STA 314: Statistical Methods for Machine Learning I Lecture 3 - Bias-Variance Decomposition

Chris J. Maddison

University of Toronto

Today

 Today we will talk about the bias-variance decomposition, which is beginning to make more precise our discussion of overfitting and underfitting last class.

Recall: supervised learning

• In supervised learning, our learning algorithms (k-NN, decision trees) produce predictions $\hat{y}^*(\mathbf{x}) \approx t$ for a query point \mathbf{x} .

Recall: supervised learning

• We can think of this as picking a predictor function $\hat{y}^{\star} \in \mathcal{H}$ from a hypothesis class by minimizing the average loss on the training set

$$\hat{\mathbf{y}}^* = \arg\min_{\mathbf{y} \in \mathcal{H}} \hat{\mathcal{R}}[\mathbf{y}, \mathcal{D}^{train}]$$

• Then, we measure the average loss on an unseen test set to approximate how well \hat{y}^{\star} does on the true data generating distribution,

$$\hat{\mathcal{R}}[\hat{\boldsymbol{y}}^{\star}, \mathcal{D}_{test}] \approx \mathcal{R}[\hat{\boldsymbol{y}}^{\star}]$$

Recall: supervised learning

- This view of supervise learning is a very idealized view. We sometimes cannot fully optimize the loss.
 - Data is not typically i.i.d. according to a fixed data generating distribution.
 - We often select \hat{y}^* based on training loss, but sometimes we cannot find the global optimal \hat{y}^* , e.g., decision trees.
- Still, it's a very useful general model for supervised learning.

Code Notebook

• I've made a code notebook to help these concepts stick.

Bias-Variance Decomposition

- The predictor \hat{y}^* that we fit on the training set is random and so is its expected loss $\hat{\mathcal{R}}[\hat{y}^*]$.
- Now we will study the performance of our procedure in terms of the performance we expect, $\mathbb{E}[\hat{\mathcal{R}}[\hat{y}^*]]$, averaging over the randomness of the training set.
- Specifically, we will decompose $\mathbb{E}[\hat{\mathcal{R}}[\hat{\mathcal{Y}}^*]]$ into terms that allow us to understand the effect of a hypothesis class on our performance. This is called the bias-variance decomposition.

Intro ML(UofT) STA314-Lec1 7/32

- Recall: the training set $\mathcal{D}^{train} = \{(\mathbf{x}^{(i)}, t^{(i)})\}_{i=1}^{N}$ contains N i.i.d. draws from a single data generating distribution p_{data} .
- Consider a fixed query point **x** (green **x** below).
- Consider sampling many training sets \mathcal{D}_n^{train} independently from p_{data} .

Intro ML (UofT) STA314-Lec1 8/32

- For each training set \mathcal{D}_n^{train} , run learning alg. to get a predictor $\hat{y}_n^* \in \mathcal{H}$.
- Compute the prediction $\hat{y}_n^*(\mathbf{x})$ and compare it to a label t drawn from $p_{\text{data}}(t|\mathbf{x})$.
- We can view \hat{y}_n^* as a random variable, where the randomness comes from the choice of training set.

Intro ML (UofT) STA314-Lec1 9/32

Here is the analogous setup for regression:

- Imagine now this process:
 - Fix a query point x.
 - ▶ Sample the (true) target t from the conditional distribution $p_{\text{data}}(t|\mathbf{x})$.
 - ▶ Repeat:
 - Sample a random training dataset \mathcal{D}_n^{train} i.i.d. from the data generating distribution p_{data} .
 - ▶ Run the learning algorithm on \mathcal{D}_n^{train} to get a prediction $\hat{y}_n^{\star}(\mathbf{x})$ from \mathcal{H} at \mathbf{x} .
 - ► Compute the loss $L(\hat{y}_n^*(\mathbf{x}), t)$.
 - Average the losses.
- This gives a distribution over the loss at \mathbf{x} , with expectation $\mathbb{E}[L(\hat{y}^*(\mathbf{x}), t) | \mathbf{x}]$ taken over t and the *random* training set \mathcal{D}^{train} where $\hat{y}^* = \arg\min_{y \in \mathcal{H}} \hat{\mathcal{R}}[y, \mathcal{D}^{train}]$.
- If we take an expectation over \mathbf{x} , then we get $\mathbb{E}[\mathbb{E}[L(\hat{y}^*(\mathbf{x}), t) | \mathbf{x}]] = \mathbb{E}[\mathcal{R}[\hat{y}^*]].$

- I hope that built up an intuition. Now we will work towards the decomposition we promised.
- For now, focus on squared error loss, $L(y,t) = \frac{1}{2}(y-t)^2$ with $y,t \in \mathbb{R}$.
- A first step: suppose we knew the conditional distribution $p_{\text{data}}(t \mid \mathbf{x})$. What is the best deterministic value $y(\mathbf{x}) \in \mathbb{R}$ should we predict?
 - \triangleright Here, we are treating t as a random variable and choosing $y(\mathbf{x})$.
- Claim: $y^*(x) = \mathbb{E}[t \mid x]$ is the best possible prediction.

Proof: Consider a fixed $y \in \mathbb{R}$. First, expand the square

$$\mathbb{E}[(y-t)^2 \mid \mathbf{x}] = \mathbb{E}[y^2 - 2yt + t^2 \mid \mathbf{x}]$$

then distribute expectation

$$= y^2 - 2y\mathbb{E}[t \mid \mathbf{x}] + \mathbb{E}[t^2 \mid \mathbf{x}]$$

then apply a variance identity

$$= y^2 - 2y\mathbb{E}[t \mid \mathbf{x}] + \mathbb{E}[t \mid \mathbf{x}]^2 + \mathsf{Var}[t \mid \mathbf{x}]$$

then apply the definition of $y^*(\mathbf{x})$

$$= y^2 - 2yy^*(\mathbf{x}) + y^*(\mathbf{x})^2 + Var[t \mid \mathbf{x}]$$

and collect terms

$$= (y - y^{\star}(\mathbf{x}))^{2} + Var[t \mid \mathbf{x}]$$

Proof (continued): We've shown

$$\mathbb{E}[(y-t)^2 \mid \mathbf{x}] = (y-y^*(\mathbf{x}))^2 + \mathsf{Var}[t \mid \mathbf{x}]$$

The second term doesn't depend on y and the first term is smallest when $y = y^*(\mathbf{x})$. This concludes our proof.

- The second term corresponds to the inherent unpredictability, or noise, of the targets, and is called the Bayes error.
 - ► This is the best we can ever hope to do with any learning algorithm. An algorithm that achieves it is Bayes optimal.
 - ▶ Notice that this term doesn't depend on *y*.
- This process of choosing a single value $y^*(\mathbf{x})$ based on $p_{\text{data}}(t \mid \mathbf{x})$ is an example of decision theory.

- But, in practice, our prediction $\hat{y}^*(\mathbf{x})$ is not $y^*(\mathbf{x})$. Instead, it is a random variable (where the randomness comes from randomness of the training set).
- Key fact: \hat{y}^* is independent of t given x.
- We are going to show that the expected loss (over \mathbf{x} , t and \hat{y}^*) of our trained predictor decomposes into three terms.

$$\mathbb{E}[(\hat{y}^{*}(\mathbf{x}) - t)^{2}]$$

$$= \mathbb{E}\left[\underbrace{(y^{*}(\mathbf{x}) - \mathbb{E}[\hat{y}^{*}(\mathbf{x}) | \mathbf{x}])^{2}}_{\text{bias}} + \underbrace{\operatorname{Var}(\hat{y}^{*}(\mathbf{x}) | \mathbf{x})}_{\text{variance}} + \underbrace{\operatorname{Var}(t | \mathbf{x})}_{\text{Bayes error}}\right]$$

- Intuition:
 - bias: how wrong the expected prediction is
 - variance: the amount of variability in the predictions
 - ▶ Bayes error: the inherent unpredictability of the targets

- Let's prove the decomposition.
- To do this, we'll use the tower property of expectation, twice.

$$\mathbb{E}[(\hat{y}^{\star}(\mathbf{x}) - t)^{2}] = \mathbb{E}[\mathbb{E}[(\hat{y}^{\star}(\mathbf{x}) - t)^{2} | \mathbf{x}]]$$

$$\mathbb{E}[(\hat{y}^{\star}(\mathbf{x}) - t)^{2} | \mathbf{x}] = \mathbb{E}[\mathbb{E}[(\hat{y}^{\star}(\mathbf{x}) - t)^{2} | \mathbf{x}, \hat{y}^{\star}(\mathbf{x})] | \mathbf{x}]$$

Let's start with the inner term. We can use our previous result (because we are conditioning on $\hat{y}^*(\mathbf{x})$, so we can treat it like a constant).

$$\mathbb{E}[(\hat{y}^{*}(\mathbf{x}) - t)^{2} | \mathbf{x}, \hat{y}^{*}(\mathbf{x})]$$

$$= (\hat{y}^{*}(\mathbf{x}) - y^{*}(\mathbf{x}))^{2} + \operatorname{Var}[t | \mathbf{x}, \hat{y}^{*}(\mathbf{x})]$$

then expand the square

$$= \hat{\boldsymbol{y}}^{\star}(\mathbf{x})^{2} - 2\hat{\boldsymbol{y}}^{\star}(\mathbf{x})\boldsymbol{y}^{\star}(\mathbf{x}) + \boldsymbol{y}^{\star}(\mathbf{x})^{2} + \operatorname{Var}[t \mid \mathbf{x}, \hat{\boldsymbol{y}}^{\star}(\mathbf{x})]$$

and since $\hat{y}^*(\mathbf{x})$ is independent of t given \mathbf{x} , we drop the conditioning in the variance term

$$= \hat{y}^{\star}(\mathbf{x})^{2} - 2\hat{y}^{\star}(\mathbf{x})y^{\star}(\mathbf{x}) + y^{\star}(\mathbf{x})^{2} + \operatorname{Var}[t \mid \mathbf{x}].$$

Intro ML (UofT) STA314-Lec1 17 / 32

Now we will "integrate out" $\hat{y}^*(\mathbf{x})$. Using our result from the previous slide, first we expand the square,

$$\mathbb{E}\left[\mathbb{E}\left[\left(\hat{y}^{*}(\mathbf{x})-t\right)^{2} \mid \mathbf{x}, \hat{y}^{*}(\mathbf{x})\right] \mid \mathbf{x}\right]$$

$$=\mathbb{E}\left[\hat{y}^{*}(\mathbf{x})^{2}-2\hat{y}^{*}(\mathbf{x})y^{*}(\mathbf{x})+y^{*}(\mathbf{x})^{2}+\operatorname{Var}\left[t \mid \mathbf{x}\right] \mid \mathbf{x}\right]$$

then distribute expectation

$$= \mathbb{E}[\hat{y}^{\star}(\mathbf{x})^{2} \mid \mathbf{x}] - 2 \mathbb{E}[\hat{y}^{\star}(\mathbf{x}) \mid \mathbf{x}] y^{\star}(\mathbf{x}) + y^{\star}(\mathbf{x})^{2} + \operatorname{Var}[t \mid \mathbf{x}]$$

then apply a variance identity

$$= \mathbb{E}[\hat{y}^{\star}(\mathbf{x}) \mid \mathbf{x}]^{2} + \operatorname{Var}[\hat{y}^{\star}(\mathbf{x}) \mid \mathbf{x}] - 2 \mathbb{E}[\hat{y}^{\star}(\mathbf{x}) \mid \mathbf{x}] y^{\star}(\mathbf{x}) + y^{\star}(\mathbf{x})^{2} + \operatorname{Var}[t \mid \mathbf{x}]$$

and collect terms

$$= \left(\mathbb{E}[\hat{y}^{\star}(\mathbf{x}) \mid \mathbf{x}] - y^{\star}(\mathbf{x})\right)^{2} + \operatorname{Var}[\hat{y}^{\star}(\mathbf{x}) \mid \mathbf{x}] + \operatorname{Var}[t \mid \mathbf{x}]$$

Intro ML (UofT) STA314-Lec1 18 / 32

Recap: we've just shown:

$$\mathbb{E}[(\hat{y}^{*}(\mathbf{x}) - t)^{2} | \mathbf{x}] =$$

$$= \underbrace{(y^{*}(\mathbf{x}) - \mathbb{E}[\hat{y}^{*}(\mathbf{x}) | \mathbf{x}])^{2}}_{\text{bias}} + \underbrace{\operatorname{Var}(\hat{y}^{*}(\mathbf{x}) | \mathbf{x})}_{\text{variance}} + \underbrace{\operatorname{Var}(t | \mathbf{x})}_{\text{Bayes error}}$$

Applying the tower property of expectation again, we get

$$\mathbb{E}[(\hat{y}^{\star}(\mathbf{x}) - t)^{2}] = \mathbb{E}[\mathbb{E}[(\hat{y}^{\star}(\mathbf{x}) - t)^{2} | \mathbf{x}]]$$

$$= \mathbb{E}\left[\underbrace{(y^{\star}(\mathbf{x}) - \mathbb{E}[\hat{y}^{\star}(\mathbf{x}) | \mathbf{x}])^{2}}_{\text{bias}} + \underbrace{\text{Var}(\hat{y}^{\star}(\mathbf{x}) | \mathbf{x})}_{\text{variance}} + \underbrace{\text{Var}(t | \mathbf{x})}_{\text{Bayes error}}\right]$$

STA314-Lec1 19 / 32

- Let's step back and consider what we just did. First, recall:
 - ▶ Picking a predictor by minimizing the average loss on the training set

$$\hat{\mathbf{y}}^{\star} = \arg\min_{\mathbf{y} \in \mathcal{H}} \hat{\mathcal{R}}[\mathbf{y}, \mathcal{D}^{train}]$$

returns a random predictor \hat{y}^* .

- ▶ We're interested in our performance in terms of expected loss $\mathcal{R}[\hat{y}^*]$, which is random (due to randomness of the \hat{y}^*).
- So, to summarize our performance on average, we want to study $\mathbb{E}[\mathcal{R}[\hat{y}^*]]$. We've shown:

$$\mathbb{E}[\mathcal{R}[\hat{y}^{\star}]] = \mathbb{E}\left[\underbrace{(y^{\star}(\mathbf{x}) - \mathbb{E}[\hat{y}^{\star}(\mathbf{x}) \mid \mathbf{x}])^{2}}_{\text{bias}} + \underbrace{\operatorname{Var}[\hat{y}^{\star}(\mathbf{x}) \mid \mathbf{x}]}_{\text{variance}} + \underbrace{\operatorname{Var}[t \mid \mathbf{x}]}_{\text{Bayes error}}\right]$$

ullet How does our choice of ${\cal H}$ interact with this analysis?

- Source: ESL
- If \mathcal{H} is large, then \hat{y}^* can get close y^* , therefore reducing bias. It's also sensitive to the finite training set, therefore increasing variance.
- If \mathcal{H} is small, then \hat{y}^* is typically from y^* , therefore increasing bias. It's less sensitive to the finite training set, therefore reducing variance.
- Even though this analysis only applies to squared error, we often loosely use "bias" and "variance" as synonyms for "underfitting" and "overfitting".

Bias and Variance

• Throwing darts = predictions for each draw of a dataset

Source: ESL.

 Be careful, the expected loss averages over points x from the data distribution, so this produces its own type of variance.

- In practice, measure the average loss $\hat{\mathcal{R}}[\hat{y}^{\star}, \mathcal{D}_{test}]$ on the test set instead of $\mathcal{R}[\hat{y}^{\star}]$.
- Let's visualize the bias-variance decomposition by plotting the space of predictions of the model, where each axis correspond to predictions on a two test examples $(\mathbf{x}^{(1)}, \mathbf{x}^{(2)})$.

Intro ML (UofT) STA314-Lec1 23 / 32

• The Bayes error is an irreducible error that comes from the randomness in $p_{\text{data}}(t \mid \mathbf{x})$.

Intro ML (UofT) STA314-Lec1 24 / 32

• Selecting a predictor $\hat{y}^* \in \mathcal{H}$ from a training set comes with bias and variance.

- An overly simple model (e.g. k-NN with large k) might have
 - high bias (too simplistic to capture the structure in the data)
 - low variance (there's enough data to get a stable estimate of the decision boundary)

Intro ML (UofT) STA314-Lec1 26 / 32

- An overly complex model (e.g. KNN with k = 1) may have
 - low bias (since it learns all the relevant structure)
 - high variance (it fits the quirks of the data you happened to sample)

Intro ML (UofT) STA314-Lec1 27 / 32

Validation

- Before we move on to bagging, it's a good time to mention validation.
- We may want to assess how likely a learning algorithm is to generalize before picking one and reporting the final test error.
- In other words, until now we've been picking predictors that optimize the training loss, but we want a technique for picking predictors that are likely to generalize as well.

STA314-Lec1 28 / 32

Validation

- For example, we may want to assess the following types of choices:
 - 1. Hyper-parameters of the learning algorithm that lead to better generalization. Often there are parameters that cannot be fit on the training set, e.g., k in k-NN, because the training set would give meaningless answers about the best setting, i.e., k = 1 is always gives optimal training set loss for k-NN.
 - 2. Picking predictors that generalize better. E.g., should we use a decision tree or k-NN if we want to generalize?
- We make these choices using validation to avoid measuring test loss (then the test set would no longer be unseen data!).
- Suppose we are trying to estimate the generalization of two learning algorithms, e.g., a decision tree and a *k*-NN model.

Hold-out validation

 The most common method of validation is to hold-out a subset of the training set and use it to assess how likely we are to generalize to unseen data.

• In our example of deciding between a decision tree and k-NN in terms of generalization, we would fit $\hat{y}_{k\text{NN}}^{\star}$ and $\hat{y}_{d\text{-tree}}^{\star}$ on the training set and measure the average loss on the validation set

$$\hat{\mathcal{R}}[\hat{y}_{k\mathrm{NN}}^{\star},\mathcal{D}^{valid}]$$
 vs. $\hat{\mathcal{R}}[\hat{y}_{\mathrm{d-tree}}^{\star},\mathcal{D}^{valid}]$

- We pick the predictor \hat{y}_{kNN}^{\star} vs. \hat{y}_{d-tree}^{\star} with lowest validation loss.
- Problem: this is usually a waste of data.

K-fold cross validation

• Second most common way: partition training data randomly into K equally sized subsets. For each "turn", use the first K-1 subsets (or "folds") as training data and the last subset as validation

Intro ML (UofT) STA314-Lec1 31 / 32

K-fold cross validation

• In our running example: fit a new predictor using each learning algorithm on K-1 folds for each of the K turns, and measure the validation loss on the held-out fold, averaged over the turns:

$$\frac{1}{K} \sum_{i=1}^{K} \hat{\mathcal{R}} [\hat{y}_{k\mathsf{NN},i}^{\star}, \mathcal{D}_{i}^{\mathsf{valid}}] \text{ vs. } \frac{1}{K} \sum_{i=1}^{K} \hat{\mathcal{R}} [\hat{y}_{d-\mathsf{tree},i}^{\star}, \mathcal{D}_{i}^{\mathsf{valid}}]$$

where $\hat{y}_{A,i}^{\star}$ is the predictor fit on the training subset of the *i*th turn using algorithm A and \mathcal{D}_{i}^{valid} is the validation subset of the *i*th turn.

• We pick the learning algorithm, e.g., k-NN v. decision tree, with lowest validation loss averaged across the K turns.