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Recap of different learning settings

So far the settings that you've seen imagine one learner or agent.

Supervised Unsupervised Reinforcement
VIE
Learner predicts Learner organizes Agent maximizes
labels. data. reward.
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Today

We will talk about learning in the context of a two-player game.

Game-playing

<,

<,

This lecture only touches a small part of the large and beautiful

literature on game theory, multi-agent reinforcement learning, etc.
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Game-playing in Al: Beginnings

(1950) Claude Shannon proposes explains how games could
be solved algorithmically via tree search

(1953) Alan Turing writes a chess program

(1956) Arthur Samuel writes a program that plays checkers
better than he does

(1968) An algorithm defeats human novices at Go

slide credit: Profs. Roger Grosse and Jimmy Ba
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Game-playing in Al: Successes

(1992) TD-Gammon plays backgammon competitively with
the best human players

(1996) Chinook wins the US National Checkers Championship

(1997) DeepBlue defeats world chess champion Garry
Kasparov

(2016) AlphaGo defeats Go champion Lee Sedol.

slide credit: Profs. Roger Grosse and Jimmy Ba
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Today

® Game-playing has always been at the core of CS.
® Simple well-defined rules, but mastery requires a high degree
of intelligence.
® We will study how to learn to play Go.

® The ideas in this lecture apply to all zero-sum games with
finitely many states, two players, and no uncertainty.

® Go was the last classical board game for which humans
outperformed computers.

® We will follow the story of AlphaGo, DeepMind’s Go playing
system that defeated the human Go champion Lee Sedol.

® Combines many ideas that you've already seen.

® supervised learning, value function learning...
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The game of Go: Start

® |nitial position is an empty 19x19 grid.
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The game of Go: Play

® 2 players alternate placing stones on : :
empty intersections. Black stone plays ° * \#7:
first. H L,
¢ (Ko) Players cannot recreate a former s
board position. :5‘/‘/ e ?/E
it JEdRRERRAAadRn
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The game of Go: Play

¢ (Capture) Capture and remove a
connected group of stones by

surrounding them.
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The game of Go: End

® (Territory) The winning player has
the maximum number of occupied or

surrounded intersections.
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QOutline of the lecture

To build a strong computer Go player, we will answer:
® What does it mean to play optimally?
e Can we compute (approximately) optimal play?

® Can we learn to play (somewhat) optimally?
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Why is this a challenge?

e Optimal play requires searching over ~ 1070 legal positions.
® |t is hard to decide who is winning before the end-game.

® Good heuristics exist for chess (count pieces), but not for Go.

® Humans use sophisticated pattern recognition.
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Optimal play

Intro ML (UofT) STA314-Lecl2 13 / 59



Game trees

® Organize all possible games into a
tree.

® Each node s contains a legal position.

® Child nodes enumerate all possible
actions taken by the current player.

® | eaves are terminal states.

® Technically board positions can
appear in more than one node, but

let's ignore that detail for now.

® The Go tree is finite (Ko rule).
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Game trees

black stone’s turn

white stone’s turn
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Evaluating positions

® We want to quantify the utility of a
node for the current player.
® Label each node s with a value v(s),

taking the perspective of the black
stone player.

® 1 for black wins, -1 for black loses.
® Flip the sign for white's value
(technically, this is because Go is
zero-sum).
e Evaluations let us determine who is

winning or losing.
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Evaluating leaf positions

Leaf nodes are easy to label, because a winner is known.

*H i
o) 18] [se] B (%] 8] [es] [
AN AN AN ANV AUV ARVARVAY

1 41 41 41 -1 -1 41 41 41 -1 -1_-1 -1 -1 +1 -1
black stones win white stones win
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Evaluating internal positions

® The value of internal nodes depends on

the strategies of the two players. S
® The so-called maximin value v*(s) is L
the highest value that black can achieve -
regardless of white's strategy. a
® |f we could compute v*, then the best \“—
(worst-case) move a* is
child(s, a)

a* = arg max{v*(child(s,a))}
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Evaluating positions under optimal play

|

!1= II= = )
I I ‘ [TY]

r o I~ | - | - | I~ | I~ 1 - ‘ 7 - 1
min | -1 +1 -1 +1 -1 -1 -1 -1

VANV ANRVAN

-1 41 +1 41 -1 -1 +1 +1 +1 -1 -1 -1 -1 -1 41 -1
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Evaluating positions under optimal play
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Evaluating positions under optimal play

1]

min +1 -1

min | -1 +1 -1 o+l

AN AN AN AN A A AIAN

-1 41 41 41 -1 -1 +1 +1 +1 -1 -1 -1 -1 -1 +1 -1
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Value function vx

® u* satisfies the fixed-point equation

max,{v*(child(s,a))} black plays
v*(s) = min,{v*(child(s,a))} white plays
+1 black wins
—1 white wins

® Analog of the optimal value function of RL.
® Applies to other two-player games

® Deterministic, zero-sum, perfect information games.
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Quiz!

v*(s) =7 What is the maximin
value v*(s) of the root?
o -1?
e +17
Recall: black plays first

and is trying to maximize,

whereas white is trying to

minimize.
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Quiz!

v*(s) = +1 What is the maximin
value v*(s) of the root?
+1 o -1?
e +17

Recall: black plays first

and is trying to maximize,

whereas white is trying to

minimize.
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In a perfect world

® So, for games like Go, all you need is v* to play optimally in
the worst case:

a* = arg max{v*(child(s,a))}

® Claude Shannon (1950) pointed out that you can find a* by
recursing over the whole game tree.
® Seems easy, but v* is wildly expensive to compute...

® Go has ~ 10'7° legal positions in the tree.
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Approximating optimal play
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Depth-limited Minimax

® |n practice, recurse to a
small depth and back off to
a static evaluation o*. L

® 0" is a heuristic, designed

by experts.

® Other heuristics as well, (% y D

e.g. pruning.
® For Go (Miiller, 2002). DL }‘ Ll
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Progress in Computer Go

9 dan
8 dan
7 dan
6 dan ..
5 dan Minimax search for Go
4 dan
3 dan
2 dan
1dan
9 dan
8 dan
7 dan
6 dan
5 dan
4 dan
3 dan
2 dan
1 dan
1 kyu
2 kyu
3 kyu
4 kyu
5 kyu ° Gnu(e.

6 kyu ® Goi@ Many Faces of Go
7 kyu Many Faces of Go

8 kyu

Amateur Dan Professional Dan

Amateur Kyu

2000 2005 2010 2015

adapted from Sylvain Gelly & David Silver, Test of Time Award ICML 2017
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Expected value functions

® Designing static evaluation of v* is very challenging,
especially so for Go.

® Somewhat obvious, otherwise search would not be needed!

® Depth-limited minimax is very sensitive to misevaluation.

® Monte Carlo tree search resolves many of the issues with
Minimax search for Go.

® Revolutionized computer Go.

® To understand this, we will introduce expected value
functions.
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Expected value functions

If players play by rolling fair dice, outcomes will be random.
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This is a decent approximation to very weak play.
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Expected value functions

Averaging many random outcomes — expected value function.
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Contribution of each outcome depends on the length of the path.

Intro ML (UofT) STA314-Lecl2 31 /59



Quiz!
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¥1

+1
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Consider two players that
pick their moves by
flipping a fair coin, what
is the expected value v(s)
of the root?

0 1/3?
® 1/27
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Quiz!

v(s) =1/2
1/2
0.5 - 05
0 +1
05 <05 ‘
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Consider two players that
pick their moves by
flipping a fair coin, what
is the expected value v(s)
of the root?

o 1/37
Q1/2?
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Expected value functions

® Noisy evaluations v,, are cheap

S
approximations of expected Py
outcomes: i

3=

vn(s) =

> ofs) [

o(s) = £1 if black wins / loses. A e
* Longer games will be l l

underweighted by this evaluation
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v, but let's ignore that.
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Monte Carlo tree search

® Ok expected value functions are easy to approximate,
but how can we use v,, to play Go?
® v, is not at all similar to v*.
® So, maximizing v,, by itself is probably not a great strategy.
® Minimax won't work, because it is a pure exploitation strategy
that assumes perfect leaf evaluations.

® Monte Carlo tree search (MCTS; Kocsis and Szepesvari,
2006; Coulom, 2006; Browne et al., 2012) is one way.

® MCTS maintains a depth-limited search tree.
® Builds an approximation ©* of v* at all nodes.
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Monte Carlo tree search

/—> Selection —> Expansion — Simulation —> Backpropagation \

Tree Default
Policy Policy
v
- A J

(Browne et al., 2012)
® Select an existing leaf or expand a new leaf.

® Evaluate leaf with Monte Carlo simulation v,,.
® Noisy values v,, are backed-up the tree to improve

approximation 0*.
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Monte Carlo tree search

® Selection strategy greedily descends tree.

e MCTS is robust to noisy misevaluation at the leaves, because

the selection rule balances exploration and exploitation:

a" = argmax {@*(Chﬂd(s, a)) + ]m}

® *(s) = estimate of v*(s), N(s) number of visits to node s.

® MCTS is forced to visit rarely visited children.

® Key result: MCTS approximation ¢* — v* (Kocsis and
Szepesvari, 2006).
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Progress in Computer Go

9 dan
8 dan
7 dan
6 dan

4 dan
3 dan
2 dan
1 dan
9 dan
8 dan
7 dan
6 dan
5 dan
4 dan
3 dan

Professional Dan

Amateur Dan

2 dan MoGo y

1 dan
1 kyu
2 kyu
3 kyu
4 kyu
5 kyu
6 kyu
7 kyu
8 kyu

MoGo
MoGo

CrazyStone
) | °

Amateur Kyu

Indigo

Indigo

5 dan Monte Carlo tree search for Go

Zen

Zen ®

- Zen, CrgzyStone
en 4
[ ]

Zen

G S .’- Zen
razyStone
Yy b CrazyStone

Traditional Search

2000 2005

2010 2015

adapted from Sylvain Gelly & David Silver, Test of Time Award ICML 2017
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Scaling with compute and time

® The strength of MCTS bots scales with the amount of
compute and time that we have at play-time.

® But play-time is limited, while time outside of play is much
more plentiful.

® How can we improve computer Go players using compute
when we are not playing? Learning!

® You can try to think harder during a test vs. studying more
beforehand.
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Learning to play Go
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This is where | come in

® 2014 Google DeepMind internship on neural nets for Go.
® Working with Aja Huang, David Silver, llya Sutskever, | was
responsible for designing and training the neural networks.
® Others came before (e.g., Sutskever and Nair, 2008).

® |lya Sutskever's (Chief Scientist, OpenAl) argument in 2014:
expert players can identify a good set of moves in 500 ms.

® This is only enough time for the visual cortex to process the
board—not enough for complex reasoning.

® At the time we had neural networks that were nearly as good
as humans in image recognition, thus we thought we would be
able to train a net to play Go well.

e Key goal: can we train a net to understand Go?
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Neural nets for Go

Neural networks are powerful parametric function approximators.

board s

LA

net(s, z)

parameters x

Idea: map board position s (input) to a next move or an

evaluation (output) using simple convolutional networks.
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Neural nets for Go

® \We want to train a neural policy or

neural evaluator, but how? An expert move (pink)
® Existing data: databases of Go
ames played by humans and other
g playea by e e .,
compute Go bots. ,
® The first idea that worked was
learning to predict expert’s next :
.
move. z.o ry ...o
® Input: board position s 2 ik 1

® Qutput: next move a
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Policy Net (Maddison et al., 2015)

e Dataset: KGS server games split Thet (a]s, x)
into board / next-move pairs
(S’L'v ai)

® 160,000 games — 29 million
(84, a;) pairs.

® Loss: negative log-likelihood,

N
—Zlogﬂnet(aﬂsi,ff)-
i=1

® Use trained net as a Go player:

a® = arg max{log mpet(als, x)}.
a

(Silver et al., 2016)
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Like learning a better traversal

@\@
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As supervised accuracy improved, searchless play improved.
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Progress in Computer Go

9 dan
8 dan
7 dan
6 dan . . .
5 dan Progress in my internship
4 dan
3 dan
2 dan
1 dan
9 dan
8 dan
7 dan
0 dan MCTS
5 dan
4 dan
3 dan
2 dan
1 dan

Professional Dan

Amateur Dan

RL net 12 layer
SL net 12 layer
Lkyu ° SL net 10 layer
2 kyu o SL net 6 layer
3 kyu ° SL net 3 layer
4 kyu
5 kyu o Traditional Search
6 kyu
7 kyu SL net 3 layer
8 kyu al [ ]
2000 2005 2010 2015

Amateur Kyu

adapted from Sylvain Gelly & David Silver, Test of Time Award ICML 2017
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Can we improve MCTS with neural networks?

® These results prompted the
formation of big team inside
DeepMind to combine MCTS and

neural networks.

® To really improve search, we .
needed strong evaluators. L
® Recall: an evaluation function
o Unet| | ® o | Unet
tells us who is winning.
® Tt rollouts would be a good Unet| |Unet

evaluator, but this is too

expensive.
® Can we learn one?
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Value Net (Silver et al., 2016)
Unet(sax)
Failed attempt. =

¢ Dataset: KGS server games split

into board / outcome pairs

(siso(s:)) ﬁ |

® |oss: squared error,

N

Z(o(si) — Unet (84, 7))°

i=1

® Problem: Effective sample size of

160,000 games was not enough.

(Silver et al., 2016)
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Value Net (Silver et al., 2016)

Unet (8, T
Successful attempt. net(5, 2)

® Use Policy Net playing against
itself to generate millions of

unique games.

e Dataset: Board / outcome pairs i

(si,0(si)), each from a unique

self-play game.

® Loss: squared error,

N

Z(O(Si) — Unet(5i7 x))z

i=1

(Silver et al., 2016)
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AlphaGo (Silver et al., 2016)

® The Value Net was a very strong evaluator.

0.50 4
0.45 4
% é 0.40 - -
?g 0359 - Uniform random
S ¢ 0304 rollout policy
) lﬁ 0251 Fast rollout policy
s 2 0'20 —— Value network
2o SL policy network
0159 ___ RL policy network
0.10 —

15 45 75 105 135 165 195 225 255 >285
Move number

® The final version of AlphaGo used rollouts, Policy Net, and
Value Net together.

® Rollouts and Value Net as evaluators.
® Policy Net to bias the exploration strategy.
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Progress in Computer Go

9 dan
8 dan
7 dan
6 dan .
5 dan AlphaGo Team (Silver et al., 2016)
4 dan
3 dan
2 dan
1 dan
9 dan
8 dan
7 dan
6 dan MCTS
5 dan
4 dan
3 dan
> o .AIphaGo
1 dan Neural nets@

1 kyu o [ ]

2 kyu o

3 kyu (]
4 kyu
5 kyu [ ]
6 kyu PR

7 kyu
8 kyu -l [ )

2000 2005 2010 2015

AlphaGo (Lee Sedol).

Professional Dan

AlphaGo (Nature).

Amateur Dan

) Traditional Search

Amateur Kyu

adapted from Sylvain Gelly & David Silver, Test of Time Award ICML 2017
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Impact
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Go is not just a game

® Go originated in China more than 2,500 years ago. Reached
Korea in the 5th century, Japan in the 7th.

® |n the Tang Dynasty, it was one of the four arts of the
Chinese scholar together with calligraphy, painting, and
music.

® The aesthetics of Go (harmony, balance, style) are as

essential to top-level play as basic tactics.
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2016 Match—AlphaGo vs. Lee Sedol

® Best of 5 matches over the course of a week.
® Most people expected AlphaGo to lose 0-5.
® AlphaGo won 4-1.
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Human moments

Lee Sedol is a titan in the Go world, and achieving his level of play
requires a life of extreme dedication.

It was humbling and strange to be a part of the AlphaGo team
that played against him.
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Game 2, Move 37
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Thanks!

| played a key role at the start of AlphaGo, but the success is
owed to a large and extremely talented team of scientists and

engineers.

® David Silver, Aja Huang, C, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, loannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner,
llya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel & Demis Hassabis.
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Course Evals

Use this time to finish course evals.
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