

f@)=b+w z=0

@ Recall that the decision hyperplane is orthogonal (perpendicular) to w. l.e.,
for any two points x; and x, on the decision hyperplane we have that
wT(xl - xy) =0.

Intro ML (UofT) STA314-Lec6 9/44



Geometry of Points and Planes

w

l[wll

*

f@)=b+w z=0

@ The vector w* =

= ﬁ is a unit vector pointing in the same direction as w.
2

@ The same hyperplane could equivalently be defined in terms of w*.
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Geometry of Points and Planes

w

*

el

f@)=b+w z=0

@ To get the distance from a point x to the hyperplane, take the closest point
Xproj ON the hyperplane and project x — X5 onto w/ [[w||:

T T T
( )T w |x w—xpmjw| |x w+b|
X = Xproj = =
P wll, llwll, llwll,
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Maximizing Margin as an Optimization Problem

@ Now consider the two parallel hyperplanes
wix+b=1 w'x+b=-1
@ Using the distance formula, can see that the margin is 2/ ||w]|,.
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Maximizing Margin as an Optimization Problem

@ Recall: to correctly classify all points we require that

)

sign(wa(i) +b) = ¢¥ for all

@ Let's impose a stronger requirement: correctly classify all points and prevent
them from falling in the margin.

w x4 p>1 if ) = 1
b<-1 if £ = —1
@ This is equivalent to

) (w'x?+ )21 foralli

which we call the margin constraints.
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Maximizing Margin as an Optimization Problem

@ Now, we want to pick w, b that maximize the size of the margin (the
region where we do not allow points to fall), while ensuring all points
are correctly classified.

» Margin has width 2/ ||w]|,, so maximizing this is equivalent to
minimizing ||w]|3.

@ This leads to the max-margin objective:
min [|wl |3
w,b

st. 9w xXV+p)21 i=1,...,N
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Maximizing Margin as an Optimization Problem

Max-margin objective:
. 2
min f|wll3

st. t9w' xP+p)21  i=1,...

@ Observe: if the margin constraint is not tight for x(i), we could remove it
from the training set and the optimal w would be the same.

@ The important training examples are the ones with algebraic margin 1, and
are called support vectors.

@ Hence, this algorithm is called the (hard) Support Vector Machine (SVM)
(or Support Vector Classifier).

@ SVM-like algorithms are often called max-margin or large-margin.
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Non-Separable Data Points

How can we apply the max-margin principle if the data are not linearly separable?
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@ There is an elegant relaxation of the max-margin objective called
soft-margin SVM for the non-separable case. We won't cover it carefully,
but let's motivate it.

@ We can measure the extent to which x”) violates its margin constraint by
the magnitude of
11—t w x? + b)

» If this is very positive, then t(i)(wa(i) +b) <1
» If this is not positive, then t(')(wa(') +b) = 1.
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@ Wewant1- t(i)(wa(i) + b) to be small, but if it is negative, we don't care
how negative it is.

@ This motivates the hinge loss for 27 =wx + b

Lhmge(z ) = max( t(i)z(i))
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Soft-margin SVM

@ Soft-margin SVM minimizes the average hinge losses plus the norm of the
weigh () _ Ty () o g
ghts, where 2/ =w x'’ + b:

=|

N
. 1 () () 2
rx’lpl; max(O,l—t z )+)\||w||2

@ Hence, the soft-margin SVM can be seen as a linear classifier with hinge loss
and an L, regularizer.
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Revisiting Loss Functions for Classification

Hinge loss compared with other loss functions

—— zero-one
—— least squares
—— logistic + LS
—— logistic + CE
—— hinge
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SVMs: What we Left Out

What we left out:

@ How to fit w for the max-margin SVM:
» One option: gradient descent

@ Classic results from learning theory show that a large margin implies good
generalization.
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Multiclass Classification

@ So far, we've only talked about binary linear classification.

@ Classification tasks with more than two categories:

cl0wlt N (4A 12

puzen 1233

26794977658

L7\ 11239

8978409497
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Multiclass Classification

o Targets form a discrete set {1,...,K}.

@ It's often more convenient to represent them as one-hot vectors, or a
one-of-K encoding:

t=(0,...,0,1,0,...,0) € R

entry k is 1

@ We will build multiclass linear classifiers by generalizing binary linear
classifiers and logistic regression (not SVMs).
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Multiclass Linear Classification

We can start with a linear function of the inputs.

D input dimensions and K output dimensions, so we need K X D
weights, which we arrange as a weight matrix W € RF*P.

Also, we have a vector b € RK of bias parameters.

A linear function of an input x € RP:

D
z, = Z wijXj + by for k=1,2,....K
j=1

o Eliminate the bias parameters by taking W € RK*(PD) 4ng adding a
dummy variable xp = 1.

So, vectorized we have the vector z € RX.

z=Wx+b orwith dummy xg =1 z=WHx
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Multiclass Linear Classification

@ How can we turn this linear prediction into a one-hot prediction?

@ We can interpret the magnitude of z; as an measure of how much the
model prefers k as its prediction.

o If we do this, we should set

. K

1/ =argmaxy-1 zx

Yi = .
' {0 otherwise

o Exercise: how does the case of K = 2 relate to the prediction rule in
binary linear classifiers?
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Softmax Regression

@ As with binary classification, we need to soften our predictions for the
sake of optimization.

@ We want predictions that are like probabilities, i.e., 0 < y, < 1 and
>ivk =1

@ We can use the softmax function, a multivariable generalization of the
logistic function:

Zk

e

P

yk = softmax(z), =

» Outputs can be interpreted as probabilities (positive and sum to 1)
» If z; is much larger than the others, then softmax(z), ~ 1 and it
behaves like argmax.

» Exercise: how does the case of K = 2 relate to the logistic function?

@ The inputs z, are called the logits.
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Softmax Regression

o If a model outputs a vector y € R¥ of class probabilities, we can use
cross-entropy as the loss function:

K
Lop(yt) = =) telogyy
k=1

.
~t (logy),

where the log is applied elementwise.

@ Just like with logistic regression, we typically combine the softmax
and cross-entropy into a softmax-cross-entropy function.
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Softmax Regression

e Softmax regression (with dummy xg = 1):
z = Wx
y = softmax(z)
Log = -t (logy)
@ Gradient descent updates can be derived for each row of W:

6LCE _ 6LCE 6zk

8Wk 8Zk 8Wk

N
1 OEONG)
W = W = ag ;(yk —t, )X

= (yk — ti) - x

e Similar to linear/logistic reg (no coincidence) (verify the update)
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What about SVMs?

@ Not trivial to generalize the notion of a margin to multiclass setting.

@ Many different proposals for multi-class SVMs, but outside of the
scope of this course.
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Batch Gradient Descent

@ Let's imagine we have a prediction function y(x,8) with parameters
0, e.g. 8 = w in logisitic regression.

@ So far, the cost function R has been the average loss over the
training examples:

R(0) = NZL NZL(y(x() 0), t").

o By linearity,
OR _ 1oL
00 N = 00 -

o Computing the gradient requires summing over all of the training
examples. This is known as batch training.
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Stochastic Gradient Descent

Batch training is impractical if you have a large dataset (e.g. millions of
training examples)!

Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example,

1- Choose i uniformly at random,
oL
2— 0—0-a—— 20

Cost of each SGD update is independent of N!
SGD can make significant progress before even seeing all the data!

Mathematical justification: if you sample a training example uniformly at
random, the stochastic gradient is an unbiased estimate of the batch

gradient:
oL Yool oR
]E[ } E 8_ ==

i=1
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Stochastic Gradient Descent

@ Problems with using single training example to estimate gradient:
» Variance in the estimate may be high
» We can't exploit efficient vectorized operations
@ Compromise approach:
» compute the gradients on a randomly chosen medium-sized set of
training examples M C {1,..., N}, called a mini-batch.

@ Stochastic gradients computed on larger mini-batches have smaller
variance.
@ The mini-batch size | M| is a hyperparameter that needs to be set.

» Too large: requires more compute; e.g., it takes more memory to store
the activations, and longer to compute each gradient update

» Too small: can't exploit vectorization, has high variance

» A reasonable value might be | M| = 100.
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Stochastic Gradient Descent

@ Batch gradient descent moves directly downhill. SGD takes steps in a
noisy direction, but moves downbhill on average.

S

batch gradient descent stochastic gradient descent
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@ In gradient descent, the learning rate « is a hyperparameter we need
to tune. Here are some things that can go wrong:

« too small: « too large:
slow progress oscillations

« much too large:
instability

@ Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try 0.1,0.03,0.01,...).
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SGD Learning Rate

@ In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

small learning rate large learning rate

o Typical strategy:

» Use a large learning rate early in training so you can get close to the
optimum
» Gradually decay the learning rate to reduce the fluctuations

Intro ML (UofT) STA314-Lec6 35 /44



SGD Learning Rate

@ Warning: by reducing the learning rate, you reduce the fluctuations,
which can appear to make the loss drop suddenly. But this can come
at the expense of long-run performance.

reduce
learning rate

error

epoch
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Training Curves

@ To diagnose optimization problems, it's useful to look at training
curves: plot the training cost as a function of iteration.

instability
(try a smaller
learning rate)

convergence
(try a larger
learning rate)

training
cost

convergence

iteration #

@ Warning: it's very hard to tell from the training curves whether an
optimizer has converged. They can reveal major problems, but they
can't guarantee convergence.
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The End of Supervised Learning

@ This is the end of supervised learning in this course (sort of), next
week we will move on to unsupervised learning.
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The following slides are optional and will not be tested.
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Gradient Checking

@ We've derived a lot of gradients so far. How do we know if they're
correct?
@ Recall the definition of the partial derivative:

af i F(Xeyoo, i+ hy oo xy) = F(Xa, ooy Xiy ooy X))
8X,' (le"wXN)_l_'ILT;') h

@ Check your derivatives numerically by plugging in a small value of h,
e.g. 107, This is known as finite differences.
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Gradient Checking

@ Even better: the two-sided definition

af_( )—| f(X17...,X;+h,...,XN)—f(Xl,...,X,'—h,...,XN)
O e XN = 2h

— exact
— one-sided
— two-sided
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Gradient Checking

Run gradient checks on small, randomly chosen inputs

@ Use double precision floats (not the default for TensorFlow, PyTorch,
etc.!)

o Compute the relative error:

la— bl
|al + b

@ The relative error should be very small, e.g. 107°
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Gradient Checking

Gradient checking is really important!

Learning algorithms often appear to work even if the math is wrong.
o But:

» They might work much better if the derivatives are correct.
» Wrong derivatives might lead you on a wild goose chase.

@ If you implement derivatives by hand, gradient checking is the single
most important thing you need to do to get your algorithm to work
well.
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