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Multivariate Gaussian Model

@ x ~ N(p,X), a Gaussian (or normal) distribution defined as

p(x) -3t = )|
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@ To understand the shape of the density, we will study now the
standard normal A(0, 1) is transformed to produce N (u, X).
» Last week | mentioned that the multivariate Gaussian requires
understanding multivariate scaling by positive definite matrices.
» | didn't do a great job of explaining this, so I'm going to try again.
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Recall some definitions (details optional)

First, recall:

@ Definition. Symmetric matrix A is positive semidefinite if x' Ax = 0 for all
non-zero X. It is positive definite if x' Ax > 0 for all non-zero x.

» Any positive definite matrix is positive semidefinite.
» Positive definite matrices have positive eigenvalues, and positive
semidefinite matrices have non-negative eigenvalues.
» For any matrix X, X'X and XX are positive semidefinite.
@ Theorem (Unique Positive Square Root). Let A be a positive semidefinite real
matrix. Then there is a unique positive semidefinite matrix B such that

A =B'B =BB. We call A% £ B the positive square root of A.

dxd

@ Theorem (Spectral Theorem). If A € R"™ is symmetric, then

1. R® has an orthonormal basis consisting of the eigenvectors of A.
2. There exists orthonormal matrix Q and diagonal matrix A such that
A = QAQ. This is called the spectral decomposition of A.
» The columns of Q are (unit) eigenvectors of A.

) STA314-Lec8 3/58



Matrix Square Roots & the Multivariate Gaussian

@ Suppose x is a standard Gaussian in D dimensions with density

2
[1x][2

1
w9 = o] 12

1
@ Transform x toy = ;o + X2x. Then by change of variables

1 =72y = wIB ]}
P(Y)=WGXP[— y2 = 2:||Z 2

1 1 _
= W exp [—§(X ) = (x - u)}

» Be careful, this derivative use many facts about determinants, inverses,
and square roots that one would have to verify.
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Matrix Square Roots & the Multivariate Gaussian

1
@ So N(u,X) is N(0, 1) shifted by p and “scaled” by X2.
@ How can you think of “scaling” space by the square root of a matrix?
For a PSD matrix X, find it's spectral decomposition:

¥ =QAQ’

@ Since Q is orthonormal, we have QTQ = |, and that:

T

- QAZQ

N =

>
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Matrix Square Roots & the Multivariate Gaussian

1
@ We want to understand what it means to scale space by X2x.

@ Multiplying a vector x by QTx is the same as projecting x onto the
columns of Q, so this is like rotating spaces so that the basis of Q
becomes the standard basis.

@ Since A is diagonal, it is easy to calculate

VM 0 ... 0
NIRRT
o 0 ... Vo
and multiplying by is the same as scaling the (current) standard basis
by V.
@ Multiplying by Q rotates the standard basis back into the basis of Q.
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Matrix Square Roots & the Multivariate Gaussian

1
@ To to summarize, you can think of scaling space by X2x as the effect
1

of rotating the standard basis into the eigenvectors of X2 and scaling
space along those orthogonal directions.

@ So multivariate “scaling” has both magnitude and direction.
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Bivariate Gaussian
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Bivariate Gaussian

Test your intuition: Does Q; = @7

Probability Density

2
Probability density function
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Bivariate Gaussian

Test your intuition: Does Q1 = Q27 What are A1 and A\p?

Probability Density

2
Probability density function
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Contour plot of the pdf
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Back to PCA

Back to principal component analysis (PCA)

Dimensionality reduction: map data to a lower dimensional space

PCA is a linear model. It's useful for understanding lots of other
algorithms.

PCA is about finding linear structure in data.
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Recall: Multivariate Parameters

@ Setup: given a iid dataset D = {x", ... x™} c R".

@ N instances/observations/examples

[xV1" xfj xéj xéj
O S L B I ™
XML M M Y
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Mean and Covariance Estimators

@ We can estimate mean p and X under the multivariate Gaussian
model using these sample approximations:

N

1 i

Sample mean: i = N E x"
i=1

Sample covariance:

N
s = LN ay ) gy T
z-N;(x DICREN)
1 T\T T
=X =1p ) (X=1p)

@ [i quantifies where your data is located in space (shift)

e ¥ quantifies the shape of spread of your data points (scale)
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Low dimensional representation

@ In practice, even though data is very high dimensional, its important features
can be accuratelv captured in a low dimensional subspace.

05
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/// M///

Second principal component

-05

-1.0 -05 0.0 05 1.0
First principal component

Image credit: Elements of Statistical Learning
@ Find a low dimensional representation of your data.

» Computational benefits
» Interpretability, visualization
» Generalization
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Projection onto a subspace

@ Set-up: given a dataset D = {x(l), e ,x(N)} cRP
@ Set [1 to the sample mean of the data, i = % Zf\il x(7)

@ Goal: find a K-dimensional subspace S C RP such that x™ — [is
“well-represented” by its projection onto a K-dimensional &

@ Recall: The projection of a point x onto § is the point in S closest to
x. More on this coming soon.
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We are looking for directions

Xy

0

Uy XX

X1

@ For example, in a 2-dimensional problem, we are looking for the
direction u; along which the data is well represented: (?7)
» e.g. direction of higher variance
» e.g. direction of minimum difference after projection
» turns out they are the same!
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First step: Center data

@ Directions we compute will pass through origin, and should represent
the direction of highest variance.

@ We need to center our data since we don't want location of data to
influence our calculations. We are only interested in finding the
direction of highest variance. This is independent from its mean.

e = We are not interested in u3, we are interested in u;.
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Second step: Project onto lower dimensional space &

@ A projection is just a multivariate “scale” by 0 in the pruned directions. You
already know how to do this!

@ Use positive semi-definite matrix:

| |
. 1 0 T
Proj,, = Q (0 0 )Q where Q = ”:ﬁ ”:|_§”

@ This is the same as:

Proj,, = Q(é 8 )QT =UU" where U=(7)
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Third step: Add back mean

Summary for a given point x:

1. Subtract mean: x —

2. Project on S: UUT(x - ;:L) where columns of U are unit eigenvectors for
largest K eigenvalues of X (K directions of highest variance)

3. Add back mean: %= 1+ UU" (x - 1)

Here, z = UT(x — [1) is a lower dimensional representation of x.
And that’s it! We've done Principal Components Analysis (PCA)!
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Goal: find a low dimensional represenation z of data x.

Outline for PCA:

@ Review projection onto a K dimensional subspace S.
@ Selecting the best affine space onto which to project.

@ Project x onto the affine space to get our low dimensional
representation z.
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Euclidean projection

Projection onto a 1-D subspace

X

£ e Subspace S is the line along the

unit vector u
» {u} is a basis for S: any point in
S can be written as zu for some z.

@ Projection of x on S is denoted by Projg(x)
o Recall: x'u = ||x||||u]| cos(8) = ||x]|| cos(8)

o Projs(x)= x'w - u  =[|u
length of proj direction of proj
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General subspaces

@ How to project onto a K-dimensional subspace?
» Idea: choose an orthonormal basis {uy, u,, -+, uk} for S (i.e. all unit

vectors and orthogonal to each other)
» Project onto each unit vector individually (as in previous slide), and

sum together the projections.

@ Mathematically, the projection is given as:

K

. T
Projs(x) = Zz,-u,- where z; = x u;j.
i=1

@ In vector form:
. T
Projs(x) = Uz where z, =U x
23/58
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Projection onto a Subspace

@ So far, we assumed the subspace passes through 0.
@ In mathematical terminology, the “subspaces” we want to project
onto are really affine spaces, and can have an arbitrary origin f&.

:UZ‘E.&:21U1+22L12+£"

~__ z=U"(x~ )

@ In machine learning, X is also called the reconstruction of x.

@ z is its representation, or code.
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Projection onto a Subspace

If we have a K-dimensional subspace in a

D-dimensional input space, then x € RP and
K

zeR".

If the data points x all lie close to their

reconstructions, then we can approximate

distances, etc. in terms of these same

operations on the code vectors z.

If K < D, then it's much cheaper to work

with z than x.

A mapping to a space that’s easier to

manipulate or visualize is called a

representation, and learning such a mapping

is representation learning.

Mapping data to a low-dimensional space is

called dimensionality reduction.
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Learning a Subspace

@ How to choose a good subspace S§7

» Origin f1 is the empirical mean of the data
» Need to choose a D X K matrix U with orthonormal columns.

@ Two criteria:
» Minimize the reconstruction error:

mln_zllx() ~()||

» Maximize the variance of reconstructions: Find a subspace where data
has the most variability.

1 (D) a2
max — Z X =
a1 Y 157 -
1
> Note: The data and its reconstruction have the same means (exercise)!

T C) STA314-Lec8 26 /58



Learning a Subspace

@ These two criteria are equivalent! l.e., we'll show

N
1 M) <2 _ 1 () A2
N;nx =&V = const = g ) IIX7 ~ A

o Recall &) = o+ Uz and 2 = UT(x(i) - 0).
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Learning a Subspace

@ Warmup Observation: Because the columns of U are orthogonal,
T
UU=Iso

o a2 2 _ Ty, T T 2
Ix =2l = lUz]|" =z U Uz=2z z = [|]|".

== norm of centered reconstruction is equal to norm of representation.
(If you draw it, this is obvious).

» Variance of reconstructions is equal to variance of code vectors:
(i A2 N2 . A
% 2 157 - al|* = % Y. 1127 (exercise % Ziz(’) = 0)
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Pythagorean Theorem

o Key Observation: orthogonality of % _ [t and g — x(@

(Two vectors a, b are orthogonal < a'b = 0)

o Recall ¥V = g+ UUT (x') - ).

(5'((") _ ﬁ)T(i(i) _ X(i))

=(x" - @)U’ (p -x" +uuT (" - p))

= (<" =) uU T (a=—x") + (V=) UL T (V- o)
=0
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Pythagorean Theorem

The Pythagorean Theorem tells us:
5 = 2l + x” =717 = 17 = al” for each i

By averaging over data and from observation 2, we obtain

IR0 2, LSy (002
N;nx ol +NZ||x -2

projected variance reconstruction error

1< o
i A 112
=NZI|X'—;LII
i=1

constant

Therefore,
projected variance = constant — reconstruction error

Maximizing the variance is equivalent to minimizing the reconstruction error!
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Principal Component Analysis

Choosing a subspace to maximize the projected variance, or minimize the
reconstruction error, is called principal component analysis (PCA).

o Consider the empirical covariance matrix:

)X

N
1 DN anso(i) AT
DRCREIIERE
i=1
o Recall: ¥ is symmetric and positive semidefinite.

@ The optimal PCA subspace is spanned
by the top K eigenvectors of X. y

» More precisely, choose the first K of 7«
any orthonormal eigenbasis for X.
» We'll show this for K = 1.

@ These eigenvectors are called principal x X
components, analogous to the principal

axes of an ellipse. %
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Supplement: Deriving PCA

@ For K =1, we are fitting a unit vector u, and the code is a scalar
20 = uT(x(') — [1). Let’s maximize the projected variance. From our
warmup observation, we have

=~

B IR - Al = YT = Y T - )

uT(x(i) - ﬂ)(x(i) - ﬂ)Tu (aTb)2 =a'bb'a

I
=2~
™M= -

Il
-

N
T 1 hooa D) ANT
=u NZ(x“—u)(x”—u) }.

=u'%u
=u' QAQ'u Spectral Decomposition ¥ = QAQT
=a'Aa for a = QTu

D

I
™
>
N
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Supplement: Deriving PCA

o Maximize a' Aa = ZJ-D:I )\jaf fora=Q u.
» This is a change-of-basis to the eigenbasis of X.

Assume the ); are in sorted order, A1 = Ay, = ...

Observation: since u is a unit vector, then by unitarity, a is also a unit
T T T T . 2
vectorr a a=u QQ u=u uie, ) a =1

By inspection, set a; = 1 and a; = 0 for j # 1.

Hence, u = Qa = q; (the top eigenvector).

A similar argument shows that the kth principal component is the kth
eigenvector of X.
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Decorrelation

@ Interesting fact: the dimensions of z are decorrelated. For now, let
Cov denote the empirical covariance.

Cov(z) = Cov(U (x — )

=U" Cov(x)U

-u'sU

= UTQI\QTU D> spectral decomposition
=(1 0)A ( (I)> > by orthogonality

= top left K X K block of A

@ If the covariance matrix is diagonal, this means the features are
uncorrelated.
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Recap:

@ Dimensionality reduction aims to find a low-dimensional
representation of the data.

@ PCA projects the data onto a subspace which maximizes the
projected variance, or equivalently, minimizes the reconstruction error.

@ The optimal subspace is given by the top eigenvectors of the
empirical covariance matrix.

@ PCA gives a set of decorrelated features.
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Applying PCA to faces

@ Consider running PCA on 2429 19x19 grayscale images (CBCL data)

Can get good reconstructions with only 3 components

(]S s P bl gl s

@ PCA for pre-processing: can apply classifier to latent representation

» Original data is 361 dimensional

» For face recognition PCA with 3 components obtains 79% accuracy on
face/non-face discrimination on test data vs. 76.8% for a Gaussian
mixture model (GMM) with 84 states. (We'll cover GMMs later in the
course.)

@ Can also be good for visualization
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Applying PCA to faces: Learned basis

Principal components of face images ( “eigenfaces”)
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Applying PCA to digits

reconstructed with 2 bases reconstructed with 10 bases

E

reconstructed with 100 bases reconstructed with 506 bases

HEEEHB
2,
BEEBEa
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One more interpretation of PCA, which has an interesting generalization:
Matrix factorization.
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