
STA 314: Statistical Methods for Machine Learning I
Lecture 9 - Matrix Factorization, Probabilistic Models

Chris J. Maddison

University of Toronto

Intro ML (UofT) STA314-Lec9 1 / 51

Today

Generalization of PCA: matrix factorization.

Unifying the course: probabilistic models

Intro ML (UofT) STA314-Lec9 2 / 51

Recall: PCA

Dimensionality reduction aims to find a low-dimensional
representation of the data.

PCA projects the data onto a subspace which maximizes the
projected variance, or equivalently, minimizes the reconstruction error.

The optimal subspace is given by the top eigenvectors of the
empirical covariance matrix.

PCA gives a set of decorrelated features.

Intro ML (UofT) STA314-Lec9 3 / 51

Some recommender systems in action

Ideally recommendations should combine global and seasonal interests, look at
your history if available, should adapt with time, be coherent and diverse, etc.

Intro ML (UofT) STA314-Lec9 4 / 51

Some recommender systems in action

Intro ML (UofT) STA314-Lec9 5 / 51

The Netflix problem

Movie recommendation: Users watch movies and rate them out of 5⭑.

User Movie Rating
Thor ⭑⭐⭐⭐⭐
Chained ⭑⭑⭐⭐⭐
Frozen ⭑⭑⭑⭐⭐
Chained ⭑⭑⭑⭑⭐
Bambi ⭑⭑⭑⭑⭑
Titanic ⭑⭑⭑⭐⭐
Goodfellas ⭑⭑⭑⭑⭑
Dumbo ⭑⭑⭑⭑⭑
Twilight ⭑⭑⭐⭐⭐
Frozen ⭑⭑⭑⭑⭑
Tangled ⭑⭐⭐⭐⭐

Users only rate a few items, so would like to infer their preference for unrated
items

Intro ML (UofT) STA314-Lec9 6 / 51

Netflix Prize

Intro ML (UofT) STA314-Lec9 7 / 51

PCA as a Matrix Factorization

Recall PCA: project data onto a low-dimensional subspace defined by
the top eigenvalues of the data covariance

Today we consider a generalization, matrix factorizations

▶ view PCA as a matrix factorization problem

▶ extend to matrix completion, where the data matrix is only partially
observed

▶ extend to other matrix factorization models, which place different kinds
of structure on the factors

Intro ML (UofT) STA314-Lec9 8 / 51

PCA as Matrix Factorization

Recall PCA: each input vector x
(i)
∈ RD

is approximated as µ̂+Uz
(i)

,

x
(i)
≈ x̃

(i)
= µ̂ +Uz

(i)

where µ̂ =
1
n
∑i x

(i)
is the data mean, U ∈ RD×K

is the orthogonal

basis for the principal subspace, and z
(i)
∈ RK

is the code vector, and

x̃
(i)
∈ RD

is x
(i)

’s reconstruction or approximation.

Assume for simplicity that the data is centered: µ̂ = 0. Then, the
approximation looks like

x
(i)
≈ x̃

(i)
= Uz

(i)
.

Intro ML (UofT) STA314-Lec9 9 / 51

PCA as Matrix Factorization
PCA(on centered data): input vector x

(i)
is approximated as Uz

(i)

x
(i)
≈ Uz

(i)

Write this in matrix form, we have X ≈ ZU
⊤

where X and Z are
matrices with one row per data point

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[x(1)]⊤

[x(2)]⊤
⋮

[x(N)]⊤

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ RN×D
and Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[z(1)]⊤

[z(2)]⊤
⋮

[z(N)]⊤

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ RN×K

Can write the squared reconstruction error as

N

∑
i=1

∥x(i) −Uz
(i)∥2

= ∥X − ZU
⊤∥2

F ,

∥ ⋅ ∥F denotes the Frobenius norm:

∥Y∥2
F = ∥Y⊤∥2

F =∑
i ,j

y
2
ij =∑

i

∥y(i)∥2
.

Intro ML (UofT) STA314-Lec9 10 / 51

PCA as Matrix Factorization

So PCA is approximating X ≈ ZU
⊤

, or equivalently X
⊤
≈ UZ

⊤
.

Based on the sizes of the matrices, this is a rank-K approximation.

Since U was chosen to minimize reconstruction error, this is the
optimal rank-K approximation, in terms of error ∥X⊤ −UZ

⊤∥2
F .

Intro ML (UofT) STA314-Lec9 11 / 51

Supplement: Singular-Value Decomposition (SVD)

Close relationship to the Singular Value Decomposition (SVD) of X which is a

matrix factorization technique. Consider an N × D matrix X ∈ RN×D
with SVD

X = QSU
⊤

Q, S, and U
⊤

provide a real-valued matrix factorization of X.

Q is a N × D matrix with orthonormal columns, Q
⊤
Q = ID , where ID is the

D × D identity matrix.

U is an orthonormal D × D matrix, U
⊤
= U

−1
.

S is a D × D diagonal matrix, with non-negative singular values,
s1, s2, . . . , sD , on the diagonal, where the singular values are conventionally
ordered from largest to smallest.

Note that standard SVD notation is X = UDV
⊤

. We are using X = QSU
⊤

.
Intro ML (UofT) STA314-Lec9 12 / 51

Matrix Completion

We just saw that PCA gives the optimal low-rank matrix factorization
to a matrix X.

Can we generalize this to the case where X is only partially observed?
▶ A sparse 1000 × 1000 matrix with 50,000 observations (only 5%

observed).
▶ A rank 5 approximation requires only 10,000 parameters, so it’s

reasonable to fit this.
▶ Unfortunately, no closed form solution.

Intro ML (UofT) STA314-Lec9 13 / 51

The Netflix problem

Recall: movie recommendation.

User Movie Rating

Thor ⭑⭐⭐⭐⭐
Chained ⭑⭑⭐⭐⭐
Frozen ⭑⭑⭑⭐⭐
Chained ⭑⭑⭑⭑⭐
Bambi ⭑⭑⭑⭑⭑
Titanic ⭑⭑⭑⭐⭐
Goodfellas ⭑⭑⭑⭑⭑
Dumbo ⭑⭑⭑⭑⭑
Twilight ⭑⭑⭐⭐⭐
Frozen ⭑⭑⭑⭑⭑
Tangled ⭑⭐⭐⭐⭐

Intro ML (UofT) STA314-Lec9 14 / 51

Matrix Completion

Matrix completion problem: Transform the table into a N users by M movies
matrix R

Cha
in

ed

Fr
oz

en

Bam
bi

Ti
ta

ni
c

Goo
df

el
la
s

Dum
bo

Tw
ili
gh

t
Th

or

Ta
ng

le
d

Ninja

Cat

Angel

Nursey

Tongey

Neutral

2 3 ? ? ? ? ? 1 ?

4 ? 5 ? ? ? ? ? ?

? ? ? 3 5 5 ? ? ?

? ? ? ? ? ? 2 ? ?

? 5 ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? 1

Rating matrix Data: Users rate some movies.
Ruser,movie. Very sparse

Task: Predict missing entries,
i.e. how a user would rate a movie
they haven’t previously rated

Evaluation Metric: Squared
error (used by Netflix
Competition). Is this a reasonable
metric?

Intro ML (UofT) STA314-Lec9 15 / 51

Matrix Completion

In our current setting, latent factor models attempt to explain the
ratings by characterizing both movies and users on a number of
factors K inferred from the ratings patterns.

That is, we seek representations for movies and users as vectors in
RK

that can ultimately be translated to ratings.

For simplicity, we can associate these factors (i.e. the dimensions of
the vectors) with idealized concepts like

▶ comedy
▶ drama
▶ action
▶ But also uninterpretable dimensions

Can we use the sparse ratings matrix R to find these latent factors
automatically?

Intro ML (UofT) STA314-Lec9 16 / 51

Matrix Completion

Let the representation of user i in the K -dimensional space be ui and the
representation of movie j be zj

▶ Intuition: maybe the first entry of ui says how much the user likes
horror films, and the first entry of zj says how much movie j is a horror
film.

Assume the rating user i gives to movie j is given by a dot product:

Rij ≈ u
⊤
i zj

In matrix form, if:

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

— u
⊤
1 —
⋮

— u
⊤
N —

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Z

⊤
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣ ∣
z1 . . . zM
∣ ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

then: R ≈ UZ
⊤

This is a matrix factorization problem!

Intro ML (UofT) STA314-Lec9 17 / 51

Matrix Completion

Recall PCA: To enforce X
⊤
≈ UZ

⊤
, we minimized

min
U,Z

∥X⊤
−UZ

⊤∥2
F =∑

i ,j

(xji − u
⊤
i zj)2

where ui and zi are the i-th rows of matrices U and Z, respectively.

What’s different about the Netflix problem?
▶ Most entries are missing!
▶ We only want to count the error for the observed entries.

Intro ML (UofT) STA314-Lec9 18 / 51

Matrix Completion

Let O = {(n,m) ∶ entry (n,m) of matrix R is observed}
Using the squared error loss, matrix completion requires solving

min
U,Z

1

2
∑

(i,j)∈O
(Rij − u

⊤
i zj)

2

The objective is non-convex in U and Z jointly, and in fact it’s generally
NP-hard to minimize the above cost function exactly.

As a function of either U or Z individually, the problem is convex and easy
to optimize. We can use coordinate descent, just like with K-means and
mixture models!

Alternating Least Squares (ALS): fix Z and optimize U, followed by fix U and
optimize Z, and so on until convergence.

Intro ML (UofT) STA314-Lec9 19 / 51

Alternating Least Squares

Want to minimize the squared error cost with respect to the factor U.
(The case of Z is exactly symmetric.)

We can decompose the cost into a sum of independent terms:

∑
(i ,j)∈O

(Rij − u
⊤
i zj)

2
=∑

i

∑
j∶(i ,j)∈O

(Rij − u
⊤
i zj)

2

Í ÒÒÑ ÒÒ Ï
only depends on ui

This can be minimized independently for each ui .

This is a linear regression problem in disguise. Its optimal solution is:

ui =
⎛
⎜
⎝

∑
j∶(i ,j)∈O

zjz
⊤
j

⎞
⎟
⎠

−1

∑
j∶(i ,j)∈O

Rijzj

Intro ML (UofT) STA314-Lec9 20 / 51

Alternating Least Squares

ALS for Matrix Completion problem

1. Initialize U and Z randomly

2. repeat until convergence

3. for i = 1, ..,N do

4. ui = (∑j∶(i,j)∈O zjz
⊤
j)

−1 ∑j∶(i,j)∈O Rijzj

5. for j = 1, ..,M do

6. zj = (∑i∶(i,j)∈O uiu
⊤
i)

−1 ∑i∶(i,j)∈O Rijui

Intro ML (UofT) STA314-Lec9 21 / 51

Next?

So far we have motivated unsupervised learning by discovering latent
structure in data: clusters or linear structure.

Now we will start to put together a more formulaic (perhaps more
principled) view of unsupervised learning as a probabilistic method.

Actually this point of view will also unify supervise learning.

Intro ML (UofT) STA314-Lec9 22 / 51

Next?

So far in the course we have adopted a modular perspective, in which
the model, loss function, optimizer, and regularizer are specified
separately.

Today we will begin putting together a probabilistic interpretation of
the choice of model and loss, and introduce the concept of maximum
likelihood estimation.

Let’s start with a simple biased coin example.
▶ You flip a coin N = 100 times and get outcomes {x1, . . . , xN} where

xi ∈ {0, 1} and xi = 1 is interpreted as heads H.
▶ Suppose you had NH = 55 heads and NT = 45 tails.
▶ What is the probability it will come up heads if we flip again? Let’s

design a model for this scenario, fit the model. We can use the fit
model to predict the next outcome.

Intro ML (UofT) STA314-Lec9 23 / 51

Model?

The coin is possibly loaded. So, we can assume that one coin flip
outcome x is a Bernoulli random variable for some currently unknown
parameter θ ∈ [0, 1].

p(x = 1∣θ) = θ and p(x = 0∣θ) = 1 − θ

or more succinctly p(x∣θ) = θx(1 − θ)1−x

It’s sensible to assume that {x1, . . . , xN} are independent and
identically distributed (i.i.d.) Bernoullis.

Thus the joint probability of the outcome {x1, . . . , xN} is

p(x1, ..., xN∣θ) =
N

∏
i=1

θ
xi (1 − θ)1−xi

Intro ML (UofT) STA314-Lec9 24 / 51

Loss?

We call the probability mass (or density for continuous) of the
observed data the likelihood function (as a function of the parameters
θ):

L(θ) =
N

∏
i=1

θ
xi (1 − θ)1−xi

We usually work with log-likelihoods:

`(θ) =
N

∑
i=1

xi log θ + (1 − xi) log(1 − θ)

How can we choose θ? Good values of θ should assign high
probability to the observed data. This motivates the maximum
likelihood criterion, that we should pick the parameters that maximize
the likelihood:

θ̂ML = arg max
θ∈[0,1]

`(θ)

Intro ML (UofT) STA314-Lec9 25 / 51

Maximum Likelihood Estimation for the Coin Example

Remember how we found the optimal solution to linear regression by
setting derivatives to zero? We can do that again for the coin
example.

d`

dθ
=

d

dθ
(

N

∑
i=1

xi log θ + (1 − xi) log(1 − θ))

=
d

dθ
(NH log θ + NT log(1 − θ))

=
NH

θ
−

NT

1 − θ

where NH = ∑i xi and NT = N −∑i xi .

Setting this to zero gives the maximum likelihood estimate:

θ̂ML =
NH

NH + NT
.

Intro ML (UofT) STA314-Lec9 26 / 51

Maximum Likelihood Estimation

Notice, in the coin example we are actually minimizing
cross-entropies!

θ̂ML = arg max
θ∈[0,1]

`(θ)

= arg min
θ∈[0,1]

−`(θ)

= arg min
θ∈[0,1]

N

∑
i=1

−xi log θ − (1 − xi) log(1 − θ)

This is an example of maximum likelihood estimation.
▶ define a model that assigns a probability (or has a probability density

at) to a dataset
▶ maximize the likelihood (or minimize the neg. log-likelihood).

Many examples we’ve considered fall in this framework! Let’s consider
classification again.

Intro ML (UofT) STA314-Lec9 27 / 51

Generative vs Discriminative

Two approaches to classification:

Discriminative approach: estimate parameters of decision boundary/class
separator directly from labeled examples.

▶ Model p(t∣x) directly (logistic regression models)

▶ Learn mappings from inputs to classes (linear/logistic regression,
decision trees etc)

▶ Tries to solve: How do I separate the classes?

Generative approach: model the distribution of inputs characteristic of the
class (Bayes classifier).

▶ Model p(x∣t)
▶ Apply Bayes Rule to derive p(t∣x).

▶ Tries to solve: What does each class ”look” like?

Key difference: is there a distributional assumption over inputs?

Intro ML (UofT) STA314-Lec9 28 / 51

A Generative Model: Bayes Classifier

Aim to classify text into spam/not-spam (yes c=1; no c=0)

Example: “You are one of the very few who have been selected as a
winners for the free $1000 Gift Card.”

Use bag-of-words features, get binary vector x for each email

Vocabulary:
▶ “a”: 1
▶ ...
▶ “car”: 0
▶ “card”: 1
▶ ...
▶ “win”: 0
▶ “winner”: 1
▶ “winter”: 0
▶ ...
▶ “you”: 1

Intro ML (UofT) STA314-Lec9 29 / 51

Bayes Classifier

Given features x = [x1, x2,⋯, xD]T we want to compute class
probabilities using Bayes Rule:

p(c∣x)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Pr. class given words

=
p(x, c)
p(x) =

Pr. words given classÌ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÎ
p(x∣c) p(c)

p(x)

More formally

posterior =
Class likelihood × prior

Evidence

How can we compute p(x) for the two class case? (Do we need to?)

p(x) = p(x∣c = 0)p(c = 0) + p(x∣c = 1)p(c = 1)

To compute p(c∣x) we need: p(x∣c) and p(c)
Intro ML (UofT) STA314-Lec9 30 / 51

Näıve Bayes

Assume we have two classes: spam and non-spam. We have a
dictionary of D words, and binary features x = [x1, . . . , xD] saying
whether each word appears in the e-mail.

If we define a joint distribution p(c , x1, . . . , xD), this gives enough
information to determine p(c) and p(x∣c).

Problem: specifying a joint distribution over D + 1 binary variables
requires 2

D+1 − 1 entries. This is computationally prohibitive and
would require an absurd amount of data to fit.

We’d like to impose structure on the distribution such that:
▶ it can be compactly represented
▶ learning and inference are both tractable

Intro ML (UofT) STA314-Lec9 31 / 51

Näıve Bayes

Näıve assumption: Näıve Bayes assumes that the word features xi are
conditionally independent given the class c .

▶ This means xi and xj are independent under the conditional
distribution p(x∣c).

▶ Note: this doesn’t mean they’re independent.
▶ Mathematically,

p(c , x1, . . . , xD) = p(c)p(x1∣c)⋯p(xD∣c).

Compact representation of the joint distribution
▶ Prior probability of class: p(c = 1) = π (e.g. spam email)
▶ Conditional probability of word feature given class: p(xj = 1∣c) = θjc

(e.g. word ”price” appearing in spam)
▶ 2D + 1 parameters total (before 2

D+1 − 1)

Intro ML (UofT) STA314-Lec9 32 / 51

Bayes Nets

We can represent this model using an directed graphical model, or
Bayesian network:

This graph structure means the joint distribution factorizes as a
product of conditional distributions for each variable given its
parent(s).

Intuitively, you can think of the edges as reflecting a causal structure.
But mathematically, this doesn’t hold without additional assumptions.

Intro ML (UofT) STA314-Lec9 33 / 51

Näıve Bayes: Learning

The parameters can be learned efficiently because the log-likelihood
decomposes into independent terms for each feature.

`(θ) =
N

∑
i=1

log p(c(i)
, x

(i)) =
N

∑
i=1

log {p(x(i)∣c(i))p(c(i))}

=

N

∑
i=1

log {p(c(i))
D

∏
j=1

p(x (i)
j ∣ c(i))}

=

N

∑
i=1

[log p(c(i)) +
D

∑
j=1

log p(x (i)
j ∣ c(i))]

=

N

∑
i=1

log p(c(i))
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

Bernoulli log-likelihood
of labels

+
D

∑
j=1

N

∑
i=1

log p(x (i)
j ∣ c(i))

ÍÒÒÑÒÒÏ
Bernoulli log-likelihood

for feature xj

Each of these log-likelihood terms depends on different sets of
parameters, so they can be optimized independently.

Intro ML (UofT) STA314-Lec9 34 / 51

Näıve Bayes: Learning

We can handle these terms separately. For the prior we maximize:

∑N
i=1 log p(c(i))

This is a minor variant of our coin flip example. Let p(c(i) = 1)=π.

Note p(c(i)) = πc
(i)
(1 − π)1−c

(i)
.

Log-likelihood:

N

∑
i=1

log p(c(i)) =
N

∑
i=1

c
(i)

log π +
N

∑
i=1

(1 − c
(i)) log(1 − π)

Obtain MLEs by setting derivatives to zero:

π̂ =
∑i 1I[c(i) = 1]

N
=

spams in dataset

total # samples

Intro ML (UofT) STA314-Lec9 35 / 51

Näıve Bayes: Learning

Each θjc ’s can be treated separately: maximize ∑N
i=1 log p(x(i)

j ∣ c(i))
This is (again) a minor variant of our coin flip example.

Let θjc = p(x(i)
j = 1 ∣ c). Note p(x(i)

j ∣ c) = θx
(i)
j

jc (1 − θjc)1−x
(i)
j .

Log-likelihood:

N

∑
i=1

log p(x (i)
j ∣ c(i)) =

N

∑
i=1

c
(i) {x (i)

j log θj1 + (1 − x
(i)
j) log(1 − θj1)}

+
N

∑
i=1

(1 − c
(i)) {x (i)

j log θj0 + (1 − x
(i)
j) log(1 − θj0)}

Obtain MLEs by setting derivatives to zero:

θ̂jc =
∑i 1I[x(i)

j = 1 & c
(i)
= c]

∑i 1I[c(i) = c]
for c = 1
=

#word j appears in spams

spams in dataset

Intro ML (UofT) STA314-Lec9 36 / 51

Näıve Bayes: Inference

We predict the category by performing inference in the model.

Apply Bayes’ Rule:

p(c ∣ x) = p(c)p(x ∣ c)
∑c ′ p(c ′)p(x ∣ c ′)

=

p(c)∏D
j=1 p(xj ∣ c)

∑c ′ p(c ′)∏D
j=1 p(xj ∣ c ′)

We need not compute the denominator if we’re simply trying to
determine the most likely c .

Shorthand notation:

p(c ∣ x)∝ p(c)
D

∏
j=1

p(xj ∣ c)

For input x, predict by comparing the values of p(c)∏D
j=1 p(xj ∣ c)

for different c (e.g. choose the largest).
Intro ML (UofT) STA314-Lec9 37 / 51

Näıve Bayes

Näıve Bayes is an amazingly cheap learning algorithm!

Training time: estimate parameters using maximum likelihood
▶ Compute co-occurrence counts of each feature with the labels.
▶ Requires only one pass through the data!

Test time: apply Bayes’ Rule
▶ Cheap because of the model structure. (For more general models,

Bayesian inference can be very expensive and/or complicated.)

We covered the Bernoulli case for simplicity. But our analysis easily
extends to other probability distributions.

Unfortunately, it’s usually less accurate in practice compared to
discriminative models due to its “näıve” independence assumption.

Intro ML (UofT) STA314-Lec9 38 / 51

