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Overview

o Classification: predicting a discrete-valued target

» Binary classification: predicting a binary-valued target
» Multiclass classification: predicting a discrete(> 2)-valued target

@ Examples of binary classification
» predict whether a patient has a disease, given the presence or absence
of various symptoms
» classify e-mails as spam or non-spam
» predict whether a financial transaction is fraudulent
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Today's Agenda

Today's agenda:

@ Binary classification.

» Model, loss function
» Limitations

@ Logistic regression and convexity.

o Gradient descent for binary classification.
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Overview

Binary linear classification

o classification: given a D-dimensional input x € RP predict a
discrete-valued target
@ binary: predict a binary target t € {0,1}
» Training examples with t = 1 are called positive examples, and training
examples with t = 0 are called negative examples. Sorry.
» t€{0,1} or t € {—1,+1} is for computational convenience.

@ linear: model prediction y is a linear function of x, followed by a
threshold r:

-
Z=wW X+ b

1 ifz=r
10 ifz<r
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Some Simplifications

o Eliminating the threshold. Assume without loss of generality (WLOG)
that the threshold r = 0:

T T
wXx+b=r < wx+b-r=0.
N —

A
=wy

@ Eliminating the bias parameter. Add a dummy feature x; which always
takes the value 1. The weight wy = b is equivalent to a bias parameter
(same as linear regression).

o Simplified model. Receive input x € R°*" with x, = 1:

T
wW X

z

1 ifz=0
0 ifz<0O

y
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@ Let’s consider some simple examples to examine the properties of our
model

@ Let’s focus on minimizing the training set error, and forget about
whether our model will generalize to a test set.
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NOT
X0 X1 t
1 011
1 110

@ Suppose this is our training set, with the dummy feature xq included.

@ Which conditions on wg, wy guarantee perfect classification?
» When x; =0, need: z=wpxg +wix; 20 &< wy =0
» When x; =1, need: z = wyxg + wix; <0 &< wy+w; <0

@ Example solution: wy =1, wy = =2

@ Is this the only solution?
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AND

Z = WoXp + WiX1 + WaXo

need: wy <0
need: wy + wy <0

e i
l—ll—lOO,ES
= o~ olX
= O O Ot

need: wy+ wy; <0

need: wog+ wy +wy 20

Example solution: wp = -15 wy =1, wp, =1
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The Geometric Picture

Input Space, or Data Space for NOT example

T

= 1 1]o0

@ Training examples are points
@ Weights (hypotheses) w can be represented by half-spaces
Hy={x:w' x>0}, H. = {x: w x < 0}
» The boundaries of these half-spaces pass through the origin (why?)
@ The boundary is the decision boundary: {x: W' x = 0}
» In 2-D, it's a line, but in high dimensions it is a hyperplane

@ If the training examples can be perfectly separated by a linear decision rule,
we say data is linearly separable.
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The Geometric Picture

Weight Space

wo wWo >0

W0+W1<O

@ Weights (hypotheses) w are points

@ Each training example x specifies a half-space w must lie in to be correctly
classified: w'x > 0 if t = 1.
@ For NOT example:
» x=1,x=0,t=1 = (wy,wy) € {w:wy =0}
» xo=1,x=1,t=0 = (wg,wy) € {w:wy+ w <0}

@ The region satisfying all the constraints is the feasible region; if this region is
nonempty, the problem is feasible, otw it is infeasible.
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The Geometric Picture

@ The AND example requires three dimensions, including the dummy one.

@ To visualize data space and weight space for a 3-D example, we can look at
a 2-D slice:

@ The visualizations are similar, except that the decision boundaries and the
constraints need not pass through the origin.
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The Geometric Picture

Visualizations of the AND example

Data Space Weight Space
To w2
+ !
< <_\<z)l

- Slice for x5 = 1 and - Slice for wy = —1.5 for the constraints
- example sol: wp=-1.5 wy=1, wp=1 -wp<0
- decision boundary: -wy+w, <0
WoXo + Wi X1 +Woxo =0 -wy+w; <0
= —-15+x+x=0 -woH+wp+w, 20
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Linear Classifiers vs. KNN
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Linear Classifiers vs. KNN

Linear classifiers and KNN have very different decision boundaries:

Linear Classifier K Nearest Neighbours

oo e gl caa : ,/\\
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Linear Classifiers vs. KNN

@ KNN models are typical higher variance, low bias.
@ Linear classifiers are low variance, high bias.

@ Computing the prediction of a KNN model is more computationally
expensive than a linear at test time.

o Fitting linear classifiers is more computationally expensive than KNN
at training time.
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Limits of Linear Classification

How bad is the bias of linear classifiers? Some datasets are not linearly
separable, e.g. XOR

Visually obvious, but how to show this? Let's consider the structure of
linear classifier predictions.
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Limits of Linear Classification

Convex Sets

N

@ A set S is convex if any line segment connecting points in S lies entirely
within §. Mathematically,

X, % €S = M;+(1-AN)x €S forO< A=<l

@ A simple inductive argument shows that for xq,...,xy € S, weighted
averages, or convex combinations, lie within the set:

AMXp+ s+ Ayxy €S for A\; >0, Ay + - Ay =1,
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Limits of Linear Classification

Convex Sets

N\

@ For a linear classifier, the set of points that have the same prediction is a
convex set. To see why consider x;,x, € RP with prediction y = 1:

@ le, wa1 >0, wa2 > 0. Then, for 0 < X < 1 consider the point
Ax; 4+ (1 = A)x,. This point is also labelled y = 1:
wT()\xl +(1-MN)xp) = )\wal +(1- )\)wa2
=A-0+(1-X)-0
=0
@ Similar for two points with prediction y = 0.
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Limits of Linear Classification

Showing that XOR is not linearly separable (proof by contradiction)

@ If two points have the same prediction, then all points on the line segment
connecting them also have the same prediction.

@ Suppose there were some feasible weights (hypothesis) that perfectly classify
the XOR set.

@ If this hypothesis predicts y = 1 for all positive examples, then points on the
green line segment must have prediction y = 1.

@ Similarly, the points on the red line segment must all have prediction y = 0.

T2

@ But hypothesis cannot predict both y = 1 and y = 0 for the intersection.

Contradiction!
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Limits of Linear Classification

@ Sometimes we can overcome this limitation using feature maps, just
like for linear regression. E.g., for XOR:

X1

P(x) =| x

X1 X2
x1 x| i(x) ha(x) ws(x) | ¢
0 O 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

@ This is linearly separable. (Try it!)
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Summary — Binary Linear Classifiers

e Summary: Targets t € {0,1}, inputs x € RP* with xo =1, and
model is defined by weights w and

.
Z =W X

|1 ifz=>0
Y=10 ifz<0
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Towards Logistic Regression
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Loss Functions

How can we find good values for w?

If training set is linearly separable, we could solve for w using linear
programming
» We could also apply an iterative procedure known as the perceptron
algorithm (but this is primarily of historical interest).
If it's not linearly separable, the problem is harder
» Data is almost never linearly separable in real life.

@ Instead: define loss function then try to minimize the resulting cost
function

» Recall: cost is loss averaged (or summed) over the training set
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Attempt 1: 0-1 loss

@ Seemingly obvious loss function: 0-1 loss

0 ify=t
LO—l(y?t):{l ifi#t
=1y #¢]

o The R is the averaged loss over training examples; for 0-1 loss, this is
the misclassification rate:

1 N
R== Z]Iy # ¢!
/=1
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Attempt 1: 0-1 loss

@ Problem: how to optimize? In general, a hard problem (can be very
hard computationally)

@ This is due to the step function (0-1 loss) not being nice
(continuous/smooth /convex etc)
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Attempt 1: 0-1 loss

Minimum of a function will be at its critical points.
Let's try to find the critical point of 0-1 loss
Chain rule:

OLo—y _ OLy—y Oz

ow; 0z Ow;

But dLg_1/0z is zero everywhere it's defined!

10

00

=20 —1‘5 —l‘D —di ;CI D‘S L‘(] L‘S E‘G
» OLo_1/0w; = 0 means that changing the weights by a very small
amount probably has no effect on the loss.
» Almost any point has 0 gradient!
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Attempt 2: Linear Regression

@ Sometimes we can replace the loss function we care about with one
which is easier to optimize. This is known as relaxation with a
smooth surrogate loss function.

@ One problem with Ly_y1: defined in terms of final prediction, which
inherently involves a discontinuity

@ Instead, define loss in terms of wa directly

. . T
» Redo notation for convenience: z = w x
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Attempt 2: Linear Regression

@ We already know how to fit a linear regression model. Can we use
this instead?

Z =

Len(z,t) = 5(z — 1)

@ Doesn't matter that the targets are actually binary. Treat them as
continuous values.

@ For this loss function, it makes sense to make final predictions by
thresholding z at % (why? hint: recall the best prediction that
minimizes squared loss and then how that should be turned into the
best prediction that minimizes 0-1 loss.)
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Attempt 2: Linear Regression

The problem:

large
residual

@ The loss function hates when you make correct predictions with high
confidence!

e If t =1, it's more unhappy about z = 10 than z = 0.
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Attempt 3: Logistic Activation Function

@ There's obviously no reason to predict values outside [0, 1]. Let's
squash y into this interval.

@ The logistic function is a kind of sigmoid, or L
S-shaped function: 0
1 >.04
zZ) =
o(2) 1+e% 02

o o '(y) =log(y/(1—y)) is called the logit.

@ Now let’s try this loss and set its gradient to 0:

T
Z=W X

y =o0(z)

Len(y,t) = 30y - £)%
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Attempt 3: Logistic Activation Function

The problem: (plot of Lgg as a function of z, assuming t = 1)

oL _ooe
ow; 0z dw;

loss

@ Let's consider a wrong prediction. For z << 0, we have o(z) = 0.

° % ~ 0 (check!) = 6—L_ ~ 0 = derivative w.r.t. w; is small

Ow;
= wj; is like a critical point

@ But this is the wrong conclusion! Our prediction is really wrong, so
ideally we should be far from a critical point.
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Logistic Regression

@ Because y € [0,1], we can interpret it as the estimated probability
that t = 1. If t = 0, then we want to heavily penalize y = 1.

@ The pundits who were 99% confident Clinton would win were much
more wrong than the ones who were only 90% confident.

o Cross-entropy loss (aka log loss) captures this intuition:

5

EN

—logy itr=1 5\, _
LCE(y’t):{ —log(l—y) ift=0 Ez § =9
= —tlogy — (1 —t)log(l—y) 5
85— oz 04 06 08 1o
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Logistic Regression

Logistic Regression:

3.0 —— logistic + CE
2.54
_ wa 2.0
y=o(2)
1 1.0
T1te? 0.5
Lep = —tlogy — (1 —t)log(1-y)

Plot is for target t = 1.
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Logistic Regression — Numerical Instabilities

o If we implement logistic regression naively, we can end up with
numerical instabilities.

@ Consider: t =1 but you're really confident that z << 0.

o If y is small enough, it may be numerically zero. This can cause very
subtle and hard-to-find bugs.

y=o(z) =y=0
Leg = —tlogy — (1 —t)log(1 —y) = computes log0
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Logistic Regression — Numerically Stable Version

@ Instead, we combine the activation function and the loss into a single
logistic-cross-entropy function.

Licr(z,t) = Log(o(2),t) = tlog(l + e %) + (1 — t) log(1 + €%)

@ Numerically stable computation:
E = t * np.logaddexp(0, -z) + (1-t) * np.logaddexp(0, z)
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Gradient Descent for Logistic Regression

e How do we minimize the cost R for logistic regression? No direct
solution.

» Taking derivatives of % w.r.t. w and setting them to 0 doesn’t have an
explicit solution.

@ Perhaps we should consider using gradient descent from last lecture?
But will this work?

o Luckily it will, but we should be a bit careful to understand why it
works.

@ It works because the logistic loss is a convex function.
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Convex Functions

@ A function f is convex if for any xq,x; in the domain of f,

f((]. - )\)XO + )\X]_) < (1 - )\)f(Xo) + )\f(Xl)

e Equivalently, the set of . ‘
. . (1= X)f(=0) : : :

points lying above the B P e N IR

graph of f is convex. | ‘

@ Intuitively: the function

is bowl-shaped. HO=Nao | ‘
+ A1) . + s
fy) (1= Nz 4o
+ Ay
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How to tell a loss is convex?

@ We just saw that the
least-squares loss
0 2.
function =(y — t)" is
2 ) (1= X)L (wo) : :
convex as a function of y o\

+ AL(wr)
@ For a linear model,

z=w'x+bis a linear
function of w and b. If /(1 au,
the loss function is o) [ i 3 ;
convex as a function of
z, then it is convex as a
function of w and b. - . .
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Convex Functions, Logistic Regression

Which loss functions are convex? (these show for t = 1)

3.0

— zero-one
- least squares
= logistic + LS
—— logistic + CE

2.01
815
1.0
0.5
00— 0 1 2 3
z
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Convex Functions and gradient descent

@ The key point here is that the logistic loss is convex.
@ Convex functions have very nice properties.

» All critical points are minima.
» Gradient descent finds the optimal solution.

@ So we can use gradient descent to find the minima of the logistic loss!

» Recall: we initialize the weights to something reasonable and
repeatedly adjust them in the direction of steepest descent.
» A standard initialization is w = 0. (why?)
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Gradient of Logistic Loss

Back to logistic regression:
Lep(y,t) = — tlog(y) — (1 —t) log(1 - y)

y=1/(1+e%) and z=w'x

Therefore

8LCE _ aLCE 8_y 0z _ t " 1-t (1 )

6Wj_ dy 0z awj_ y 1l-y y )X
=(y = t)x;

(verify this)

Gradient descent (for each w;) update to find the parameters of logistic

regression:

e W R
_WJ._N (y —t )XJ

j=1
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Gradient Descent for Logistic Regression

Comparison of gradient descent updates:
@ Linear regression:
Ry OBERONNO!
W(_W_NZ(}/I -t x
1=

o Logistic regression:

@ Not a coincidence! These are both examples of generalized linear

models. But we won't go in further detail.

1
N I

need smaller learning rate when cost is summed losses (o = a/N).

@ Notice - in front of sums due to averaged losses. This is why you
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