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Lecture 3 - Bias-Variance Decomposition
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@ Today we will talk about the bias-variance decomposition, which is beginning
to make more precise our discussion of overfitting and underfitting last class.
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Recall: supervised learning

@ In supervised learning, our learning algorithms (k-NN, decision trees)
produce predictions y*(x) = t for a query point x.
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Recall: supervised learning

@ We can think of this as picking a predictor function y* € H from a
hypothesis class by minimizing the average loss on the training set

train ]

9" =argminR[y,D
YEH

@ Then, we measure the average loss on an unseen test set to approximate
how well 7 does on the true data generating distribution,

7/\?’[}7*7 Dtest] = R[j}*]
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Recall: supervised learning

@ This view of supervise learning is a very idealized view. We sometimes
cannot fully optimize the loss.
» Data is not typically i.i.d. according to a fixed data generating

distribution.
» We often select §” based on training loss, but sometimes we cannot

find the global optimal )’7*, e.g., decision trees.

@ Still, it's a very useful general model for supervised learning.
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Code Notebook

@ |'ve made a code notebook to help these concepts stick.
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Bias-Variance Decomposition

@ The predictor y* that we fit on the training set is random and so is its
expected loss R[y™].

@ Now we will study the performance of our procedure in terms of the

performance we expect, E[R[§*]], averaging over the randomness of the
training set.

@ Specifically, we will decompose E[R[§*]] into terms that allow us to
understand the effect of a hypothesis class on our performance. This is
called the bias-variance decomposition.
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Bias-Variance Decomposition: Basic Setup

o Recall: the training set D™ = {(x(i), t(i))}ﬁl contains N i.i.d. draws from
a single data generating distribution pgata-

@ Consider a fixed query point x (green x below).

@ Consider sampling many training sets D,tfai" independently from pgata-

[§]
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Bias-Variance Decomposition: Basic Setup

train

@ For each training set D,”", run learning alg. to get a predictor y, € H.

@ Compute the prediction ¥, (x) and compare it to a label t drawn from
pdata(t|x)'

. AKX .
@ We can view y, as a random variable, where the randomness comes from
the choice of training set.
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Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

fit to dataset 1 fit to dataset 2

fit to dataset 3

query location lots of fits
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Bias-Variance Decomposition: Basic Setup

@ Imagine now this process:

» Fix a query point x.
» Sample the (true) target t from the conditional distribution pgata(t|x).
> Repeat:
» Sample a random training dataset D,
distribution pgata-
» Run the learning algorithm on D,
at x.
» Compute the loss L(§,(x),t).

train

i.i.d. from the data generating

train

to get a prediction 7, (x) from H

> Average the losses.

@ This gives a distribution over the loss at x, with expectation
E[L(7*(x),t) | x] taken over t and the random training set D

)7 _argmmyEHR[yv traln].

train
" where

@ If we take an expectation over x, then we get

E[E[L(9" (x), t) [ x]] = E[R[§"]].
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Bayes Optimality

| hope that built up an intuition. Now we will work towards the
decomposition we promised.

@ For now, focus on squared error loss, L(y,t) = %(y —t)> with y, t € R.

A first step: suppose we knew the conditional distribution pgata(t|x). What
is the best deterministic value y(x) € R should we predict?

» Here, we are treating t as a random variable and choosing y(x).

Claim: y*(x) = E[t|x] is the best possible prediction.
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Bayes Optimality

Proof: Consider a fixed y € R. First, expand the square
E[(y = ) |x] = E[y* -2yt + £*| ]
then distribute expectation
= y* ~2yE[t|x] + E[£’ | x]
then apply a variance identity
= y® —2yE[t|x] + E[t|x]* + Var[t | x]
then apply the definition of y*(x)
= y* = 2yy" (%) + ¥ (%) + Var[t | x]
and collect terms
= (y =y ()" + Var[t | x]
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Bayes Optimality

Proof (continued): We've shown

E[(y - t)*|x] = (y — y"(x))* + Var[t | x]

The second term doesn’t depend on y and the first term is smallest when
y = y*(x). This concludes our proof.

@ The second term corresponds to the inherent unpredictability, or noise, of
the targets, and is called the Bayes error.

» This is the best we can ever hope to do with any learning algorithm.
An algorithm that achieves it is Bayes optimal.
» Notice that this term doesn’t depend on y.

@ This process of choosing a single value y*(x) based on pgaia(t|x) is an
example of decision theory.
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Bayes Optimality

@ But, in practice, our prediction y*(x) is not y*(x). Instead, it is a random
variable (where the randomness comes from randomness of the training set).

@ Key fact: y* is independent of t given x.

@ We are going to show that the expected loss (over x, t and f/*) of our
trained predictor decomposes into three terms.

E[(§" (x) - t)*]

J

= B[ (/" (0 - B[ (0 x])° + Var(s" (x)]x) + Var(t | %)

v

bias variance Bayes error

@ Intuition:
» bias: how wrong the expected prediction is
» variance: the amount of variability in the predictions
» Bayes error: the inherent unpredictability of the targets
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Bayes Optimality

@ Let's prove the decomposition.

@ To do this, we'll use the tower property of expectation, twice.

E[(5"(x) - t)°] = E[E[(§" (x) - t)° | x]]
E[(9"(x) - t)*|x] = E[E[(3" (x) = £)* | x, 9" (x)] | x]
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Bayes Optimality

Let's start with the inner term. We can use our previous result (because we are
conditioning on y*(x), so we can treat it like a constant).

E[(5"(x) = £)* |, 9" (x)]
= (7" (x) = y" (x))* + Var[t | x, p* (x)]
then expand the square
= 9" (%) = 29" (x)y " (x) + y* (x)7 + Var[t | x, §" (x)]

and since y*(x) is independent of t given x, we drop the conditioning in the
variance term

= 9" (%) = 29" (x)y" (x) + y* (x)? + Var[t | x].
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Bayes Optimality

Now we will “integrate out” §*(x). Using our result from the previous slide, first
we expand the square,

E[E[(5"(x) = £)* |, 9" (x)]] ]
= E[p"(x)* = 29" (x)y" (x) + y* (x)* + Var[t |x] | x]

then distribute expectation
AKX 2 A* * * 2
=E[J"(x)" [x] = 2E[y"(x) [ x]y" (x) + y" (x)" + Var[t | x]
then apply a variance identity
AK 2 AK AK * * 2
= E[§"(x) | x]" + Var[y" (x) [ x] = 2E[y" (x) [ x]y" (x) + y" (x)" + Var[t | x]

and collect terms

= (B[y" (x) |x] = y* (x))* + Var[ 9" (x) | x] + Var[t | x]
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Bayes Optimality

Recap: we've just shown:

E[(5"(x) - )" [x] =
= (") B[ () |x])° + Var(§" () [ %) + Var(t| x)

R J

v
bias variance Bayes error

Applying the tower property of expectation again, we get
AK 2 AKX 2
E[(y"(x) — )" ] = E[E[(y" (x) — )" | x]]

=B | (y"(x) —E[y" (x) [x])* + Var(y"(x) |x) + Var(t|x)

v v v
bias variance Bayes error
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Bayes Optimality

@ Let's step back and consider what we just did. First, recall:

» Picking a predictor by minimizing the average loss on the training set
9" = argminR[y, Dtrain]
yEH

returns a random predictor y*.
» We're interested in our performance in terms of expected loss R[§"],
which is random (due to randomness of the y*).

@ So, to summarize our performance on average, we want to study E[R[y™]].
We've shown:

E[R[Y" 1] = B| (/" (0 =B (0) X))’ + Varly" (x) [x] +Var[t|x]

bias variance Bayes error
@ How does our choice of H interact with this analysis?
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Bayes Optimality

High Bias Low Bias
Low Variance High Variance
- -—

Test Sample

Prediction Error

Training Sample

Low High
Model Complexity Source: ESL

@ If H is large, then §* can get close y*, therefore reducing bias. It's also
sensitive to the finite training set, therefore increasing variance.

@ If #H is small, then y* is typically from y*, therefore increasing bias. It's less
sensitive to the finite training set, therefore reducing variance.

@ Even though this analysis only applies to squared error, we often loosely use
“bias” and ‘variance” as synonyms for “underfitting” and “overfitting”.
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Bias and Variance

@ Throwing darts = predictions for each draw of a dataset

Low Variance High Variance

()

'.v'
'l

@ Be careful, the expected loss averages over points x from the data
distribution, so this produces its own type of variance.

Low Bias

High Bias

Source: ESL.
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Bias/Variance Decomposition: Another Visualization

@ In practice, measure the average loss R[§*, D,est] 0N the test set instead of
RI[7"].

@ Let's visualize the bias-variance decomposition by plotting the space of

predictions of the model, where each axis correspond to predictions on a two

test examples (x(l),x(z)).

contours of (t(l)’ t(Q))

expected loss

\ (7 (™), g* (=)
(8 e

y® (" (@), y* (z?))
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Bias/Variance Decomposition: Another Visualization

@ The Bayes error is an irreducible error that comes from the
randomness in Pqaia(t | X).

variance due to
random test labels

Yy Bayes optimal prediction
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Bias/Variance Decomposition: Another Visualization

@ Selecting a predictor §* € H from a training set comes with bias and

variance.
\ A

test label residu@ %

est labels
T e[ (x)[x]
O »
B ":.5‘\35 T
(2) variance in predictions
Y due to random training set
y(l) ) .

Bayes optimal prediction
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Bias/Variance Decomposition: Another Visualization

@ An overly simple model (e.g. k-NN with large k) might have

» high bias (too simplistic to capture the structure in the data)
> low variance (there's enough data to get a stable estimate of the
decision boundary)

2
T e[ (%))
T e

Y Bayes optimal prediction
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Bias/Variance Decomposition: Another Visualization

@ An overly complex model (e.g. KNN with k = 1) may have

» low bias (since it learns all the relevant structure)
» high variance (it fits the quirks of the data you happened to sample)

Yy Bayes optimal prediction
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@ Before we move on to bagging, it's a good time to mention validation.

@ We may want to assess how likely a learning algorithm is to generalize before
picking one and reporting the final test error.

@ In other words, until now we've been picking predictors that optimize the
training loss, but we want a technique for picking predictors that are likely
to generalize as well.

Intro ML (UofT) STA314-Lecl 28/32



@ For example, we may want to assess the following types of choices:

1. Hyper-parameters of the learning algorithm that lead to better
generalization. Often there are parameters that cannot be fit on the
training set, e.g., k in k-NN, because the training set would give
meaningless answers about the best setting, i.e., k = 1 is always gives
optimal training set loss for k-NN.

2. Picking predictors that generalize better. E.g., should we use a decision
tree or k-NN if we want to generalize?

@ We make these choices using validation to avoid measuring test loss (then
the test set would no longer be unseen datal).

@ Suppose we are trying to estimate the generalization of two learning
algorithms, e.g., a decision tree and a k-NN model.
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Hold-out validation

@ The most common method of validation is to hold-out a subset of the
training set and use it to assess how likely we are to generalize to unseen
data.

Original Training Set

Y

Training Validation

@ In our example of deciding between a decision tree and k-NN in terms of
generalization, we would fit Jyny and Ji e ON the training set and measure
the average loss on the validation set

Ar Ax valid Ar Ak valid
R[ykNva ] VsS. R[Yd—treevp ]

@ We pick the predictor Jinn VS. P tree With lowest validation loss.

@ Problem: this is usually a waste of data.
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K-fold cross validation

@ Second most common way: partition training data randomly into K equally
sized subsets. For each “turn”, use the first K — 1 subsets (or “folds”) as
training data and the last subset as validation

k folds (all instances) o
>

A

fold

A

) . testing fold
b g

© Do e
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K-fold cross validation

k folds (all instances)

- testing fold
d =

@ In our running example: fit a new predictor using each learning algorithm on
K — 1 folds for each of the K turns, and measure the validation loss on the
held-out fold, averaged over the turns:

K
valld ral valld
KZ YkNNn i ZRyd treen i ]

where )7;,- is the predictor fit on the training subset of the ith turn using
algorithm A and D/*"™ is the validation subset of the ith turn.

@ We pick the learning algorithm, e.g., k-NN v. decision tree, with lowest
validation loss averaged across the K turns.
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