
STA314 Fall 2025 Homework 2

Homework 2 - Sept. 22

Deadline: Monday, Oct. 6, at 11:59pm.

Submission: You need to submit through Crowdmark (you can find the link on Quercus) with
your answers to Questions 1 and 2. You will upload your answers to each subquestion separately.
You can produce the submissions however you like (e.g. LATEX, Microsoft Word, scanner), as long
as they are readable.

Marking: Your mark will be out of 7.5. This mark will be your mark on either question 1 or
question 2. We will decide which question to mark after the deadline, and we will mark the same
question for everyone in the class. To aid your learning, we will be releasing the solutions to both
questions, and covering the solutions in office hours.

Neatness: We reserve the right to deduct a point for neatness, if we have a hard time reading
your solutions or understanding the structure of your code.

Late Submission: 10% of the total possible marks will be deducted for each day late, up to a
maximum of 3 days. After that, no submissions will be accepted.

Computing: To install Python and required libraries, see the instructions on the course web page.

Other Policies: See the syllabus1 for detailed collaboration, generative AI, and academic integrity
policies.

1. [7.5pts] Linear Regression. We will consider a special case of the linear regression setting
that we covered in lecture. Consider the following data generating distribution in which x
is a multivariate Gaussian in D dimensions and the label t is a linear function of x with
one-dimensional Gaussian noise. Let w∗ ∈ RD be fixed,

x ∼ N (x | 0, I) and ϵ ∼ N (ϵ | 0, 1) independent (0.1)

t = x⊤w∗ + ϵ (0.2)

Consider the hypothesis class of linear regression without a bias term. That is, any predictor

y(x) = x⊤w with w ∈ RD. (0.3)

(a) [4pt] Expected Loss. Recall that the expected loss of linear regression is the expected
squared error between a prediction and a label, where the expectation is taken over a
random input and a random label (not over the predictor at this stage). We can identify
a predictor with vectors w ∈ RD, so we can write the expected loss as a function of w:

R[w] =
1

2
E
[
(t− x⊤w)2

]
(0.4)

Prove the following, where ∥w∥2 =
∑D

d=1w
2
d is the squared Euclidean norm.

R[w] =
1

2
∥w −w∗∥2 + 1

2
(0.5)

Hint: you can use the fact that E[xixj] = 1 if i = j and 0 otherwise.

1https://www.cs.toronto.edu/~cmaddis/courses/sta314_f25/sta314_f25_syllabus.pdf

1

https://www.cs.toronto.edu/~cmaddis/courses/sta314_f25/sta314_f25_syllabus.pdf

STA314 Fall 2025 Homework 2

(b) [2.5pt] Performance of Linear Regression. In this question you will study the
expected performance of linear regression. Recall from lecture that the weights that
minimize the average training loss on a training dataset {(x(i), t(i))}Ni=1 are given by

ŵ∗ = (X⊤X)−1X⊤t (0.6)

where

X =


(x(1))⊤

(x(2))⊤

...

(x(N))⊤

 and t =


t(1)

t(2)

...

t(N)

 (0.7)

are the design matrix and target vector, respectively. We assume that N > D + 1,
which ensures that X⊤X is invertible almost surely, which basically means it’s always
invertible.

The trained linear regression predictor in this case is given by ŷ∗(x) = x⊤ŵ∗. Using the
result from the previous question, we can evaluate the expected loss of ŷ∗,

R[ŵ∗] =
1

2
∥ŵ∗ −w∗∥2 + 1

2
. (0.8)

Note that R[ŵ∗] is random because ŵ∗ is random. Now, the performance of linear re-
gression the we can expect on average in our problem setting is the expectation E[R[ŵ∗]],
taken over the randomness in the training set.

Prove that

E[R[ŵ∗]] =
1

2

D

N −D − 1
+

1

2
(0.9)

where the expectation is taken over ŵ∗.

Hint: you can use the following result without proof. Let

X =


(x(1))⊤

(x(2))⊤

...

(x(N))⊤

 and e =


ϵ(1)

ϵ(2)

...

ϵ(N)

 (0.10)

be such that x(i) ∼ N (x | 0, I) and ϵ(i) ∼ N (ϵ | 0, 1) are all mutually independent. Then

E
[∥∥∥(X⊤X)−1X⊤e

∥∥∥2] =
D

N −D − 1
. (0.11)

(c) [1pt] The Curse of Dimensionality Revisited. One way to improve a prediction is
to add a dimension to the input x. For example if you were trying to predict lifespan
(the label) from height (a one-dimensional input) using linear regression, you might find
that your predictions are OK but not great. So, you may decide to add a dimension
to the input and instead predict lifespan (the label) from height and weight (now a
two-dimensional input). It seems like this can only help because now you have more
information in the input that might tell you something about the label.

This gives you an idea: you decide to very aggressively add dimensions to the input until
D = N − 2, where N is the size of your training set. Explain why this might be a bad
idea.

2

STA314 Fall 2025 Homework 2

2. [7.5pts] Robust Regression. One problem with linear regression using squared error loss
is that it can be sensitive to outliers. This can be a problem if the training set does not have
the same distribution as the validation or testing sets. We will explore this scenario in this
question.

We can use different loss functions to make training robust to outliers. Recall that an outlier
is a data point that differs significantly from other observations. In our context, we will
consider a few targets t(i) that are outliers in the sense they are drawn from a conditional
p(t|x) that is distinct from one used in the validation set and potentially with much larger
variance. To cope with this, we will use the Huber loss, parameterized by a hyperparameter
δ > 0:

Lδ(y, t) = Hδ(y − t)

Hδ(a) =

{
1
2a

2 if |a| ≤ δ

δ(|a| − 1
2δ) if |a| > δ

(a) [1pt] Sketch the Huber loss Lδ(y, t) and squared error loss LSE(y, t) = 1
2(y − t)2 for

t = 0, either by hand or using a plotting library. Based on your sketch, why would you
expect the Huber loss to be more robust to a label t(i) that is an outlier?

(b) [2pt] Just as with linear regression, assume a linear model without a bias:

y(x) = x⊤w.

As usual, the cost is the average loss over the training set:

R̂ =
1

N

N∑
i=1

Lδ(y
(i), t(i)).

Derive a sequence of vectorized mathematical expressions for the gradients of the cost
(averaged over a training set) with respect to w. Recall that the inputs are organized
into a design matrix

X =


x(1)⊤

...

x(N)⊤


with one row per training example and recall there is no bias term. The expressions
should be something you can translate into a Python program without requiring a for-
loop. Your answer should look like:

y = · · ·
∂R̂
∂y

= · · ·

∂R̂
∂w

= · · ·

We recommend you find a formula for the derivative H ′
δ(a). Then give your answers in

terms of H ′
δ(y − t), where we assume that H ′

δ is applied point-wise to the vector y − t.

3

STA314 Fall 2025 Homework 2

Remember that ∂R̂/∂w denotes the gradient vector,

∂R̂
∂w

=


∂R̂
∂w1
...

∂R̂
∂wD


(c) [2pt] We have provided Python starter code to perform gradient descent on this model

and you need to write two functions. Complete the function robust_regression_grad,
which computes the gradients of the robust regression model for a weight vector w. You
should be able to read the expected parameters and return values from the docstring.
You will want find the functions np.where, np.abs, np.dot, np.shape, and np.sign.
You may submit your code as a screenshot or a PDF with the body of your function.

(d) [2pt] Complete the function optimization. This function initializes a weight vec-
tor at 0 and runs gradient descent for num_iterations. There is no need to modify
num_iterations nor the initialization of w. You should use your function robust_regression_grad
in this function. You may submit your code as a screenshot or a PDF with the body of
your function.

(e) [0.5pt] We provided a script that tries 5 different δ values of the Huber loss for training
and reports validation losses. For this experiment, we generated a dataset in which the
training set has target values t(i) that are outliers, i.e., some small subset of training
points are not i.i.d. with the validation set and the noise that we add these is much
larger. You can see how we generated the data in q2_data.py.

Run the script q2.py (or the equivalent notebook). The model in the script is trained
on the Huber loss using the training set, which is robust to these outliers, but we report
the standard squared error loss on the validation and training sets. In sum we report:

i. the average squared error on the validation set of a linear regression model

ii. for each δ, the average squared error on the validation set of a robust regression
model trained with the Huber loss

iii. for each δ, the average squared error on the training set of a robust regression model
trained with the Huber loss

If you implemented your functions correctly, you should see that the training squared
error of the robust model goes down as δ increases and approaches the loss of the linear
regression (not robust) model. On the other hand, you should see that there is an
optimal δ value for the validation squared error. Why do you think this is? Answer this
question briefly in a few sentences.

4

