STA314 Fall 2021 Homework 4

Homework 4 - Nov. 3

Deadline: Monday, Nov. 24, at 11:59pm.

Submission: You need to submit through Crowdmark (you can find the link on Quercus) with
your answers to Questions 1, 2, 3, and 4. You will upload your answers to each subquestion sepa-
rately. You can produce the submissions however you like (e.g. IWTEX, Microsoft Word, scanner),
as long as they are readable.

Marking: Your mark will be out of 7.5. This mark will be your mark on either question 1, 2, 3, or
4. We will decide which question to mark after the deadline, and we will mark the same question
for everyone in the class. To aid your learning, we will be releasing the solutions to both questions,
and covering the solutions in office hours.

Neatness: We reserve the right to deduct a point for neatness, if we have a hard time reading
your solutions or understanding the structure of your code.

Late Submission: 10% of the total possible marks will be deducted for each day late, up to a
maximum of 3 days. After that, no submissions will be accepted.

Computing: To install Python and required libraries, see the instructions on the course web page.

Other Policies: See the syllabus' for detailed collaboration, generative Al, and academic integrity
policies.

1. [7.5 pts| Principal Component Analysis. In this problem, you will gain intuition on how
PCA works by implementing the algorithm on the same digits dataset. You will complete
the provided code in pca.py and experiment with the completed code. Carefully read the
provided code in pca.py. You should understand the code instead of using it as a black
box. You will apply the PCA algorithm to the 600 x 256 digit images (computing all 256
eigenvalues and eigenvectors).

(a) [3 pts] Implement the function pca located at pca.py. While implementing the function,
remember to vectorize the operations; you should not write any for-loops. Include your
code in the report. You may optionally visualize the eigenvectors with the provided
function show_eigenvectors.

(b) [4 pts] For each image in the validation set, subtract the mean of training data and

project it into the low-dimensional space spanned by the first K principal components
of training data. After projection, use a 1-NN classifier on K dimensional features (the
code vectors) to classify the digit in the low-dimensional space.
You need to implement the classifier yourself in function pca_classify. You will do the
classification under different K values to see the effect of K. Choose K = {2, 5,10, 20,30}
and, under each K, classify the validation digits using 1-NN. Plot and report results,
where the plot should show the curve of validation set classification accuracy versus
number of eigenvectors you keep, i.e., K. Include the code in your report as well.

(c) [0.5 pt] What is the best choice of K for 1-NN according to the validation accuracy?
Report the classification accuracy of this classifier over the test data.
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2. [7.5pts] Categorial Distribution. In this problem you will consider a Bayesian approach
to modelling categorical outcomes. Let’s consider fitting the categorical distribution, which
is a discrete distribution over K outcomes, which we’ll number 1 through K. The probability
of each category is explicitly represented with parameter 6. For it to be a valid probability
distribution, we clearly need 6; > 0 and ), 6 = 1. We'll represent each observation x as
a 1-of-K encoding, i.e, a vector where one of the entries is 1 and the rest are 0. Under this
model, the probability of an observation can be written in the following form:

K

p(x10) = T 6¢*-

k=1

Suppose you observe a dataset, A
D= {X(Z) }ZJL

Denote the count for outcome k as Ny = Zfil atg) and N = Zszl Np.. Recall that each data

point is in the 1-of-K encoding, i.e., :L‘l(j) = 1 if the ith datapoint represents an outcome k
and :c,(j) = 0 otherwise.

(a) [2.5pts] First, derive 0y, which is the mazimum likelihood estimator (MLE), for the class
probabilities 8. You may assume that N > 0 for this question. Derivations should be
rigorous.

Hint 1: We saw in lecture that MLE can be thought of as ‘ratio of counts’ for the data,
so what should 0y be counting?

Hint 2: Similar to the binary case, write p(x\¥)|0) = Hﬁilﬁg’i). The challenge in
maximizing the log-likelihood is that this problem is a constrained mazrimization under
the constraint that Zszl 0, = 1. To overcome this, we will use a generalization of the
idea from the coin flip example in lecture. We can turn the MLE mazimization problem
into an easier constrained problem by setting 0 = 1 — Esz_ll Or. Note that this is a
mazimization problem over the set {(Ok)kzi |0k > 0, 45 Ok < 1}. Although this is
still constrained, the log likelihood is a concave function that goes to —oo as we approach
the boundary of the constraint set, so the function attains its mazximum in the interior
of the region when 0logp(D|0)/d6; = 0.

(b) [2.5pts] Now we will take a Bayesian approach. For the prior, we’ll use the Dirichlet
distribution, which is defined over the set of probability vectors (i.e. vectors that are
nonnegative and whose entries sum to 1). Its PDF is as follows:

p() o g9

What is the probability distribution of the posterior distribution p(6|D)? Don’t just
give the density of the posterior, say which family of distributions it belongs to.

(c) [1.5pts] Still assuming the Dirichlet prior distribution, determine the MAP estimate of
the parameter vector 8. For this question, you may assume each ay > 1.

(d) [1pt] Now, suppose that your friend said that they had a hidden N + 1st outcome,
xV+D drawn from the same distribution as the previous N outcomes. Your friend does
not want to reveal the value of xV*1) to you. So, you want to use your Bayesian model
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to predict what you think xV*Y is likely to be. The “proper” Bayesian predictor is the
so-called posterior predictive distribution:

p(xV D) = / p(xV+1|9)p(6]D) db

What is the probability that the N +1 outcome was k, i.e., the probability that x
1, under your posterior predictive distribution? Hint: A useful fact is that if 8 ~
Dirichlet(ay,...,ax), then

(N+1) _
A =

a

Bl = 5

Report your answers to the above questions.

3. [7.5pts] Gaussian Naive Bayes. In this question, you will derive the maximum likelihood
estimates for Gaussian Naive Bayes, which is just like the naive Bayes model from lecture,
except that the features are continuous, and the conditional distribution of each feature given
the class is (univariate) Gaussian rather than Bernoulli. Start with the following generative
model for a random discrete class label ¢ € {1,2,..., K} and a random real valued vector of
D features x € RP:

p(t = k) = o (0.1)

D —1/2 D
p(x|t = k) = (H 2m§> exp{— > 273(% - ukd)Q} (0.2)
d=1

where aj > 0 is the prior on class k, afl > 0 are the variances for each feature, which are
shared between all classes, and upg € R is the mean of the feature d conditioned on class k.
We write « to represent the vector with elements o and similarly o is the vector of variances.
The matrix of class means is written g where the kth row of p is the mean for class k.

(a) [1.5pt] Use Bayes’ rule to derive an expression for p(t = k|x). Hint: Use the law of total
probability to derive an expression for p(x).

(b) [1.5pt] Write down an expression for the likelihood function (LL)
0(0) = logp(t(l),x(l),t(2), X(Z)’ . ,t(N), X(N)) (0.3)

of a particular dataset D = {(t™),xM), ¢® x@) ... (™) x(M)} with parameters
0 = {a, p, o} and this model. (Assume the data are i.i.d.)

(c) [4.5pts] Take partial derivatives of the likelihood with respect to each of the parameters
g and with respect to the shared variances afl. Report these partial derivatives and
find the maximum likelihood estimates for prg and chl. You may assume that each class
appears at least once in the dataset, i.e. the number of times N that class k appears
in the dataset is N, > 0.

Report your answers to the above questions.

4. [7.5pts] Gaussian Discriminant Analysis. For this question you will build classifiers to
label images of handwritten digits. Each image is 16 by 16 pixels and is represented as a
vector of dimension 256 by listing all the pixel values in raster scan order. The images are
grayscale and the pixel values are between 0 and 1. The labels y are 0,1 corresponding to
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which character was written in the image, either “2” or “3”. These are the same digits we
used in HW3 with logistic regression.

A skeleton (gda.py) is is provided for each question that you should use to structure your
code.

Using maximum likelihood, fit a set of 2 class-conditional Gaussians with a separate, full
covariance matrix for each class. Remember that the conditional multivariate Gaussian prob-
ability density is given by,

plx] = k) = (2m) PP oxpd x5 o - )| (0.4

1
where p;, € RP. %, € RPXP and positive-definite. You should take p(t = k) = 7 You will

compute parameters uy; and Xy for k € {0,1},5 € {0,...,255}. You should implement the
covariance computation yourself (i.e. without the aid of 'np.cov’). Hint: To ensure numerical
stability you may have to add a small multiple of the identity to each covariance matriz. For
this assignment you should add 0.11 to each covariance matrix.

(a) [7pts] Complete the 5 functions that are not complete in the starter code ([1.4pts]
each). Include the function body for each completed function in your report.

(b) [0.5pts] Report the average conditional log-likelihood, i.e. %ZZ]\LI log p(t® | x®), of
the trained model on both the train and test set. Report the accuracy, of the classifier

that selects most likely posterior class for each data point using the trained model, on
the train and test set.



