CSC311: Optimization for Machine Learning
Fall 2020

Based on Slides by Eleni Triantafillou, Ladislav Rampasek, Jake Snell, Kevin Swersky, Shenlong Wang, and others
Contents

- Overview
- Gradient Descent
- Convexity
Overview of Optimization
An informal definition of optimization

Minimize (or maximize) some quantity.
Applications

- Engineering: Minimize fuel consumption of an automobile
- Economics: Maximize returns on an investment
- Supply Chain Logistics: Minimize time taken to fulfill an order
- Life: Maximize happiness
More formally

Goal: find $\theta^* = \text{argmin}_{\theta} f(\theta)$, (possibly subject to constraints on θ).

- $\theta \in \mathbb{R}^n$: optimization variable
- $f: \mathbb{R}^n \rightarrow \mathbb{R}$: objective function

Maximizing $f(\theta)$ is equivalent to minimizing $-f(\theta)$, so we can treat everything as a minimization problem.
Optimization is a large area of research

The best method for solving the optimization problem depends on which assumptions we want to make:

- Is θ discrete or continuous?
- What form do constraints on θ take? (if any)
- Is f “well-behaved”? (linear, differentiable, convex, submodular, etc.)
Often in machine learning we are interested in learning the parameters θ of a model.
Goal: minimize some loss function

- For example, if we have some data (x, y), we may want to maximize $P(y|x, \theta)$.
- Equivalently, we can minimize $-\log P(y|x, \theta)$.
- We can also minimize other sorts of loss functions.

log can help for numerical reasons.
Gradient Descent
Gradient Descent: Motivation

From calculus, we know that the minimum of f must lie at a point where $\frac{\partial f(\theta^*)}{\partial \theta} = 0$.

- Sometimes, we can solve this equation analytically for θ.
- Most of the time, we are not so lucky and must resort to iterative methods.

Review

- Gradient: $\nabla_\theta f = \left(\frac{\partial f}{\partial \theta_1}, \frac{\partial f}{\partial \theta_2}, \ldots, \frac{\partial f}{\partial \theta_k} \right)$
Outline of Gradient Descent Algorithm

Where η is the learning rate and T is the number of iterations:

- Initialize θ_0 randomly
- for $t = 1 : T$:
 - $\delta_t \leftarrow -\eta \nabla_{\theta_{t-1}} f$
 - $\theta_t \leftarrow \theta_{t-1} + \delta_t$

The learning rate shouldn’t be too big (objective function will blow up) or too small (will take a long time to converge)
Gradient Descent with Line-Search

Where η is the learning rate and T is the number of iterations:

- Initialize θ_0 randomly
- for $t = 1 : T$:
 - Finding a step size η_t such that $f(\theta_t - \eta_t \nabla_{\theta_{t-1}}) < f(\theta_t)$
 - $\delta_t \leftarrow -\eta_t \nabla_{\theta_{t-1}} f$
 - $\theta_t \leftarrow \theta_{t-1} + \delta_t$

Require a line-search step in each iteration.
Gradient Descent with Momentum

We can introduce a momentum coefficient $\alpha \in [0, 1)$ so that the updates have “memory”:

- Initialize θ_0 randomly
- Initialize δ_0 to the zero vector
- for $t = 1 : T$:
 - $\delta_t \leftarrow -\eta \nabla_{\theta_{t-1}} f + \alpha \delta_{t-1}$
 - $\theta_t \leftarrow \theta_{t-1} + \delta_t$

Momentum is a nice trick that can help speed up convergence. Generally we choose α between 0.8 and 0.95, but this is problem dependent.
Outline of Gradient Descent Algorithm

Where η is the learning rate and T is the number of iterations:

- Initialize θ_0 randomly
- Do:
 - $\delta_t \leftarrow -\eta \nabla_{\theta_{t-1}} f$
 - $\theta_t \leftarrow \theta_{t-1} + \delta_t$
- Until convergence

Setting a convergence criteria.
Some convergence criteria

- Change in objective function value is close to zero:
 \[|f(\theta_{t+1}) - f(\theta_t)| < \epsilon \]
- Gradient norm is close to zero:
 \[\|\nabla_\theta f\| < \epsilon \]
- Validation error starts to increase (this is called *early stopping*)
Checkgrad

- When implementing the gradient computation for machine learning models, it’s often difficult to know if our implementation of f and ∇f is correct.
- We can use finite-differences approximation to the gradient to help:

$$\frac{\partial f}{\partial \theta_i} \approx \frac{f((\theta_1, \ldots, \theta_i + \epsilon, \ldots, \theta_n)) - f((\theta_1, \ldots, \theta_i - \epsilon, \ldots, \theta_n))}{2\epsilon}$$

Why don’t we always just use the finite differences approximation?
- slow: we need to recompute f twice for each parameter in our model.
- numerical issues
Stochastic Gradient Descent

- Any iteration of a gradient descent (or quasi-Newton) method requires that we sum over the entire dataset to compute the gradient.
- SGD idea: at each iteration, sub-sample a small amount of data (even just 1 point can work) and use that to estimate the gradient.
- Each update is noisy, but very fast!
- It can be shown that this method produces an unbiased estimator of the true gradient.
- This is the basis of optimizing ML algorithms with huge datasets (e.g., recent deep learning).
- Computing gradients using the full dataset is called batch learning, using subsets of data is called mini-batch learning.
Stochastic Gradient Descent

- The reason SGD works is because similar data yields similar gradients, so if there is enough redundancy in the data, the noise from subsampling won’t be so bad.
- SGD is very easy to implement compared to other methods, but the step sizes need to be tuned to different problems, whereas batch learning typically “just works”.
- Tip 1: divide the log-likelihood estimate by the size of your mini-batches. This makes the learning rate invariant to mini-batch size.
- Tip 2: subsample without replacement so that you visit each point on each pass through the dataset (this is known as an epoch).
Convexity
Definition of Convexity

A function f is **convex** if for any two points θ_1 and θ_2 and any $t \in [0, 1]$,

$$f(t\theta_1 + (1 - t)\theta_2) \leq tf(\theta_1) + (1 - t)f(\theta_2)$$

We can *compose* convex functions such that the resulting function is also convex:

- If f is convex, then so is αf for $\alpha \geq 0$
- If f_1 and f_2 are both convex, then so is $f_1 + f_2$
- *etc.*, see

 [Link](http://www.ee.ucla.edu/ee236b/lectures/functions.pdf) for more
Why do we care about convexity?

- Any local minimum is a global minimum.
- This makes optimization a lot easier because we don’t have to worry about getting stuck in a local minimum.
Examples of Convex Functions

Quadratics

In [6]:

```python
import matplotlib.pyplot as plt
plt.xkcd()
theta = linspace(-5, 5)
f = theta**2
plt.plot(theta, f)
```

Out[6]: [<matplotlib.lines.Line2D at 0x3ceae90>]

![Graph of a quadratic function](image)
Examples of Convex Functions

Negative logarithms

In [8]:
```
import matplotlib.pyplot as plt
plt.xkcd()
theta = linspace(0.1, 5)
f = -np.log(theta)
plt.plot(theta, f)
```

Out[8]: [<matplotlib.lines.Line2D at 0x3ef4a10>]

![Graph of negative logarithms](image-url)
More on optimization

- **Automatic Differentiation** Modern technique (used in libraries like tensorflow, pytorch, etc) to efficiently compute the gradients required for optimization. A survey of these techniques can be found here: https://arxiv.org/pdf/1502.05767.pdf

- **Convex Optimization** by Boyd & Vandenberghe Book available for free online at http://www.stanford.edu/~boyd/cvxbook/

- **Numerical Optimization** by Nocedal & Wright Electronic version available from UofT Library
Conditioning of Quadratic Losses
Consider a quadratic loss:

\[\mathcal{L}(x) = x^T H x \] \hspace{1cm} (1)

Consider the eigenvalues \(H \):

\[\lambda_1, \ldots, \lambda_n \] \hspace{1cm} (2)

If \(H \) symmetric, then the eigenvalues are real.

If \(H \) is positive definite, then every eigenvalue \(\lambda > 0 \) and our loss is strictly-convex.
\[L(x) = x^T H x \]

For positive definite \(H \) we can order the eigenvalues from smallest to largest

\[0 < \lambda_1 \leq \cdots \leq \lambda_n \quad (3) \]

The ratio of largest to smallest eigenvalue characterizes difficulty of optimizing quadratic losses

\[\kappa = \frac{\lambda_n}{\lambda_1} \quad (4) \]
Gradient descent with an optimal step size converges with rate

\[
\frac{\kappa - 1}{\kappa + 1}
\]

(5)

Gradient descent with momentum with optimal step size and momentum coefficient converges with rate:

\[
\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}
\]

(6)

where (linear) rate of convergence means:

\[
\lim_{n \to \infty} \frac{\|x^{n+1} - x^*\|}{\|x^n - x^*\|}
\]

(7)
We can calculate maximum/optimal step sizes given the eigenvalues of the matrix H – See the lecture ipython notebook.

We can generalize this to μ-strongly-convex, L-Lipschitz objectives.