STA314 Midterm Review



Midterm Review

1. A brief overview

2. Some past midterm questions
(Note: midterm will be on Quercus
and probably multiple choice)



e Supervised learning and Unsupervised learning

Supervised learning: have a collection of training examples labeled with the correct
outputs

Unsupervised learning: have no labeled examples

e Regression and Classification

Regression: predicting a scalar-valued target

Classification: predicting a discrete-valued target




e K-Nearest Neighbors
|dea: Classify a new input x based on its k nearest
neighbors in the training set

Decision boundary: the boundary between regions
of input space assigned to different categories

Tradeoffs in choosing k: overfit / underfit

Pitfalls: curse of dimensionality, normalization,
computational cost
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Model: a linear function of the features y=w'x+b 0.5 1

y: response
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Loss function: squared error loss  L(y,t) = 3(y —t)?
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Cost function: loss function averaged over all —1.01
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Vectorization: advantages

Solving minimization problem: direct solution / J(w)
gradient descent  « w— a‘;_J
W

Feature mapping: degree-M polynomial feature
mapping
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e Model Complexity and Generalization

Underfitting: too simplistic to describe the data
Overfitting: too complex, fit training examples perfectly, but fails to generalize to unseen data

Hyperparameter: can’t include in the training procedure itself, tune it using a validation set

Reqgularization: Jieg(w) = J(w) + AR(W), improve the generalization, L2 / L1 regularization
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-Pattern Recognition and Machine Learning, Christopher Bishop.
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Loss function: 0-1 loss

Geometry: input space, weight space
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e Decision Trees

Model: make predictions by splitting on features
according to a tree structure

Decision boundary: made up of axis-aligned
planes

Entropy: uncertainty inherent in the variable’s
possible outcomes H(Y)= - p(y)logp(y)

yey

joint entropy: conditional entropy: properties

Information gain: IGY|X)=H(Y) - H(Y|X)
measures the informativeness of a variable; used
to choose a good split
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Other topics to know

e Comparisons between different classifiers (KNN, logistic regression, decision trees,
neural networks)

e Contrast the decision boundaries for different classifiers
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7. [2pts] Consider the classification problem with the following dataset:
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Your job is to find a linear classifier with weights w,, wq, w3, and b which correctly

classifies all of these training examples. None of the examples should lie on the decision
boundary.

(a) [1pt] Give the set of linear inequalities the weights and bias must satisfy.

(b) [1pt] Give a setting of the weights and bias that correctly classifies all the training

examples. You don’t need to show your work, but it might help you get partial
credit.



Solution
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0+b>0
0+b<0
14+b6>0
14+b<0

t =1, wixry +woxrs + wzxrsz + b|>|0

t =0, w1 + woxrs +wzxrz +b <0

( b>0
we +b<0

wy +w3+b>0

| w1 +ws +w3+b<0

Many answers are possible.
Here’s one:
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7. [2pts] Suppose binary-valued random variables X and Y have the following joint
distribution:

Y=0 Y=1
X=0] 1/8 3/8
X=1| 2/8 2/8

Determine the information gain IG(Y|X). You may write your answer as a sum of
logarithms.



Solution
IG(Y|X) = H(Y) — HY|X)

Y=0 Y=1
X=0| 1/8 3/8 H(Y)=EI) p(Y =y)log, p(Y =)
X=1| 2/8 2/8 — —p(Y = 0)log, p(Y = 0) — p(Y = 1)logy p(Y = 1)
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H(Y|X) = Zp H(Y|X = x)

= p(X =0)H(Y|X =0)+p(X = 1)H(Y|X =1)

1 1
= SH(Y|X =0)+ SH(Y|X = 1)

PX=1)=pX=1Y=0+pX=1Y=1)=3

H(Y|X = z) =[], p(y|z) log, p(y|z)

P(Y=U|X=O):1’(Y;)(=+’=‘XU)=0)
p(Y =0,X=0) HY|X =0)=—-p(Y =0[X =0)logy p(Y = 0|X =0)
X =0Y =0 +p(X =0,V =1) —p(Y =1|X =0)log, p(Y = 1| X =0)
_Z —4Og24—40024
We used: p(yle) = 574 and p(z) = ¥, plz,y) H(Y|X =1) = 2 logy = — = log, =
Ao . ) y = — —0g2_ §0D2§



