CSC311: Optimization for Machine Learning Fall 2020

Based on Slides by Eleni Triantafillou, Ladislav Rampasek, Jake Snell, Kevin Swersky, Shenlong Wang, and others

Contents

- Overview
- Gradient Descent
- Convexity

Overview of Optimization

An informal definition of optimization

Minimize (or maximize) some quantity.

Applications

- ▶ Engineering: Minimize fuel consumption of an automobile
- Economics: Maximize returns on an investment
- Supply Chain Logistics: Minimize time taken to fulfill an order
- Life: Maximize happiness

More formally

Goal: find $\theta^* = \operatorname{argmin}_{\theta} f(\theta)$, (possibly subject to constraints on θ).

- $\theta \in \mathbb{R}^n$: optimization variable
- $f: \mathbb{R}^n \to \mathbb{R}$: objective function

Maximizing $f(\theta)$ is equivalent to minimizing $-f(\theta)$, so we can treat everything as a minimization problem.

Optimization is a large area of research

The best method for solving the optimization problem depends on which assumptions we want to make:

- ▶ Is θ discrete or continuous?
- ▶ What form do constraints on θ take? (if any)
- ▶ Is f "well-behaved"? (linear, differentiable, convex, submodular, etc.)

Optimization for Machine Learning

Often in machine learning we are interested in learning the parameters $\boldsymbol{\theta}$ of a model.

Goal: minimize some loss function

- ► For example, if we have some data (x, y), we may want to maximize $P(y|x, \theta)$.
- ▶ Equivalently, we can minimize $-\log P(y|x,\theta)$.
- ▶ We can also minimize other sorts of loss functions

log can help for numerical reasons

Gradient Descent

Gradient Descent: Motivation

From calculus, we know that the minimum of f must lie at a point where $\frac{\partial f(\theta^*)}{\partial \theta} = 0$.

- ▶ Sometimes, we can solve this equation analytically for θ .
- Most of the time, we are not so lucky and must resort to iterative methods.

Review

▶ Gradient: $\nabla_{\theta} f = (\frac{\partial f}{\partial \theta_1}, \frac{\partial f}{\partial \theta_2}, ..., \frac{\partial f}{\partial \theta_k})$

Outline of Gradient Descent Algorithm

Where η is the learning rate and T is the number of iterations:

- ▶ Initialize θ_0 randomly
- for t = 1 : T:

The learning rate shouldn't be too big (objective function will blow up) or too small (will take a long time to converge)

Gradient Descent with Line-Search

Where η is the learning rate and T is the number of iterations:

- ▶ Initialize θ_0 randomly
- for t = 1 : T:
 - ▶ Finding a step size η_t such that $f(\theta_t \eta_t \nabla_{\theta_{t-1}}) < f(\theta_t)$

 - $\blacktriangleright \ \theta_t \leftarrow \theta_{t-1} + \delta_t$

Require a line-search step in each iteration.

Gradient Descent with Momentum

We can introduce a momentum coefficient $\alpha \in [0,1)$ so that the updates have "memory":

- ▶ Initialize θ_0 randomly
- ▶ Initialize δ_0 to the zero vector
- for t = 1 : T:

 - $\theta_t \leftarrow \theta_{t-1} + \delta_t$

Momentum is a nice trick that can help speed up convergence. Generally we choose α between 0.8 and 0.95, but this is problem dependent

Outline of Gradient Descent Algorithm

Where η is the learning rate and T is the number of iterations:

- ▶ Initialize θ_0 randomly
- Do:
- Until convergence

Setting a convergence criteria.

Some convergence criteria

- ► Change in objective function value is close to zero: $|f(\theta_{t+1}) f(\theta_t)| < \epsilon$
- ▶ Gradient norm is close to zero: $\|\nabla_{\theta} f\| < \epsilon$
- Validation error starts to increase (this is called early stopping)

Checkgrad

- ▶ When implementing the gradient computation for machine learning models, it's often difficult to know if our implementation of f and ∇f is correct.
- ► We can use finite-differences approximation to the gradient to help:

$$\frac{\partial f}{\partial \theta_i} \approx \frac{f((\theta_1, \dots, \theta_i + \epsilon, \dots, \theta_n)) - f((\theta_1, \dots, \theta_i - \epsilon, \dots, \theta_n))}{2\epsilon}$$

Why don't we always just use the finite differences approximation?

- slow: we need to recompute f twice for each parameter in our model.
- numerical issues

Stochastic Gradient Descent

- Any iteration of a gradient descent (or quasi-Newton) method requires that we sum over the entire dataset to compute the gradient.
- SGD idea: at each iteration, sub-sample a small amount of data (even just 1 point can work) and use that to estimate the gradient.
- Each update is noisy, but very fast!
- ▶ It can be shown that this method produces an unbiased estimator of the true gradient.
- ► This is the basis of optimizing ML algorithms with huge datasets (e.g., recent deep learning).
- Computing gradients using the full dataset is called batch learning, using subsets of data is called mini-batch learning.

Stochastic Gradient Descent

- The reason SGD works is because similar data yields similar gradients, so if there is enough redundancy in the data, the noise from subsampling won't be so bad.
- SGD is very easy to implement compared to other methods, but the step sizes need to be tuned to different problems, whereas batch learning typically "just works".
- Tip 1: divide the log-likelihood estimate by the size of your mini-batches. This makes the learning rate invariant to mini-batch size.
- ▶ Tip 2: subsample without replacement so that you visit each point on each pass through the dataset (this is known as an epoch).

Convexity

Definition of Convexity

A function f is **convex** if for any two points θ_1 and θ_2 and any $t \in [0,1]$,

$$f(t\theta_1 + (1-t)\theta_2) \le tf(\theta_1) + (1-t)f(\theta_2)$$

We can *compose* convex functions such that the resulting function is also convex:

- ▶ If f is convex, then so is αf for $\alpha \geq 0$
- ▶ If f_1 and f_2 are both convex, then so is $f_1 + f_2$
- etc., see http://www.ee.ucla.edu/ee236b/lectures/functions.pdf for more

Why do we care about convexity?

- Any local minimum is a global minimum.
- ► This makes optimization a lot easier because we don't have to worry about getting stuck in a local minimum.

Examples of Convex Functions

Quadratics

```
Slide Type
In [6]:
         import matplotlib.pyplot as plt
        plt.xkcd()
         theta = linspace(-5, 5)
         f = theta**2
        plt.plot(theta, f)
Out[6]: [<matplotlib.lines.Line2D at 0x3ceae90>]
         20 -
          15 -
          10
          5 -
```

Examples of Convex Functions

Negative logarithms

```
Slide Type
In [8]:
         import matplotlib.pyplot as plt
        plt.xkcd()
        theta = linspace(0.1, 5)
         f = -np.log(theta)
        plt.plot(theta, f)
Out[8]: [<matplotlib.lines.Line2D at 0x3ef4a10>]
          2.0
          1.5
          1.0
          0.5
          0.0
         -0.5
         -1.0
         -1.5
         -2.0L
```

More on optimization

- Automatic Differentiation Modern technique (used in libraries like tensorflow, pytorch, etc) to efficiently compute the gradients required for optimization. A survey of these techniques can be found here: https://arxiv.org/pdf/1502.05767.pdf
- Convex Optimization by Boyd & Vandenberghe Book available for free online at http://www.stanford.edu/~boyd/cvxbook/
- Numerical Optimization by Nocedal & Wright Electronic version available from UofT Library

Conditioning of Quadratic Losses

Consider a quadratic loss:

$$\mathcal{L}(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{H} \mathbf{x} \tag{1}$$

Consider the eigenvalues **H**:

$$\lambda_1, \ldots, \lambda_n$$
 (2)

If **H** symmetric, then the eigenvalues are real.

If ${\bf H}$ is positive definite, then every eigenvalue $\lambda>0$ and our loss is strictly-convex.

$$\mathcal{L}(\mathbf{x}) = \mathbf{x}^T \mathbf{H} \mathbf{x}$$

For positive definite \mathbf{H} we can order the eigenvalues from smallest to largest

$$0 < \lambda_1 \le \dots \le \lambda_n \tag{3}$$

The ratio of largest to smallest eigenvalue characterizes difficulty of optimizing quadratic losses

$$\kappa = \frac{\lambda_n}{\lambda_1} \tag{4}$$

Gradient descent with an optimal step size converges with rate

$$\frac{\kappa - 1}{\kappa + 1} \tag{5}$$

Gradient descent with momentum with optimal step size and momentum coefficient converges with rate:

$$\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \tag{6}$$

where (linear) rate of convergence means:

$$\lim_{n \to \infty} \frac{\|\mathbf{x}^{n+1} - \mathbf{x}^*\|}{\|\mathbf{x}^n - \mathbf{x}^*\|} \tag{7}$$

We can calculate maximum/optimal step sizes given the eigenvalues of the matrix H – See the lecture ipython notebook.

We can generalize this to μ -strongly-convex, L-Lipschitz objectives.