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Motivation

Uncertainty comes from:

Noisy measurements

Variability between samples

Finite size of data sets

Probability theory provides a consistent formalism for the quantification
and manipulation of uncertainty.
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Sample Space

The data comes from a measurement of the real world, which we can
think of as an experiment:

Sample space Ω is the set of all possible outcomes of the experiment.

Observations ω ∈ Ω are points in the space also called sample
outcomes, realizations, or elements.

Events E ⊂ Ω are subsets of the sample space.

For example, if we flip a coin twice:

Sample space All outcomes Ω = {HH,HT ,TH,TT}
Observation ω = HT valid sample since ω ∈ Ω

Event Both flips same E = {HH,TT} valid event since E ⊂ Ω
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Probability

The probability of an event E, P(E ), satisfies three axioms:

1: P(E ) ≥ 0 for every E

2: P(Ω) = 1

3: If E1,E2, . . . are disjoint then

P(
∞⋃
i=1

Ei ) =
∞∑
i=1

P(Ei )
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Joint and Conditional Probabilities

Joint Probability of A and B is denoted P(A,B).

Conditional Probability of A given B is denoted P(A|B).

𝐴 ∩ 𝐵𝐴 𝐵

Joint: 𝑝 𝐴, 𝐵 = 𝑝(𝐴 ∩ 𝐵)

Conditional: 𝑝 𝐴|𝐵 = *(+∩,)
*(,)

p(A,B) = p(A|B)p(B) = p(B|A)p(A)
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Conditional Example

Probability of passing the midterm is 60% and probability of passing both
the final and the midterm is 45%.

What is the probability of passing the final given the student passed the
midterm?

P(F |M) = P(M,F )/P(M)

= 0.45/0.60

= 0.75
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Independence

Events A and B are independent if P(A,B) = P(A)P(B).

Suppose P(A) = P(B) = 0.5.

Independent: A: first toss is HEAD; B: second toss is HEAD;

P(A,B) = 0.5 ∗ 0.5 = P(A)P(B)

Not Independent: A: first toss is HEAD; B: first toss is HEAD;

P(A,B) = 0.5 6= P(A)P(B)
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Independence

Events A and B are conditionally independent given C if

P(A,B|C ) = P(B|C )P(A|C ) (1)

Consider two coins 2: A regular coin and a coin which always outputs
HEAD or always outputs TAIL.

Now consider the following events.

A=The first toss is HEAD.

B=The second toss is HEAD.

C=The regular coin is used.

D=The other coin is used.

Then A and B are conditionally independent given C , but A and B are
NOT conditionally independent given D.

2www.probabilitycourse.com/chapter1/1_4_4_conditional_independence.

php
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Marginalization and Law of Total Probability3

P(X ) =
∑
Y

P(X ,Y ) =
∑
Y

P(X |Y )P(Y )

3www.probabilitycourse.com/chapter1/1_4_2_total_probability.php
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Bayes’ Rule

Bayes’ Rule:

P(A|B) =
P(B|A)P(A)

P(B)

P(θ|x) =
P(x |θ)P(θ)

P(x)

Posterior =
Likelihood ∗ Prior

Evidence
Posterior ∝ Likelihood × Prior
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Bayes’ Example

Suppose you have tested positive for a disease. What is the probability you
actually have the disease?
This depends on the prior probability of the disease:

P(T = 1|D = 1) = 0.95 (likelihood)

P(T = 1|D = 0) = 0.10 (likelihood)

P(D = 1) = 0.1 (prior)

So P(D = 1|T = 1) =?

Intro ML (UofT) STA314-Tut01 11 / 28



Bayes’ Example

Suppose you have tested positive for a disease. What is the probability you
actually have the disease?

P(T = 1|D = 1) = 0.95 (true positive)

P(T = 1|D = 0) = 0.10 (false positive)

P(D = 1) = 0.1 (prior)

So P(D = 1|T = 1) =?
Use Bayes’ Rule:

P(D = 1|T = 1) =
P(T = 1|D = 1)P(D = 1)

P(T = 1)
=

0.95 ∗ 0.1

P(T = 1)
= 0.51

P(T = 1) = P(T = 1|D = 1)P(D = 1) + P(T = 1|D = 0)P(D = 0)

= 0.95 ∗ 0.1 + 0.1 ∗ 0.90 = 0.185
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Random Variable

How do we connect sample spaces and events to data?

A random variable is a mapping which assigns a real number X (ω) to each
observed outcome ω ∈ Ω

For example, let’s flip a coin 10 times. X (ω) counts the number of Heads
we observe in our sequence. If ω = HHTHTHHTHT then X (ω) = 6.
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Discrete and Continuous Random Variables

Discrete Random Variables

Takes countably many values, e.g., number of heads

Distribution defined by probability mass function (PMF) pX .

The probability that X (ω) ∈ B is given by:

P(X (ω) ∈ B) =
∑
x∈B

pX (x). (2)

Continuous Random Variables

Takes uncountably many values, e.g., time to complete task

Distribution defined by probability density function (PDF) fX .

The probability that X (ω) ∈ B is given by:

P(X (ω) ∈ B) =

∫
B
fX (x) dx (3)
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Joint Distributions

Two random variables X (ω),Y (ω) have a joint distribution.

If both are discrete, then they have a joint PMF pX ,Y (x , y).

If both are continuous, then they have a joint PDF fX ,Y (x , y).

We can marginalize the joint to get the marginal distributions of X or Y :

∑
y pX ,Y (x , y) = pX (x).∫
fX ,Y (x , y) dx = fY (y).

pX and fY are often just called marginals.

Intro ML (UofT) STA314-Tut01 15 / 28



Conditional Distributions

The conditional distribution of X given Y can be described using
conditional PMF or PDF:

If both are discrete, then the conditional PMF of X given Y is

pX |Y (x | y) =
pX ,Y (x , y)

pY (y)

If both are continuous, then the conditional PMF of X given Y is

fX |Y (x | y) =
fX ,Y (x , y)

fY (y)

X is independent of Y if pX |Y (x | y) = pX (x) or fX |Y (x | y) = fX (x).
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I.I.D.

Random variables are said to be independent and identically distributed
(i.i.d.) if they are sampled from the same probability distribution and are
mutually independent.

This is a common assumption for observations. For example, coin flips are
assumed to be iid.
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A Note on Notation

The machine learning discipline has a variety of different notation norms
for probability, which range from very formal to very informal. We will lean
informal, because it’s efficient and important to learn the norms.

We use lower case for random variables, use p for all PMFs / PDFs, and
sometimes even omit the ranges of integration.

P(X (ω) ∈ B) =

∫
B
fX (x) dx

fX ,Y (x , y) = fX (x)fY (y)

fX |Y (x | y)

becomes−−−−−→

P(x ∈ B) =

∫
B
p(x) dx

p(x , y) = p(x)p(y)

p(x | y)

This seems like a bit of a mess, but with practice it’s always clear what is
intended from context.
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Probability Distribution Statistics

Mean: First Moment, µ

E [x ] =
∞∑
i=1

xip(xi ) (univariate discrete r.v.)

E [x ] =

∫ ∞
−∞

xp(x)dx (univariate continuous r.v.)

Variance: Second (central) Moment, σ2

Var [x ] =

∫ ∞
−∞

(x − µ)2p(x)dx

= E
[
(x − µ)2

]
= E

[
x2
]
− E [x ]2
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Univariate Gaussian Distribution

Also known as the Normal Distribution, N (µ, σ2)

N (x |µ, σ2) =
1√

2πσ2
exp{− 1

2σ2
(x − µ)2}
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Mixed Discrete and Continuous

It is very common in machine learning to have a joint distribution over a
mixture of discrete and continuous random variables. In this case, we can
define the joint distribution in terms of marginals and conditionals.

Suppose x is discrete and y is continuous. Then we can define the joint
distribution by

p(x , y) = p(x)p(y |x)

More specifically, suppose x ∈ {1, . . . , n} with probabilities given by px .
Suppose also we have n real numbers µi , then we can define a joint
distribution between x and a continuous y via

p(x , y) = pxN (y |µx , 1)
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Multivariate Gaussian Distribution

x is a D-dimensional vector
µ is a D-dimensional mean vector
Σ is a D × D covariance matrix with determinant |Σ|.

When Σ is invertible, the Gaussian has a density:

N (x |µ,Σ) =
1

(2π)D/2
1

|Σ|1/2
exp{−1

2
(x − µ)TΣ−1(x − µ)}
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Covariance Matrix

Mean µ is the D-dimensional vector whose i entry is the expected value

µi = E [x i ]

=

∫
x iN (x |µ,Σ) dx

Covariance matrix Σ is a matrix whose (i , j) entry is the covariance

Σij = Cov(x i , x j)

= E
[
(x i − µi )(x j − µj)

]
= E [(x ix j)]− µiµj

so notice that the diagonal entries are the variance of each elements.

The covariance matrix has the property that it is symmetric and
positive-semidefinite.
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Inferring Parameters

We have data x and we assume it is sampled from some distribution
p(x |θ) with parameters θ, which are unknown to us.

How do we figure out the θ that ‘best’ fit that distribution?

One classical approach is maximum likelihood estimation (MLE),

θ̂MLE = arg max
θ

log p(x |θ)

We will discuss this in more detail in the later part of the course. For now,
just assume that this makes sense to do.
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MLE for Univariate Gaussian Distribution

For example, we are trying to infer the parameters for a Univariate
Gaussian Distribution, mean (µ) and variance (σ2).

N (x |µ, σ2) =
1√

2πσ2
exp{− 1

2σ2
(x − µ)2}

The likelihood that our observations x = (x1, . . . , xN) were generated by a
univariate Gaussian with parameters µ and σ2 is

Likelihood = p(x1 . . . xN |µ, σ2) =
N∏
i=1

1√
2πσ2

exp{− 1

2σ2
(xi − µ)2}

In this case θ = (µ, σ2).
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MLE for Univariate Gaussian Distribution

For MLE we want to maximize this likelihood, which is difficult because it
is represented by a product of terms

Likelihood = p(x1 . . . xN |µ, σ2) =
N∏
i=1

1√
2πσ2

exp{− 1

2σ2
(xi − µ)2}

So we take the log of the likelihood so the product becomes a sum

Log Likelihood = log p(x1 . . . xN |µ, σ2)

=
N∑
i=1

log
1√

2πσ2
exp{− 1

2σ2
(xi − µ)2}

Since log is monotonically increasing max L(θ) = max log L(θ)
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MLE for Univariate Gaussian Distribution

The log Likelihood simplifies to

L(µ, σ) =
N∑
i=1

log
1√

2πσ2
exp{− 1

2σ2
(xi − µ)2}

= −1

2
N log(2πσ2)−

N∑
i=1

(xi − µ)2

2σ2

Which we want to maximize. How?
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MLE for Univariate Gaussian Distribution

To maximize we take the derivatives, set equal to 0, and solve:

L(µ, σ) = −1

2
N log(2πσ2)−

N∑
i=1

(xi − µ)2

2σ2

Derivative w.r.t. µ, set equal to 0, and solve for µ̂

∂L(µ, σ)

∂µ
= 0 =⇒ µ̂ =

1

N

N∑
i=1

xi

Therefore the µ̂ that maximizes the likelihood is the average of the data
points.
Derivative w.r.t. σ2, set equal to 0, and solve for σ̂2

∂L(µ, σ)

∂σ2
= 0 =⇒ σ̂2 =

1

N

N∑
i=1

(xi − µ̂)2
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