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@ Final exam does not include this nor next week's lecture.

@ Continuing in our theme of probabilistic models for continuous
variables.

» Probabilistic interpretation of linear regression
» Probabilistic interpretation of PCA

o (Optional) Bayesian model selection.
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Completing the Square for Gaussians

o First, we're going to review a very powerful technique that will let us
figure out the distribution of Gaussian random variables.

@ It's a multivariate generalization of completing the square.

@ The density of N(u, X) satifies:

log p(x) —%(x - u)TZ_l(x — ) + const

Te—1 Te—1
:—%x Y "x+x X “u+const

@ Thus, if we know w is Gaussian with unknown mean and covariance,
and we also know that

log p(w) = —%WTAW +w ' b+ const

for A positive definite, then we know that

w~N(Ab,AT
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Bayesian Linear Regression

@ We're going to be Bayesian about the parameters of the model.

» This is in contrast with naive Bayes and GDA: in those cases, we used
Bayes' rule to infer the class, but used point estimates of the
parameters.

» By inferring a posterior distribution over the parameters, the model can
know what it doesn’t know.

@ How can uncertainty in the predictions help us?

» Smooth out the predictions by averaging over lots of plausible
explanations (just like ensembles!)

» Assign confidences to predictions

» Make more robust decisions
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Recap: Linear Regression

@ Given a training set of inputs and targets {(x(i), t(i))},-l\il
@ Linear model: N
y=w t(x)

@ Vectorized, we have the design matrix X in input space and

p(x)
wo|— ¥

w(x™)
and predictions

y = Uw
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Recap: Linear Regression

@ Squared error loss:
1 2
Ly ) = 3lly ¢
@ L, regularization:
A 2
o(w) = 5 llwl

@ Solution 1: solve analytically by setting the gradient to 0
w= (W WD) wt
@ Solution 2: solve approximately using gradient descent

w e (1-al\)w-— a\IJT(y -t)
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Linear Regression as Maximum Likelihood

@ We can give linear regression a probabilistic interpretation by assuming a Gaussian
noise model:

t]x ~ N(w' ¥(x), 0°)

@ Linear regression is just maximum likelihood under this model:

N
Zlogp ()|x() w, b)
i1

2|~

log N (s w4 (x"), 5%)

Lo 7 —wia())?
\/_0' P 20’2

i WT'lp(X(i)))2

2|~

&[\42 iM=
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Regularized Linear Regression as MAP Estimation

@ We can view an L, regularizer as MAP inference with a Gaussian prior.
@ Recall MAP inference:

arg maxlog p(w | D) = arg max[log p(w) + log p(D | w)]
@ We just derived the likelihood term log p(D | w):

L Se ) T (2
t p—
avgz 2w )

log p(D | w) = const —

@ Assume a Gaussian prior, w ~ N'(m,S):

log p(w) = log V' (w; m,S)

1 1 Ta-1
|Og|:W exp(—z(w - m) S (W - m))]
= —%(w -m)"S™ (w - m) + const
@ Commonly, m=0and S =1l so
1 2
| =— + t.
g p(w) = ~5 [wll* + cons

This is just L, regularization!
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Recap: Full Bayesian Inference

@ Recall: full Bayesian inference makes predictions by averaging over all
likely explanations under the posterior distribution.

Compute posterior using Bayes' Rule:

p(w | D) o< p(w)p(D | w)

@ Make predictions using the posterior predictive distribution:

p<t|x,z>)=jp<w|z>)p<t|x,w>dw

Doing this lets us quantify our uncertainty.
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Bayesian Linear Regression

@ Prior distribution: w ~ A/(0,S)
o Likelihood: t|x,w ~ N'(w'9(x), o°)

@ Assuming fixed/known S and o’isa big assumption. More on this
later.
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Bayesian Linear Regression

@ Bayesian linear regression considers various plausible explanations for
how the data were generated.

@ It makes predictions using all possible regression weights, weighted by
their posterior probability.

@ Here are samples from the prior p(w) and posteriors p(w | D)

==

> > >

no observations one observation two observations
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Bayesian Linear Regression: Posterior

@ Deriving the posterior distribution:
log p(w | D) = log p(w) + log p(D | w) + const
_ 1
= —%WTS 'w— —|[Vw - t||> + const
20
- 1
= —%WTS 'w- — (leIJTlllw —2t' Ww + tTt) + const
202
- - 1
= —%WT (cr e +s 1) w— —thlllw + const (complete the square!)
o
Thus w | D ~ N(u, X) where
-2 T
p=0c XV t

¥=(owlw+ 5‘1)_1
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Bayesian Linear Regression: Posterior

@ Since a Gaussian prior leads to a Gaussian posterior, this means the
Gaussian distribution is the conjugate prior for linear regression!

o Compare p the closed-form solution for linear regression:
w=W W+ Twt

This is the mean of the posterior, assuming that S = AMand o =1.

o A\ !is the standard deviation of the prior. As this becomes infinite,
the mean of the posterior converges to the maximum likelihood
solution.
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Bayesian Linear Regression

likelihood prior/posterior data space

&

wo

-1 0

wo !

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

e Example with radial basis function (RBF) features

252

(x = ,Uj)2)

1

0.75

0.5

025

— Bishop, Pattern Recognition and Machine Learning
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Bayesian Linear Regression

Functions sampled from the posterior:
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Bayesian Linear Regression

@ The posterior just gives us distribution over the parameter space, but
if we want to make predictions, the natural choice is to use the
posterior predictive distribution.

@ Posterior predictive distribution:

p(t|x,D)=J p(t]xw) p(w|D) dw
NE W (0).0) N 1,)

@ Another interpretation: t = szp(x) + &, where e ~ N(0,0) is
independent of w | D ~ N (u, X).
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Bayesian Linear Regression

@ Another interpretation: t = wTw(x) + &, where e ~ N(0,0) is
independent of w | D ~ N (u, X).

@ By the linear combination rules for Gaussian random variables, t is a
Gaussian distribution with parameters

Hpred = MT¢(X)
Opred = P(%) T(x) + 0°

@ Hence, the posterior predictive distribution is NV (t; ,upred,af,red).
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Bayesian Linear Regression

Here we visualize confidence intervals based on the posterior predictive

mean and variance at each point:
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Overview: Probabilistic PCA

@ The formulation of PCA that we saw earlier in the course was
motivated heuristically.

@ We will show that it can be expressed as the maximum likelihood
estimate of a certain probabilistic model.
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Recall: PCA

o Data set {x(i)}f\il

@ Each input vector x e RP is approximated as ji + Uz(i),

DxK

where fi = % Z,.x(i) is the data mean, U € R is the orthogonal

basis for the principal subspace, and 20 € R¥ is the code vector
Z(I) — UT(X(I) _ ﬂ)
@ U is chosen to minimize the reconstruction error

. . 0 _ 4 T a2
U —argmuanHx o+ UU (x )|
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Probabilistic PCA

@ To formulate probabilistic PCA, let's start with a latent variable
model.

@ Similar to the Gaussian mixture model, but we will assume
continuous, Gaussian latents:

z ~ N(0,1)
x|z ~ N(Wz + p, 1)

@ Note: this is a naive Bayes model, because p(x | z) factorizes with
respect to the dimensions of x.

@ What sort of data does this model produce?
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Probabilistic PCA

@ z is a random coordinate within the affine space centered at u and
spanned by the columbs of W.

@ To get the random variable x, we samples a standard Normal z and
then add a small amount of isotropic noise to Wz + p.
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— Bishop, Pattern Recognition and Machine Learning
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Probabilistic PCA : Maximum Likelihood

@ To perform maximum likelihood in this model, we need to maximize
the following:

max_log p(x | W, p1,0°) = max logjp<x |2, W, p,0°)p(z) dz
02 W, p,0?

@ This was hard for the Gaussian mixture model, but in this case it's
easy.

o p(x| W,u,a2) will be Gaussian (confirm this) and so we just need to
compute and Cov[x] and E[x].
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Probabilistic PCA : Maximum Likelihood

E[x] =E[Wz+pu+e]l=p
Cov[x] = E[(Wz + ¢)(Wz + ¢) " ]

= IE[(szTWT] + Cov[eeT]
=WW '+
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Probabilistic PCA : Maximum Likelihood

@ Thus, the likelihood of the data under this model is given by

ND N
_T |Og(2ﬂ') - E

N
1 i T -1, (i
o |Cl =53 (" =) €76 - )
where C = WW ' + 521

o It's a bit involved to derive the maximum likelihood solution, so we
will skip it, but Tipping and Bishop (Probabilistic PCA, 1999) show
that this is maximized at the following stationary points.
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Probabilistic PCA : Maximum Likelihood
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Probabilistic PCA : Maximum Likelihood

~ A~ ~ A2 1
Whwie = Umie(Lmie — dmel) 2R

where OMLE is the matrix whose columns are the K unit eigenvectors of
the empirical covariance matrix 3 that have the largest eigenvalues,
I:MLE e RN is the diagonal matrix whose elements are the
corresponding eigenvalues, and R is any orthogonal matrix.
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Probabilistic PCA : Maximum Likelihood

2 1 ¢
OMLE= 5 Z Ai
i=K+1

where JA; is the jth largest eigenvalue of the empirical covariance matrix )
of the data. In otherwords, the average variance of the discarded subspace.
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Probabilistic PCA : Maximum Likelihood

@ That seems complex, to get an intuition about how this model
behaves when it is fit to data, lets consider the MLE density.

@ Recall that the marginal distribution on x in our fitted model is a
Gaussian with mean

HMLE

and covariance
A AT .2 N N 2 AT .2
WneWwLe + dmiel = Umie(Lviee — dmie)Umie + el

@ The covariance gives us a nice intuition about the type of model this
forms.
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Probabilistic PCA : Maximum Likelihood

o Consider centering the data and checking the variance along one of
the unit eigenvectors u;, which are the eigenvectors forming the
columns of Upg:

T R T
Var(u; (x = fipg)) = u; Cov[x]u;

To - 2 AT 2
u; Umie(bmie — Gme)Umieu; + Gmie

2 .2
=X —OMLE + OMLE = i

@ Now, consider centering the data and checking the variance along any
unit vector orthogonal to the subspace spanned by Uy g:

T . T - 2 T .2
Var(u; (x = fipmie)) = u; Unie(bmie — dmiel)Umieyi + Gvie
2

= OMLE

@ In other words, the model captures the variance along the principle
axes and approximates the variance in all remaining directions with a
single variance.
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Probably easier to visualize after implementing it.
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How does it relate to PCA?

@ The posterior mean is given by
AT A 22 1.7 N
E[z]x] = (WMLEWMLE + UMLE') WwLe(x = AmLe)

o So, if we don't fit o2 and instead take it to 0 we get

°=0 (AT a 1A T N
Elz|x] =" (WieWuie)  Winie(x — fimie)

@ Can show that this is a projection onto an affine space spanned by the
columns of Uyg.
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Why Probabilistic PCA (PPCA)?

o Fitting a full-covariance Gaussian model of data requires
D(D + 1)/2 + D parameters. With PPCA we model only the K most
significant correlations and this only requires O(D) parameters as
long as K is small.

@ Basis of Bayesian treatement of PCA, which gives us a Bayesian
method for determining the dimensionality of the principal subspace
(i.e. K).

@ Existence of likelihood functions allows direct comparison with other
probabilistic models.

@ Can use PPCA as a class-conditional density (as in GDA) to reduce
the requirement to fit and store (’)(D2) parameters.
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Recap: Gaussian models that we covered

@ Gaussian discriminant analysis.

» Gaussian class-conditional generative model p(x | t) used for
classification.

@ Gaussian mixture model.

» Gaussian latent variable model p(x) = ) , p(x, z) used for clustering.

Bayesian linear regression.

» Gaussian discriminative model p(t | x) used for regression with a
Bayesian analysis for the weights.

Probabilistic PCA.

» Gaussian latent variable model p(x) = IZ p(x, z) used for
dimensionality reduction.

) STA314-Lecll 36 /44



Optional material: Bayesian model selection
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Occam'’s Razor (optional)

o Consider selecting models from a Bayesian perspective.

@ Related to Occam’s Razor: “Entities should not be multiplied beyond
necessity.”

» Named after the 14th century British theologian William of Occam
@ Huge number of attempts to formalize mathematically

» See Domingos, 1999, “The role of Occam's Razor in knowledge
discovery” for a skeptical overview.
https://homes.cs.washington.edu/~pedrod/papers/dmkd99.pdf

@ Common misinterpretation: your prior should favor simple
explanations

o Better interpretation: by averaging over many hypothesis, Bayesian
model selection naturally prefers simpler models.
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Occam'’s Razor (optional)

o Suppose you have a finite set of models, or hypotheses {#;}1,
(e.g. polynomials of different degrees)

@ Posterior inference over models (Bayes' Rule):

p(H; | D) o< p(H;) p(D | H;)

prior  evidence

@ The evidence is also called marginal likelihood since it requires
marginalizing out the parameters:

P(D 1) = [ plw | 7,) p(D | w. ) dw
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Occam'’s Razor (optional)

e p(H;) is typically uniform, so we can compare them based on
marginal likelihood.
@ Bayesian model selection:

M = argmaxp(D | H;)

@ What types of models does this procedure prefer?
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Occam'’s Razor (optional)

@ Suppose My, M,, and M3 denote a linear, quadratic, and cubic model.
@ Mj is capable of explaning more datasets than M.

@ But its distribution over D must integrate to 1, so it must assign
lower probability to ones it can explain.

4

p(D) M,

M;

"

Dy

D

— Bishop, Pattern Recognition and Machine Learning
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Occam'’s Razor (optional)

@ How does the evidence penalize complex models?

Awpostcnor
-—

WMAP w

Awprior

@ Approximating the integral for w € R:

p(D 1) = [ p(D 1w, 1) plw | 1)
AWposterior
= p(D | WMAPa,H')I Awo

best-fit likelihood —‘\————
Occam factor
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Occam'’s Razor (optional)

Let's investigate

AWposterior

log p(D | #;) = log p(D | wyiap, H;) + log — =
prior

o First term represents fit to the data given the most probable
parameter values.

@ Second term is a penalty, because it is negative
(Awposterior < AWprior)-
@ Thus if the posterior is very peaked and confident about the data,

this penalty term will be very negative.
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Occam'’s Razor (optional)

ow ERM we have

Aw i
log p(D | H;) = log p(D | wiiap, Hi) + Mlog A“;’“f””
prior

@ So the more parameters we have, the higher the penalty.

@ Optimal model complexity is determined by a tradeoff.

@ In Bayesian model selection, we naturally prefer simpler models that
model the data well.
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