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Overview of Optimization



An informal definition of optimization

Minimize (or maximize) some quantity.



Applications

» Engineering: Minimize fuel consumption of an automobile

» Economics: Maximize returns on an investment

» Supply Chain Logistics: Minimize time taken to fulfill an order
» Life: Maximize happiness



More formally

Goal: find 0* = argminyf(#), (possibly subject to constraints on 6).

> 0 € R": optimization variable
» f:R" — R: objective function

Maximizing f(0) is equivalent to minimizing —f(6), so we can treat
everything as a minimization problem.



Optimization is a large area of research

The best method for solving the optimization problem depends on
which assumptions we want to make:

» |s 6 discrete or continuous?

» What form do constraints on 6 take? (if any)

> Is f “well-behaved"? (linear, differentiable, convex,
submodular, etc.)



Optimization for Machine Learning

Often in machine learning we are interested in learning the
parameters # of a model.
Goal: minimize some loss function

» For example, if we have some data (x, y), we may want to
maximize P(y|x,0).

» Equivalently, we can minimize — log P(y|x, 6).

» We can also minimize other sorts of loss functions

log can help for numerical reasons



Gradient Descent



Gradient Descent: Motivation

From calculus, we know that the minimum of f must lie at a point
where 8"((999 ) — .

» Sometimes, we can solve this equation analytically for 6.
» Most of the time, we are not so lucky and must resort to
iterative methods.
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Outline of Gradient Descent Algorithm

Where 7 is the learning rate and T is the number of iterations:

» Initialize 6y randomly
> fort=1:T:

» 0 < —nVo,_, f

> gt — gtf]_ + 61—

The learning rate shouldn’t be too big (objective function will blow
up) or too small (will take a long time to converge)



Gradient Descent with Line-Search

Where 7 is the learning rate and T is the number of iterations:

» Initialize g randomly

> fort=1:T:
» Finding a step size n; such that f0; — n:Vy,_,) < (0)
> O —NeVg,_, f
> 0 0i 1+ 0

Require a line-search step in each iteration.



Gradient Descent with Momentum

We can introduce a momentum coefficient a € [0, 1) so that the
updates have “memory”:

» Initialize 6y randomly
» Initialize dg to the zero vector
» fort=1:T:

> (St — _T]vet71 f“y‘a(stf]_
> 9,_» — 91—7]_ + (St

Momentum is a nice trick that can help speed up convergence.
Generally we choose o between 0.8 and 0.95, but this is problem
dependent



Outline of Gradient Descent Algorithm

Where 1 is the learning rate and T is the number of iterations:

> Initialize 8y randomly
» Do:

> 0 < —nVg, ,f
> 91_» — 9t_1 + 61—

» Until convergence

Setting a convergence criteria.



Some convergence criteria

» Change in objective function value is close to zero:
[f{0e1) — (0:)] < e
» Gradient norm is close to zero: ||Vyf]| < €
» Validation error starts to increase (this is called early stopping)



Checkgrad

» When implementing the gradient computation for machine
learning models, it's often difficult to know if our
implementation of fand Vfis correct.

» We can use finite-differences approximation to the gradient to
help:

gw f((@l,...,9;+e,...,9n))—f((@l,...,H,-—e,...,G,,))
80,’N 2¢

Why don't we always just use the finite differences approximation?

» slow: we need to recompute f twice for each parameter in our
model.

» numerical issues



Stochastic Gradient Descent

» Any iteration of a gradient descent (or quasi-Newton) method
requires that we sum over the entire dataset to compute the
gradient.

» SGD idea: at each iteration, sub-sample a small amount of
data (even just 1 point can work) and use that to estimate
the gradient.

» Each update is noisy, but very fast!

» It can be shown that this method produces an unbiased
estimator of the true gradient.

» This is the basis of optimizing ML algorithms with huge
datasets (e.g., recent deep learning).

» Computing gradients using the full dataset is called batch
learning, using subsets of data is called mini-batch learning.



Stochastic Gradient Descent

» The reason SGD works is because similar data yields similar
gradients, so if there is enough redundancy in the data, the
noise from subsampling won't be so bad.

» SGD is very easy to implement compared to other methods,
but the step sizes need to be tuned to different problems,
whereas batch learning typically “just works".

» Tip 1: divide the log-likelihood estimate by the size of your
mini-batches. This makes the learning rate invariant to
mini-batch size.

» Tip 2: subsample without replacement so that you visit each
point on each pass through the dataset (this is known as an
epoch).



Convexity



Definition of Convexity

A function fis convex if for any two points #; and 6> and any
te[0,1],

f(t¢91 + (1 — t)@g) < tf(@l) + (]. — t)f(@z)

We can compose convex functions such that the resulting function
is also convex:

» If fis convex, then so is af for a« > 0

» If 4 and f> are both convex, then so is f{ +

> etc., see
http://www.ee.ucla.edu/ee236b/lectures/functions.pdf for
more



Why do we care about convexity?

> Any local minimum is a global minimum.
» This makes optimization a lot easier because we don't have to
worry about getting stuck in a local minimum.



Examples of Convex Functions

Quadpratics

In [6]:

out[6]:

import matplotlib.pyplot as plt
plt.xked()

theta = linspace(-5, 5)

£ = theta**2

plt.plot(theta, f)

[<matplotlib.lines.Line2D at 0x3ceae90>]
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Examples of Convex Functions

Negative logarithms

In [8]:

Out[8]:

import matplotlib.pyplot as plt
plt.xkecd()

theta = linspace(0.1, 5)

f = -np.log(theta)
plt.plot(theta, f)

[<matplotlib.lines.Line2D at 0x3ef4al0>]
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More on optimization

» Automatic Differentiation Modern technique (used in libraries
like tensorflow, pytorch, etc) to efficiently compute the
gradients required for optimization. A survey of these
techniques can be found here:
https://arxiv.org/pdf/1502.05767.pdf

» Convex Optimization by Boyd & Vandenberghe Book available
for free online at http://www.stanford.edu/~boyd/cvxbook/

> Numerical Optimization by Nocedal & Wright Electronic
version available from UofT Library



Conditioning of Quadratic Losses



Consider a quadratic loss:
L(x) = x"Hx (1)
Consider the eigenvalues H:
Alyeeoy A (2)

If H symmetric, then the eigenvalues are real.

If H is positive definite, then every eigenvalue A > 0 and our loss is
strictly-convex.



L(x) = x"Hx

For positive definite H we can order the eigenvalues from smallest

to largest
0<A << Ay (3)

The ratio of largest to smallest eigenvalue characterizes difficulty

of optimizing quadratic losses

K= — (4)



Gradient descent with an optimal step size converges with rate

k—1
K+ 1

(5)

Gradient descent with momentum with optimal step size and
momentum coefficient converges with rate:

e ©

where (linear) rate of convergence means:
HXnJrl _ X*H

im —
ro [l — x|



We can can calculate maximum //optimal step sizes given the
eigenvalues of the matrix H — See the lecture ipython notebook.

We can generalize this to p-strongly-convex, L-Lipschitz objectives.



