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Today

Wrapping up inference and decision-making.

Gaussian generative models.
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MLE Recap

Last time we discussed the maximum likelihood estimation view of
machine learning:

Specify a family of distributions p(x∣θ) parameterized by θ ∈ Θ.

Observe a data set D = {x
(1)
, . . . , x

(N)}.

Under an IID assumption, MLE corresponds to

θ̂MLE = arg max
θ∈Θ

N

∑
i=1

log p(x
(i)∣θ)
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MLE issue: Data Sparsity

Maximum likelihood has a pitfall: if you have too little data, it can
overfit.

E.g., what if you flip the coin twice and get H both times?

θML =
NH

NH + NT
=

2

2 + 0
= 1

Because it never observed T, it assigns this outcome probability 0.
This problem is known as data sparsity.
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Bayesiam Parameter Estimation

Somehow we want to reflect our uncertainty in the true value of θ.

Maybe the problem was that we summarized D in a single setting of
the parameters θ̂MLE

What if we summarized using a distribution? This will allow us to
reflect that fact that we want to consider a variety of possible
parameters weighted by some probability. This is the spirit behind
Bayesian inference.

Intro ML (UofT) STA314-Lec10 5 / 50



Bayesian Parameter Estimation

In maximum likelihood, the observations are treated as random
variables, but the parameters are not.

! "

The Bayesian approach treats the parameters as random variables as
well. β is the set of parameters in the prior distribution of θ.

β " #

To define a Bayesian model, we need to specify two distributions:
▶ The prior distribution p(θ), which encodes our beliefs about the

parameters before we observe the data
▶ The likelihood p(D ∣θ), same as in maximum likelihood
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Bayesian Parameter Estimation

The posterior distribution is the distribution that we will use to
summarize D.

Using Bayes’ Rule:

p(θ ∣D) = p(θ)p(D ∣θ)
∫ p(θ′)p(D ∣θ′)dθ′

.

We rarely ever compute the denominator explicitly. In general, it is
computationally intractable.
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Bayesian Parameter Estimation

Let’s revisit the coin example. We already know the likelihood:

L(θ) = p(D∣θ) = θNH (1 − θ)NT

It remains to specify the prior p(θ).
▶ We can choose an uninformative prior, which assumes as little as

possible. A reasonable choice is the uniform prior.
▶ But our experience tells us 0.5 is more likely than 0.99. One

particularly useful prior that lets us specify this is the beta distribution:

p(θ; a, b) = Γ(a + b)
Γ(a)Γ(b) θ

a−1(1 − θ)b−1
.

▶ This notation for proportionality lets us ignore the normalization
constant:

p(θ; a, b)∝ θ
a−1(1 − θ)b−1

.
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Bayesian Parameter Estimation

Beta distribution for various values of a, b:

Some observations:

▶ The expectation E[θ] = a/(a + b) (easy to derive).
▶ The distribution gets more peaked when a and b are large.
▶ The uniform distribution is the special case where a = b = 1.

The beta distribution is used for is as a prior for the Bernoulli distribution.
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Bayesian Parameter Estimation

Computing the posterior distribution:

p(θ ∣D)∝ p(θ)p(D ∣θ)
∝ [θa−1(1 − θ)b−1] [θNH (1 − θ)NT ]
= θ

a−1+NH (1 − θ)b−1+NT .

This is just a beta distribution with parameters NH + a and NT + b.

The parameters a and b of the prior can be thought of as
pseudo-counts.

▶ The reason this works is that the prior and likelihood have the same
functional form. This phenomenon is known as conjugacy (conjugate
priors), and it’s very useful.
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Bayesian Parameter Estimation

Bayesian inference for the coin flip example:

Small data setting
NH = 2, NT = 0

Large data setting
NH = 55, NT = 45

When you have enough observations, the data overwhelm the prior.
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Bayesian Parameter Estimation

What do we actually do with the posterior?

The posterior predictive distribution is the distribution over future
observables given the past observations. We compute this by
marginalizing out the parameter(s):

p(D′ ∣D) = ∫ p(θ ∣D)p(D′ ∣θ)dθ. (1)

For the coin flip example:

θpred = Pr(x
′
= H ∣D)

= ∫ p(θ ∣D)Pr(x
′
= H ∣ θ)dθ

= ∫ Beta(θ;NH + a,NT + b) ⋅ θ dθ

= EBeta(θ;NH+a,NT+b)[θ]

=
NH + a

NH + NT + a + b
, (2)
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Bayesian Parameter Estimation

Maybe we can summarize the posterior using a single value?

One option is to use the posterior expectation of θ.

For the coin flip example it coincides with the probability of heads:

E[θ ∣D] = NH + a

NH + NT + a + b
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Maximum A-Posteriori Estimation

Another option is Maximum a-posteriori (MAP) estimation: find the
most likely parameter settings under the posterior to summarize the
posterior.
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Maximum A-Posteriori Estimation

This converts the Bayesian parameter estimation problem into a
maximization problem

θ̂MAP = arg max
θ

p(θ ∣D)

= arg max
θ

p(θ,D)

= arg max
θ

p(θ) p(D ∣θ)

= arg max
θ

log p(θ) + log p(D ∣θ)

We already saw an example of this in the homework.
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Maximum A-Posteriori Estimation

Joint probability in the coin flip example:

log p(θ,D) = log p(θ) + log p(D ∣ θ)
= Const + (a − 1) log θ + (b − 1) log(1 − θ) + NH log θ + NT log(1 − θ)
= Const + (NH + a − 1) log θ + (NT + b − 1) log(1 − θ)

Maximize by finding a critical point

0 =
d

dθ
log p(θ,D) = NH + a − 1

θ
−

NT + b − 1

1 − θ

Solving for θ,

θ̂MAP =
NH + a − 1

NH + NT + a + b − 2
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Maximum A-Posteriori Estimation

Comparison of estimates in the coin flip example:

Formula NH = 2,NT = 0 NH = 55,NT = 45

θ̂ML
NH

NH+NT
1 55

100
= 0.55

E[θ∣D] NH+a
NH+NT+a+b

4
6
≈ 0.67 57

104
≈ 0.548

θ̂MAP
NH+a−1

NH+NT+a+b−2
3
4
= 0.75 56

102
≈ 0.549

θ̂MAP assigns nonzero probabilities as long as a, b > 1.
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Recap

We took a probabilistic perspective on parameter estimation.

We modeled a biased coin as a Bernoulli random variable with parameter θ,
which we estimated using:

▶ maximum likelihood estimation:
θ̂ML = maxθ p(D ∣ θ)

▶ expected Bayesian posterior:
E[θ ∣D] where p(θ ∣D)∝ p(θ)p(D ∣ θ) by Bayes’ Rule.

▶ Maximum a-posteriori (MAP) estimation:
θ̂MAP = arg maxθ p(θ ∣D)

We also saw parameter estimation in context of a Näıve Bayes classifier.

Today we will continuing developing the probabilistic perspective:

▶ Gaussian Discriminant Analysis: Use Gaussian generative model of the
data for classification

▶ Gaussian Mixture Model: Gaussian generative model view of clustering
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Motivation

Generative models - model p(x∣t = k)
Instead of trying to separate classes, try to model what each class
”looks like”.

Recall that p(x∣t = k) may be very complex

p(x1,⋯, xd , y) = p(x1∣x2,⋯, xd , y)⋯p(xd−1∣xd , y)p(xd , y)

Naive bayes used a conditional independence assumption. What else
could we do? Choose a simple distribution.

Today we will discuss fitting Gaussian distributions to our data.

First, a review of our setting and MLE in Gaussians.
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Multivariate Data

Multiple measurements (sensors)

d inputs/features/attributes

N instances/observations/examples

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
(1)
1 x

(1)
2 ⋯ x

(1)
d

x
(2)
1 x

(2)
2 ⋯ x

(2)
d

⋮ ⋮ ⋱ ⋮

x
(N)
1 x

(N)
2 ⋯ x

(N)
d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Multivariate Parameters

Mean
E[x] = [µ1,⋯, µd]T

Covariance

Σ = Cov(x) = E[(x − µ)T (x − µ)] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
2
1 σ12 ⋯ σ1d

σ12 σ
2
2 ⋯ σ2d

⋮ ⋮ ⋱ ⋮
σd1 σd2 ⋯ σ

2
d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Multivariate Gaussian Distribution

x ∼ N (µ,Σ), a Gaussian (or normal) distribution defined as

p(x) = 1

(2π)d/2∣Σ∣1/2
exp [−1

2
(x − µ)TΣ

−1(x − µ)]

Mahalanobis distance (x − µk)TΣ
−1(x − µk) measures the distance from x

to µ in terms of Σ

It normalizes for difference in variances and correlations
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Gaussian Maximum Likelihood

Suppose we want to model the distribution of highest and lowest
temperatures in Toronto in March, and we’ve recorded the following
observations

(-2.5,-7.5) (-9.9,-14.9) (-12.1,-17.5) (-8.9,-13.9) (-6.0,-11.1)

Assume they’re drawn from a Gaussian distribution with mean µ, and
covariance Σ. We want to estimate these using data.

Log-likelihood function:

`(µ,Σ) = log
N

∏
i=1

[ 1

(2π)d/2∣Σ∣1/2
exp {−1

2
(x

(i)
− µ)TΣ

−1(x
(i)
− µ)}]

=

N

∑
i=1

log [ 1

(2π)d/2∣Σ∣1/2
exp {−1

2
(x

(i)
− µ)TΣ

−1(x
(i)
− µ)}]

=

N

∑
i=1

− log(2π)d/2

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
constant

− log ∣Σ∣1/2
−

1

2
(x

(i)
− µ)TΣ

−1(x
(i)
− µ)

Optional intuition building: why does ∣Σ∣1/2
show up in the Gaussian density p(x)? Hint:determinantisproductofeigenvalues
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Gaussian Maximum Likelihood

Maximize the log-likelihood by setting the derivative to zero:

0 =
d`

dµ
= −

N

∑
i=1

d

dµ

1

2
(x

(i)
− µ)TΣ

−1(x
(i)
− µ)

= −
N

∑
i=1

Σ
−1(x

(i)
− µ) = 0

Here we use the identity ∂x
⊤

Ax/∂x = 2Ax for symmetric A.

Solving we get µ̂ =
1
N
∑N

i=1 x
(i)

. In general, “hat” means estimator

This is just the sample mean of the observed values, or the empirical
mean.
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Gaussian Maximum Likelihood

We can do a similar calculation for the covariance matrix Σ (we skip
the details).

Setting the partial derivatives to zero, just like before, we get:

0 =
∂`

∂Σ
⟹ Σ̂ =

1

N

N

∑
i=1

(x
(i)
− µ̂)(x

(i)
− µ̂)⊤

=
1

N
(X − 1µ

⊤)⊤(X − 1µ
⊤)

where 1 is an N-dimensional vector of 1s.

This is called the empirical covariance and comes up quite often (e.g.,
PCA soon!)

Derivation in multivariate case is tedious. No need to worry about it.
But it is good practice to derive this in one dimension. See
supplement (next slide).
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Supplement: MLE for univariate Gaussian

0 =
∂`

∂µ
= −

1

σ2

N

∑
i=1

x
(i)
− µ

0 =
∂`

∂σ
=

∂

∂σ
[

N

∑
i=1

−
1

2
log 2π − logσ −

1

2σ2
(x

(i)
− µ)2]

=

N

∑
i=1

−
1

2

∂

∂σ
log 2π −

∂

∂σ
logσ −

∂

∂σ

1

2σ
(x

(i)
− µ)2

=

N

∑
i=1

0 −
1
σ +

1

σ3
(x

(i)
− µ)2

= −
N
σ +

1

σ3

N

∑
i=1

(x
(i)
− µ)2

µ̂ML =
1

N

N

∑
i=1

x
(i)

σ̂ML =

√
√√√√√√⎷

1

N

N

∑
i=1

(x(i) − µ)2
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Bayes Classifier

Let’s take a step back...

Bayes Classifier

h(x) = arg max p(t = k∣x) = arg max
p(x∣t = k)p(t = k)

p(x)
= arg max p(x∣t = k)p(t = k)

Talked about Discrete x, what if x is continuous?
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Classification: Diabetes Example

Observation per patient: White blood cell count & glucose value.

How can we model p(x∣t = k)? Multivariate Gaussian
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Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

Gaussian Discriminant Analysis in its general form assumes that p(x∣t) is
distributed according to a multivariate normal (Gaussian) distribution

Multivariate Gaussian distribution:

p(x∣t = k) = 1

(2π)d/2∣Σk∣1/2
exp [−1

2
(x − µk)

T
Σ
−1
k (x − µk)]

where ∣Σk∣ denotes the determinant of the matrix, and d is dimension of x

Each class k has associated mean vector µk and covariance matrix Σk

Σk has O(d2) parameters - could be hard to estimate (more on that later).
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Learning

Learn the parameters for each class using maximum likelihood

Assume the prior is Bernoulli (we have two classes)

p(t∣φ) = φt(1 − φ)1−t
.

You can compute the MLE in closed form (good exercise!)

φ̂ =
1

N

N

∑
n=1

1[t(n) = 1]

µ̂k =
∑N

n=1 1[t(n) = k] ⋅ x
(n)

∑N
n=1 1[t(n) = k]

Σ̂k =
1

∑N
n=1 1[t(n) = k]

N

∑
n=1

1[t(n) = k](x
(n)
− µ̂t(n))(x

(n)
− µ̂t(n))T
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Gaussian Discriminant Analysis (Gaussian Bayes Classifier)

GDA (GBC) decision boundary is based on class posterior.

Make decisions by comparing class probabilities:

log p(tk∣x) = log p(x∣tk) + log p(tk) − log p(x)

= −
d

2
log(2π) − 1

2
log ∣Σ−1

k ∣ − 1

2
(x − µk)

T
Σ
−1
k (x − µk)

+ log p(tk) − log p(x)

Decision boundary (log p(tk∣x) = log p(tl ∣x)):

(x − µk)
T

Σ
−1
k (x − µk) = (x − µ`)

T
Σ
−1
` (x − µ`) + Ck,l

x
T

Σ
−1
k x − 2µ

T
k Σ

−1
k x = x

T
Σ
−1
` x − 2µ

T
` Σ

−1
` x + Ck,l

Quadratic relation in x ⟹ quadratic (conic) decision boundary

So sometimes called “Quadratic Discriminant Analysis” (QDA)
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Decision Boundary

likelihoods)

posterior)for)t1)

discriminant:!!
P!(t1|x")!=!0.5!
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Simplifying the Model

What if x is high-dimensional?

For Gaussian Bayes Classifier, if input x is high-dimensional, then
covariance matrix has many parameters O(d2)

Save some parameters by using a shared covariance for the classes,
i.e. Σk = Σl .

MLE in this case:

Σ̂ =
1

N

N

∑
n=1

(x
(n)
− µt(n))(x

(n)
− µt(n))

T

Linear decision boundary (at home: verify this mathematically!).
▶ In Scikit-Learn this is called “Linear Discriminant Analysis” (LDA)
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Decision Boundary: Shared Variances (between Classes)

variances may be 
different 
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Gaussian Discriminative Analysis vs Logistic Regression

Binary classification: If you examine p(t = 1∣x) under GDA and
assume Σ0 = Σ1 = Σ, you will find that it looks like this:

p(t∣x, φ, µ0, µ1,Σ) = 1

1 + exp(−wTx)

where w is an appropriate function of (φ, µ0, µ1,Σ), φ = p(t = 1).

GDA is similar to logistic regression (LR), parameter estimates are
computed differently.

When should we prefer GDA to LR, and vice versa?
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Gaussian Discriminative Analysis vs Logistic Regression

GDA is a generative model, LR is a discriminative model.

GDA makes stronger modeling assumption: assumes class-conditional
data is multivariate Gaussian.

If this is true, GDA is asymptotically efficient (best model in limit of
large N)

But LR is more robust, less sensitive to incorrect modeling
assumptions (what loss is it optimizing?)

Many class-conditional distributions lead to logistic classifier.

When these distributions are non-Gaussian (true almost always), LR
usually beats GDA
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A Generative View of Clustering

What if we do not observe the targets?
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A Generative View of Clustering

We covered hard and soft k-means algorithm for clustering.

Today: statistical formulation of clustering → principled, justification for
updates

We need a sensible measure of what it means to cluster the data well

▶ This makes it possible to judge different methods
▶ It may help us decide on the number of clusters

An obvious approach is to imagine that the data was produced by a
generative model

▶ Then we adjust the model parameters to maximize the probability that
it would produce exactly the data we observed
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Latent Variable Models

To incorporate the idea of clusters model a joint distribution,

p(x, z) = p(x∣z)p(z)

between the data and an unobserved cluster id z ∈ {1, . . . ,K}.

The “label” or cluster id z is not observed, so we call it a latent
variable.

Because z is unobserved, we cannot just maximize log p(x, z).
Instead, we must maximize just the likelihood of the data x:

p(x) =∑
z

p(x, z) =∑
z

p(x∣z)p(z)

This is an instance of a mixture model or more generally, a latent
variable model.
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Gaussian Mixture Model (GMM)

Most common mixture model: Gaussian mixture model (GMM)

A GMM represents a distribution as

p(x) =
K

∑
k=1

πkN (x∣µk ,Σk)

with πk the mixing coefficients, where:

K

∑
k=1

πk = 1 and πk ≥ 0 ∀k

GMM is a density estimator

In general mixture models are very powerful, but harder to optimize
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Visualizing a Mixture of Gaussians – 1D Gaussians

If you fit a Gaussian to data:

Now, we are trying to fit a GMM (with K = 2 in this example):

[Slide credit: K. Kutulakos]
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Visualizing a Mixture of Gaussians – 2D Gaussians
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Fitting GMMs: Maximum Likelihood

Maximum likelihood maximizes

ln p(X∣π, µ,Σ) =
N

∑
n=1

ln(
K

∑
k=1

πkN (x
(n)∣µk ,Σk))

w.r.t Θ = {πk , µk ,Σk}
Problems:

▶ Singularities: Arbitrarily large likelihood when a Gaussian explains a
single point

▶ Identifiability: Solution is invariant to permutations
▶ Non-convex

How would you optimize this?

Could try gradient descent, but don’t forget to satisfy the constraints on πk
and Σk .
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Expectation Maximization

Typically a latent variable model is fit with the Expectation Maximization
(EM) algorithm, or variants of it.

The EM algorithm can be seen as a type of coordinate descent, just like
K -means and our method for matrix completion.

We won’t go into details to justify the convergence of the algorithm, but I
will show you the high-level algorithm for Gaussian mixture models and
compare it to K -means.
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Intuitively, How Can We Fit a Mixture of Gaussians?

1. E-step: Compute the posterior probability over z given our current model -
i.e. how much do we think each Gaussian generates each datapoint.

2. M-step: Assuming that the data really was generated this way, change the
parameters of each Gaussian to maximize the probability that it would
generate the data it is currently responsible for.

.95 

.5 

.5 

.05 

.5 
.5 

.95 
.05 
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Relation to k-Means

The K-Means Algorithm:

1. Assignment step: Assign each data point to the closest cluster
2. Refitting step: Move each cluster center to the center of gravity of the

data assigned to it

The EM Algorithm:

1. E-step: Compute the posterior probability over z given our current
model

2. M-step: Maximize the probability that it would generate the data it is
currently responsible for.
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EM Algorithm for GMM
Initialize the means µk , covariances Σk and mixing coefficients πk

Iterate until convergence:
▶ E-step: Evaluate the responsibilities given current parameters

γ
(n)
k = p(z(n)∣x) = πkN (x

(n)∣µk ,Σk)
∑K

j=1 πjN (x(n)∣µj ,Σj)
▶ M-step: Re-estimate the parameters given current responsibilities

µk =
1

Nk

N

∑
n=1

γ
(n)
k x

(n)

Σk =
1

Nk

N

∑
n=1

γ
(n)
k (x

(n)
− µk)(x

(n)
− µk)T

πk =
Nk

N
with Nk =

N

∑
n=1

γ
(n)
k

▶ Evaluate log likelihood and check for convergence

ln p(X∣π, µ,Σ) =
N

∑
n=1

ln(
K

∑
k=1

πkN (x
(n)∣µk ,Σk))
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EM Algorithm for GMM

Can show that the EM algorithm monotonically improves the log-likelihood.

Evaluate log likelihood and check for convergence

ln p(X∣π, µ,Σ) =
N

∑
n=1

ln(
K

∑
k=1

πkN (x
(n)∣µk ,Σk))
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Mixture of Gaussians vs. K-means

EM for mixtures of Gaussians is just like a soft version of K-means, with
fixed priors and covariance

Instead of hard assignments in the E-step, we do soft assignments based on
the softmax of the squared Mahalanobis distance from each point to each
cluster.

Each center moved by weighted means of the data, with weights given by
soft assignments

In K-means, weights are 0 or 1.

Confirm this at home!!!
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