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Today

Final exam does not include this nor next week’s lecture.

Continuing in our theme of probabilistic models for continuous
variables.

▶ Probabilistic interpretation of linear regression
▶ Probabilistic interpretation of PCA

(Optional) Bayesian model selection.
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Completing the Square for Gaussians

First, we’re going to review a very powerful technique that will let us
figure out the distribution of Gaussian random variables.

It’s a multivariate generalization of completing the square.

The density of N (µ,Σ) satifies:

log p(x) = −1
2
(x − µ)⊤Σ

−1(x − µ) + const

= −1
2
x
⊤

Σ
−1

x + x
⊤

Σ
−1
µ + const

Thus, if we know w is Gaussian with unknown mean and covariance,
and we also know that

log p(w) = −1
2
w
⊤

Aw +w
⊤

b + const

for A positive definite, then we know that

w ∼ N (A
−1

b,A
−1)
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Bayesian Linear Regression

We’re going to be Bayesian about the parameters of the model.
▶ This is in contrast with näıve Bayes and GDA: in those cases, we used

Bayes’ rule to infer the class, but used point estimates of the
parameters.

▶ By inferring a posterior distribution over the parameters, the model can
know what it doesn’t know.

How can uncertainty in the predictions help us?
▶ Smooth out the predictions by averaging over lots of plausible

explanations (just like ensembles!)
▶ Assign confidences to predictions
▶ Make more robust decisions
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Recap: Linear Regression

Given a training set of inputs and targets {(x
(i)
, t

(i))}Ni=1
Linear model:

y = w
⊤
ψ(x)

Vectorized, we have the design matrix X in input space and

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− ψ(x
(1)) −

− ψ(x
(2)) −
⋮

− ψ(x
(N)) −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and predictions

y = Ψw
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Recap: Linear Regression

Squared error loss:

L(y, t) = 1

2
∥y − t∥2

L2 regularization:

φ(w) = λ

2
∥w∥2

Solution 1: solve analytically by setting the gradient to 0

w = (Ψ
⊤

Ψ + λI)−1Ψ
⊤

t

Solution 2: solve approximately using gradient descent

w ← (1 − αλ)w − αΨ
⊤(y − t)
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Linear Regression as Maximum Likelihood

We can give linear regression a probabilistic interpretation by assuming a Gaussian
noise model:

t ∣ x ∼ N (w
⊤
ψ(x), σ2)

Linear regression is just maximum likelihood under this model:

1

N

N

∑
i=1

log p(t(i) ∣ x
(i)
;w, b) = 1

N

N

∑
i=1

logN (t(i);w
⊤
ψ(x

(i)), σ2)

=
1

N

N

∑
i=1

log [ 1√
2πσ

exp(− (t(i) −w
⊤
ψ(x

(i)))2

2σ2
)]

= const −
1

2Nσ2

N

∑
i=1

(t(i) −w
⊤
ψ(x

(i)))2
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Regularized Linear Regression as MAP Estimation

We can view an L2 regularizer as MAP inference with a Gaussian prior.

Recall MAP inference:

argmax
w

log p(w ∣D) = argmax
w

[log p(w) + log p(D ∣w)]

We just derived the likelihood term log p(D ∣w):

log p(D ∣w) = const −
1

2Nσ2

N

∑
i=1

(t(i) −w
⊤
ψ(x

(i)))2

Assume a Gaussian prior, w ∼ N (m,S):
log p(w) = logN (w;m,S)

= log [ 1

(2π)D/2∣S∣1/2
exp (− 1

2
(w −m)⊤S

−1(w −m))]

= − 1

2
(w −m)⊤S

−1(w −m) + const

Commonly, m = 0 and S = ηI, so

log p(w) = − 1

2η
∥w∥2

+ const.

This is just L2 regularization!
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Recap: Full Bayesian Inference

Recall: full Bayesian inference makes predictions by averaging over all
likely explanations under the posterior distribution.

Compute posterior using Bayes’ Rule:

p(w ∣D)∝ p(w)p(D ∣w)

Make predictions using the posterior predictive distribution:

p(t ∣ x,D) = ∫ p(w ∣D) p(t ∣ x,w)dw

Doing this lets us quantify our uncertainty.
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Bayesian Linear Regression

Prior distribution: w ∼ N (0,S)
Likelihood: t ∣ x,w ∼ N (w

⊤
ψ(x), σ2)

Assuming fixed/known S and σ
2

is a big assumption. More on this
later.
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Bayesian Linear Regression

Bayesian linear regression considers various plausible explanations for
how the data were generated.

It makes predictions using all possible regression weights, weighted by
their posterior probability.

Here are samples from the prior p(w) and posteriors p(w ∣D)
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Bayesian Linear Regression: Posterior

Deriving the posterior distribution:

log p(w ∣D) = log p(w) + log p(D ∣w) + const

= − 1

2
w
⊤

S
−1

w −
1

2σ2
∥Ψw − t∥2

+ const

= − 1

2
w
⊤

S
−1

w −
1

2σ2
(w
⊤

Ψ
⊤

Ψw − 2t
⊤

Ψw + t
⊤

t) + const

= − 1

2
w
⊤ (σ−2Ψ

⊤
Ψ + S

−1)w −
1

σ2
t
⊤

Ψw + const (complete the square!)

Thus w ∣D ∼ N (µ,Σ) where

µ = σ
−2

ΣΨ
⊤

t

Σ = (σ−2Ψ
⊤

Ψ + S
−1)

−1
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Bayesian Linear Regression: Posterior

Since a Gaussian prior leads to a Gaussian posterior, this means the
Gaussian distribution is the conjugate prior for linear regression!

Compare µ the closed-form solution for linear regression:

w = (Ψ
⊤

Ψ + λI)−1Ψ
⊤

t

This is the mean of the posterior, assuming that S = λ
−1

I and σ = 1.

λ
−1

is the standard deviation of the prior. As this becomes infinite,
the mean of the posterior converges to the maximum likelihood
solution.
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Bayesian Linear Regression

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

Example with radial basis function (RBF) features

ψj(x) = exp(−
(x − µj)2

2s2
)

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

Functions sampled from the posterior:

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

The posterior just gives us distribution over the parameter space, but
if we want to make predictions, the natural choice is to use the
posterior predictive distribution.

Posterior predictive distribution:

p(t ∣ x,D) = ∫ p(t ∣ x,w)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

N (t ;w⊤ψ(x),σ)

p(w ∣D)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
N (w ;µ,Σ)

dw

Another interpretation: t = w
⊤
ψ(x) + ε, where ε ∼ N (0, σ) is

independent of w ∣D ∼ N (µ,Σ).
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Bayesian Linear Regression

Another interpretation: t = w
⊤
ψ(x) + ε, where ε ∼ N (0, σ) is

independent of w ∣D ∼ N (µ,Σ).

By the linear combination rules for Gaussian random variables, t is a
Gaussian distribution with parameters

µpred = µ
⊤
ψ(x)

σ
2
pred = ψ(x)⊤Σψ(x) + σ2

Hence, the posterior predictive distribution is N (t ; µpred, σ
2
pred).
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Bayesian Linear Regression

Here we visualize confidence intervals based on the posterior predictive
mean and variance at each point:

— Bishop, Pattern Recognition and Machine Learning
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Overview: Probabilistic PCA

The formulation of PCA that we saw earlier in the course was
motivated heuristically.

We will show that it can be expressed as the maximum likelihood
estimate of a certain probabilistic model.
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Recall: PCA

Data set {x
(i)}Ni=1

Each input vector x
(i)
∈ RD

is approximated as µ̂ +Uz
(i)

,

x
(i)
≈ x̃

(i)
= µ̂ +Uz

(i)

where µ̂ = 1
n
∑i x

(i)
is the data mean, U ∈ RD×K

is the orthogonal

basis for the principal subspace, and z
(i)
∈ RK

is the code vector

z
(i)
= U

⊤(x
(i)
− µ̂)

U is chosen to minimize the reconstruction error

U
∗
= arg min

U
∑
i

∥x
(i)
− µ̂ +UU

⊤(x
(i)
− µ̂)∥2
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Probabilistic PCA

To formulate probabilistic PCA, let’s start with a latent variable
model.

Similar to the Gaussian mixture model, but we will assume
continuous, Gaussian latents:

z ∼ N (0, I)
x ∣ z ∼ N (Wz + µ, σ

2
I)

Note: this is a naive Bayes model, because p(x ∣ z) factorizes with
respect to the dimensions of x.

What sort of data does this model produce?
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Probabilistic PCA

z is a random coordinate within the affine space centered at µ and
spanned by the columbs of W.

To get the random variable x, we samples a standard Normal z and
then add a small amount of isotropic noise to Wz + µ.
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Probabilistic PCA

z

p(z)

ẑ

x2

x1

µ

p(x|ẑ)

}

ẑ|w|

w
x2

x1

µ

p(x)

— Bishop, Pattern Recognition and Machine Learning
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Probabilistic PCA : Maximum Likelihood

To perform maximum likelihood in this model, we need to maximize
the following:

max
W,µ,σ2

log p(x ∣W,µ, σ
2) = max

W,µ,σ2
log∫ p(x ∣ z,W,µ, σ

2)p(z) dz

This was hard for the Gaussian mixture model, but in this case it’s
easy.

p(x ∣W,µ, σ
2) will be Gaussian (confirm this) and so we just need to

compute and Cov[x] and E[x].
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Probabilistic PCA : Maximum Likelihood

E[x] = E[Wz + µ + ε] = µ

Cov[x] = E[(Wz + ε)(Wz + ε)⊤]
= E[(Wzz

⊤
W
⊤] + Cov[εε⊤]

= WW
⊤
+ σ

2
I
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Probabilistic PCA : Maximum Likelihood

Thus, the likelihood of the data under this model is given by

−
ND

2
log(2π) − N

2
log ∣C∣ − 1

2

N

∑
i=1

(x
(i)
− µ)⊤C

−1(x
(i)
− µ)

where C = WW
⊤ + σ2I.

It’s a bit involved to derive the maximum likelihood solution, so we
will skip it, but Tipping and Bishop (Probabilistic PCA, 1999) show
that this is maximized at the following stationary points.
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Probabilistic PCA : Maximum Likelihood

µ̂MLE =
1

N

N

∑
i=1

x
(i)
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Probabilistic PCA : Maximum Likelihood

ŴMLE = ÛMLE(L̂MLE − σ̂
2
MLEI)

1
2 R

where ÛMLE is the matrix whose columns are the K unit eigenvectors of
the empirical covariance matrix Σ̂ that have the largest eigenvalues,
L̂MLE ∈ RK×K

is the diagonal matrix whose elements are the
corresponding eigenvalues, and R is any orthogonal matrix.
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Probabilistic PCA : Maximum Likelihood

σ̂
2
MLE =

1

D − K

D

∑
i=K+1

λi

where λi is the ith largest eigenvalue of the empirical covariance matrix Σ̂
of the data. In otherwords, the average variance of the discarded subspace.
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Probabilistic PCA : Maximum Likelihood

That seems complex, to get an intuition about how this model
behaves when it is fit to data, lets consider the MLE density.

Recall that the marginal distribution on x in our fitted model is a
Gaussian with mean

µ̂MLE

and covariance

ŴMLEŴ
⊤
MLE + σ̂

2
MLEI = ÛMLE(L̂MLE − σ̂

2
MLEI)Û

⊤
MLE + σ̂

2
MLEI

The covariance gives us a nice intuition about the type of model this
forms.
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Probabilistic PCA : Maximum Likelihood

Consider centering the data and checking the variance along one of
the unit eigenvectors ui , which are the eigenvectors forming the
columns of ÛMLE:

Var(u
⊤
i (x − µ̂MLE)) = u

⊤
i Cov[x]ui

= u
⊤
i ÛMLE(L̂MLE − σ̂

2
MLEI)Û

⊤
MLEui + σ̂

2
MLE

= λi − σ̂
2
MLE + σ̂

2
MLE = λi

Now, consider centering the data and checking the variance along any
unit vector orthogonal to the subspace spanned by ÛMLE:

Var(u
⊤
i (x − µ̂MLE)) = u

⊤
i ÛMLE(L̂MLE − σ̂

2
MLEI)Û

⊤
MLEui + σ̂

2
MLE

= σ̂
2
MLE

In other words, the model captures the variance along the principle
axes and approximates the variance in all remaining directions with a
single variance.
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Probably easier to visualize after implementing it.
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How does it relate to PCA?

The posterior mean is given by

E[z ∣ x] = (Ŵ
⊤
MLEŴMLE + σ̂

2
MLEI)

−1
Ŵ
⊤
MLE(x − µ̂MLE)

So, if we don’t fit σ
2

and instead take it to 0 we get

E[z ∣ x] σ
2
→0
→ (Ŵ

⊤
MLEŴMLE)

−1
Ŵ
⊤
MLE(x − µ̂MLE)

Can show that this is a projection onto an affine space spanned by the
columns of ÛMLE.
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Why Probabilistic PCA (PPCA)?

Fitting a full-covariance Gaussian model of data requires
D(D + 1)/2 + D parameters. With PPCA we model only the K most
significant correlations and this only requires O(D) parameters as
long as K is small.

Basis of Bayesian treatement of PCA, which gives us a Bayesian
method for determining the dimensionality of the principal subspace
(i.e. K ).

Existence of likelihood functions allows direct comparison with other
probabilistic models.

Can use PPCA as a class-conditional density (as in GDA) to reduce

the requirement to fit and store O(D2) parameters.
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Recap: Gaussian models that we covered

Gaussian discriminant analysis.

▶ Gaussian class-conditional generative model p(x ∣ t) used for
classification.

Gaussian mixture model.

▶ Gaussian latent variable model p(x) = ∑z p(x, z) used for clustering.

Bayesian linear regression.

▶ Gaussian discriminative model p(t ∣ x) used for regression with a
Bayesian analysis for the weights.

Probabilistic PCA.

▶ Gaussian latent variable model p(x) = ∫
z
p(x, z) used for

dimensionality reduction.
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Optional material: Bayesian model selection
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Occam’s Razor (optional)

Consider selecting models from a Bayesian perspective.

Related to Occam’s Razor: “Entities should not be multiplied beyond
necessity.”

▶ Named after the 14th century British theologian William of Occam

Huge number of attempts to formalize mathematically
▶ See Domingos, 1999, “The role of Occam’s Razor in knowledge

discovery” for a skeptical overview.
https://homes.cs.washington.edu/~pedrod/papers/dmkd99.pdf

Common misinterpretation: your prior should favor simple
explanations

Better interpretation: by averaging over many hypothesis, Bayesian
model selection naturally prefers simpler models.
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Occam’s Razor (optional)

Suppose you have a finite set of models, or hypotheses {Hi}Mi=1
(e.g. polynomials of different degrees)

Posterior inference over models (Bayes’ Rule):

p(Hi ∣D)∝ p(Hi)ÍÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒ Ï
prior

p(D ∣Hi)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
evidence

The evidence is also called marginal likelihood since it requires
marginalizing out the parameters:

p(D ∣Hi) = ∫ p(w ∣Hi) p(D ∣w,Hi)dw
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Occam’s Razor (optional)

p(Hi) is typically uniform, so we can compare them based on
marginal likelihood.

Bayesian model selection:

H∗
= arg max

i
p(D ∣Hi)

What types of models does this procedure prefer?
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Occam’s Razor (optional)

Suppose M1, M2, and M3 denote a linear, quadratic, and cubic model.

M3 is capable of explaning more datasets than M1.

But its distribution over D must integrate to 1, so it must assign
lower probability to ones it can explain.

— Bishop, Pattern Recognition and Machine Learning
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Occam’s Razor (optional)

How does the evidence penalize complex models?
∆wposterior

∆wprior

wMAP w

Approximating the integral for w ∈ R:

p(D ∣Hi) = ∫ p(D ∣w,Hi) p(w ∣Hi)

≃ p(D ∣wMAP,Hi)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
best-fit likelihood

∆wposterior

∆wpriorÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Occam factor
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Occam’s Razor (optional)

Let’s investigate

log p(D ∣Hi) = log p(D ∣wMAP,Hi) + log
∆wposterior

∆wprior

First term represents fit to the data given the most probable
parameter values.

Second term is a penalty, because it is negative
(∆wposterior < ∆wprior).

Thus if the posterior is very peaked and confident about the data,
this penalty term will be very negative.
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Occam’s Razor (optional)

w ∈ RM
we have

log p(D ∣Hi) = log p(D ∣wMAP,Hi) +M log
∆wposterior

∆wprior

So the more parameters we have, the higher the penalty.

Optimal model complexity is determined by a tradeoff.

In Bayesian model selection, we naturally prefer simpler models that
model the data well.
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