
Midterm for CSC411/2515,
Machine Learning and Data Mining

Fall 2018, Version B
Thursday, October 18, 8:10-9pm

Name:

Student number:

This is a closed-book test. It is marked out of 15 marks. Please answer
ALL of the questions. Here is some advice:

• The questions are NOT arranged in order of difficulty, so you should
attempt every question.

• Questions that ask you to “briefly explain” something only require short
(1-3 sentence) explanations. Don’t write a full page of text. We’re just
looking for the main idea.

• None of the questions require long derivations. If you find yourself plug-
ging through lots of equations, consider giving less detail or moving on
to the next question.

• Many questions have more than one right answer.
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.

Q1: / 2
Q2: / 1
Q3: / 1
Q4: / 2
Q5: / 1
Q6: / 2
Q7: / 2
Q8: / 2
Q9: / 2

Final mark: / 15
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Have you taken CSC321 at UofT? (This question is used for calibration purposes.)

1. As discussed in lecture, when applying K-nearest-neighbors, it is common to normalize
each input dimension to unit variance.

(a) [1pt] Why might it be advantageous to do this?

(b) [1pt] When might this normalization step not be a good idea? (Hint: You may
want to consider the task of classifying images of handwritten digits, where the
digit is centered within the image.)

2. [1pt] In random forests, what is the motivation for randomizing the set of attributes
considered for each split?
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3. [1pt] Suppose you want to evaluate the test error rate of a 1-nearest-neighbors classifier.
Assume you implement the algorithm the näıve way, i.e. by explicitly computing all
the distances and taking the min, rather than by using a fancy data structure. What
is the running time of evaluating the test error? Give your answer in big-O notation,
in terms of the number of training examples Ntrain, the number of test examples Ntest,
and the input dimension D. Briefly explain your answer.

4. (a) [1pt] Give one advantage of K-nearest-neighbors over linear regression.

(b) [1pt] Give one advantage of linear regression over K-nearest-neighbors.
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5. [1pt] Suppose linear regression (with squared error loss) is used as a classification
algorithm. TRUE or FALSE: if it correctly classifies every training example, then its
cost is zero. (By “cost”, we mean the function minimized during training.) Briefly
justify your answer.

6. [2pts] Let Z be a random variable and t be a real number. Show that

E[(Z − t)2] = (E[Z]− t)2 + Var[Z].

(This is a simplified verison of the bias-variance decomposition.)
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7. [2pts] Suppose binary-valued random variables X and Y have the following joint
distribution:

Y = 0 Y = 1
X = 0 1/8 3/8
X = 1 2/8 2/8

Determine the information gain IG(Y |X). You may write your answer as a sum of
logarithms.
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8. [2pts] Recall that combining the logistic activation function with squared error loss
suffers from saturation, whereby the gradient signal is very small when the prediction
for a training example is very wrong. Logistic regression (i.e. logistic activation function
with cross-entropy loss) doesn’t have this problem. Recall that the logistic function
is defined as σ(z) = 1/(1 + e−z). Now suppose we modify the activation function to
squash the prediction y to be in the interval [0.1, 0.9], and then apply cross-entropy
loss. I.e.,

z = w>x + b

y = 0.8σ(z) + 0.1

L(y, t) = −t log y − (1− t) log(1− y),

where σ is the logistic activation function. Does this model have a problem with
saturation? You don’t need to give a formal proof, but you should informally justify
your answer. Hint: it is possible to answer this question without calculating derivatives.
Think qualitatively.
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9. [2pts] Recall that the soft-margin SVM can be viewed as minimizing the hinge loss
with an L2 regularization term. I.e.,

z = w>x + b

L(z, t) = max(0, 1− tz)

J (w, b) = λ
2
‖w‖2 +

1

N

N∑
i=1

L(z(i), t(i)).

Here, t ∈ {−1,+1}. Complete the formulas for the gradient calculations. You don’t
need to show your work.

∂J
∂w

= +
1

N

N∑
i=1

∂L(i)

∂w
(fill in the blank)

dL
dz

=

∂L
∂w

= (give in terms of
dL
dz

)
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(Scratch work or continued answers)
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