STA 314: Statistical Methods for Machine Learning |

Lecture 6 - Linear Classification Il

Chris J. Maddison

University of Toronto

Intro ML (UofT) STA314-Lec6 1/44

Very Important Announcement

@ Despite my previous announcement, you do not have to be in a group
for HW2.

@ | have extended the HW?2 deadline by 24 hours for everyone to make
up for my mess.

@ Please double check your submission to avoid confusion. Some
students have been overwriting other's work, so check that your
submission is as expected. | won't penalize students based on this
issue, but please please please check your submission so that there are
no surprises in a few weeks.

@ If you still need to submit as a group and there are no groups, email
me.

) STA314-Lect 2/44

@ Support vector machines, elegant binary linear classifiers that
generalize very well.

e Multiclass classification: predicting a discrete(> 2)-valued target.

@ Stochastic gradient descent, which lets us scale up gradient descent
to large data sets.

Intro ML (UofT) STA314-Lec6 3/44

Binary Classification with a Linear Model (Small Change)

Binary classification: predicting a target with two values

Targets (small change from last week): t € {—1,+1}

Linear model (small change from last week):

z=w'x+b

y = sign(z)

@ This is an equivalent formulation of binary linear classification.

Last week we considered how to get any w and b that minimized the cost
on the training set.

Question: How should we choose w and b to get the best generalization?

Intro ML (UofT) STA314-Lec6 4/44

Separating Hyperplanes

Suppose we are given these data points from two different classes and want to
find a linear classifier that separates them.

*

Intro ML (UofT) STA314-Lec6 5/44

Separating Hyperplanes

@ The decision boundary looks like a line because x € R?, but think about it
as a D — 1 dimensional hyperplane.

@ Recall that a hyperplane is described by points x € R? such that
f(x) =w'x+b=0.

Intro ML (UofT) STA314-Lec6 6/44

Separating Hyperplanes

by +wiz=0

@ There are multiple separating hyperplanes, described by different parameters
(w, b).

Intro ML (UofT) STA314-Lec6 7/44

Separating Hyperplanes

Intro ML (UofT) STA314-Lec6 8/44

Optimal Separating Hyperplane

Optimal Separating Hyperplane: A hyperplane that separates two classes and

maximizes the distance to the closest point from either class, i.e., maximize the
margin of the classifier.

Intuitively, ensuring that a classifier is not too close to any data points leads to
better generalization on the test data.

Intro ML (UofT) STA314-Lec6

9/44

Geometry of Points and Planes

*

B H'w”2

f@)=b+w'z=0

@ Recall that the decision hyperplane is orthogonal (perpendicular) to w. l.e.,
for any two points x; and x, on the decision hyperplane we have that
w'(x; —x2) = 0.

Intro ML (UofT) STA314-Lec6 10/ 44

Geometry of Points and Planes

fl@)=b+w'z=0

w

@ The vector w* =
Twll,

is a unit vector pointing in the same direction as w.

@ The same hyperplane could equivalently be defined in terms of w*.

Intro ML (UofT) STA314-Lec6 11/44

Geometry of Points and Planes

w

*

Al

w

fl@)=b+w'z=0

@ To get the distance from a point x to the hyperplane, take the closest point
Xproj ON the hyperplane and project X — Xpr0j ONto W/ [|w||5:

w | W x| Tw

(x — Xproj) = =
P wll, [[wl] [[wl],

Intro ML (UofT) STA314-Lec6 12 /44

Maximizing Margin as an Optimization Problem

b+w'z=0

@ Now consider the two parallel hyperplanes
wx+b=1 w'x+b=—1
@ Using the distance formula, can see that the margin is 2/ ||w||,.

) STA314-Lect 13 /44

Maximizing Margin as an Optimization Problem

@ Recall: to correctly classify all points we require that

sign(w " x() + p) = ¢() for all

@ Let's impose a stronger requirement: correctly classify all points and prevent
them from falling in the margin.

w'x)+p>1 if t() =
w' x() 4+ p<—1 if t0) = —1

@ This is equivalent to
(O (wixD 4 p) =1 forall i

which we call the margin constraints.

Intro ML (UofT) STA314-Lec6 14 /44

Maximizing Margin as an Optimization Problem

e Now, we want to pick w, b that maximize the size of the margin (the
region where we do not allow points to fall), while ensuring all points
are correctly classified.

» Margin has width 2/ ||w]|,, so maximizing this is equivalent to
minimizing ||w||§

@ This leads to the max-margin objective:

. 2
min [jw/[

)

st. tw'xD4p)y>1 i=1,...,N

) STA314-Lect 15/ 44

Maximizing Margin as an Optimization Problem

Max-margin objective:
min || wl|>
w,b 2

sit. tO(w'x() 4 p)>1 i=1,...

@ Observe: if the margin constraint is not tight for x(), we could remove it
from the training set and the optimal w would be the same.

@ The important training examples are the ones with algebraic margin 1, and
are called support vectors.

@ Hence, this algorithm is called the (hard) Support Vector Machine (SVM)
(or Support Vector Classifier).

@ SVM-like algorithms are often called max-margin or large-margin.

) STA314-Lect 16 / 44

Non-Separable Data Points

How can we apply the max-margin principle if the data are not linearly separable?

Intro ML (UofT) STA314-Lec6 17 /44

@ There is an elegant relaxation of the max-margin objective called
soft-margin SVM for the non-separable case. We won't cover it carefully,
but let's motivate it.

@ We can measure the extent to which x() violates its margin constraint by

the magnitude of _ _
1—tO(w x4+ p)

» If this is very positive, then t()(wx() + p) < 1.
» If this is not positive, then t()(w'x() 4 p) > 1.

Intro ML (UofT) STA314-Lec6 18 /44

@ We want 1 — t(i)(wa(i) + b) to be small, but if it is negative, we don't care
how negative it is.

@ This motivates the hinge loss for z() = w "x() + b

Lhinge(z(i)) = max (0, 1— t(i)z(i))

Intro ML (UofT) STA314-Lec6 19 /44

Soft-margin SVM

@ Soft-margin SVM minimizes the average hinge losses plus the norm of the
weights, where z() = wTx() 4 b:

N
1 o
iny < O (:)) 2
min 2. max (071 tz2) 4+ X|wl3

@ Hence, the soft-margin SVM can be seen as a linear classifier with hinge loss
and an L, regularizer.

Intro ML (UofT) STA314-Lec6 20/ 44

Revisiting Loss Functions for Classification

Hinge loss compared with other loss functions

—— zero-one
—— least squares
—— logistic + LS
—— logistic + CE
—— hinge

Intro ML (UofT) STA314-Lec6 21 /44

SVMs: What we Left Out

What we left out:

@ How to fit w for the max-margin SVM:
» One option: gradient descent

@ Classic results from learning theory show that a large margin implies good
generalization.

Intro ML (UofT) STA314-Lec6 22 /44

Multiclass Classification

@ So far, we've only talked about binary linear classification.

@ Classification tasks with more than two categories:

cl0wlt N (4A 12

puzen 1233

26794977658

L7\ 11239

8978409497

Intro ML (UofT) STA314-Lec6 23 /44

Multiclass Classification

o Targets form a discrete set {1,...,K}.

@ It's often more convenient to represent them as one-hot vectors, or a
one-of-K encoding:

t=(0,...,0,1,0,...,0) e R¥

~
entry k is 1

o We will build multiclass linear classifiers by generalizing binary linear
classifiers and logistic regression (not SVMs).

Intro ML (UofT) STA314-Lec6 24 /44

Multiclass Linear Classification

We can start with a linear function of the inputs.

D input dimensions and K output dimensions, so we need K x D
weights, which we arrange as a weight matrix W € RK*D.

Also, we have a vector b € R¥ of bias parameters.

@ A linear function of an input x € RP:

D
z, = Z Wi Xj + by for k=1,2,...,.K
j=1

Eliminate the bias parameters by taking W € RK*(P+1) and adding a
dummy variable xp = 1.

@ So, vectorized we have the vector z € RX:
z=Wx+b orwithdummy xg =1 z=Wx

) STA314-Lect 25 /44

Multiclass Linear Classification

@ How can we turn this linear prediction into a one-hot prediction?

@ We can interpret the magnitude of z; as an measure of how much the
model prefers k as its prediction.

o If we do this, we should set

1 i=arg max,’f:1 Zk
Yi = .
0 otherwise

o Exercise: how does the case of K = 2 relate to the prediction rule in
binary linear classifiers?

) STA314-Lect 26 / 44

Softmax Regression

@ As with binary classification, we need to soften our predictions for the
sake of optimization.

@ We want predictions that are like probabilities, i.e., 0 < y, < 1 and

@ We can use the softmax function, a multivariable generalization of the
logistic function:

e%k

>k €%

yk = softmax(z), =

» Outputs can be interpreted as probabilities (positive and sum to 1)
> If zx is much larger than the others, then softmax(z)x ~ 1 and it
behaves like argmax.

» Exercise: how does the case of K = 2 relate to the logistic function?

@ The inputs zx are called the logits.

) STA314-Lect 27 /44

Softmax Regression

o If a model outputs a vector y € R¥ of class probabilities, we can use
cross-entropy as the loss function:

K
Lon(y,t) = =) txlog y
k=1

= —t"(logy),

where the log is applied elementwise.

o Just like with logistic regression, we typically combine the softmax
and cross-entropy into a softmax-cross-entropy function.

Intro ML (UofT) STA314-Lec6 28 /44

Softmax Regression

@ Softmax regression (with dummy xp = 1):
z = Wx
y = softmax(z)
Lop = —t' (logy)
o Gradient descent updates can be derived for each row of W:

8LCE . 8LCE) 8zk
3Wk - 8zk 8Wk

= (yx — tk) - x
L m () (i
Wi = Wk —ay Zl(yk —t)x()

e Similar to linear/logistic reg (no coincidence) (verify the update)

Intro ML (UofT) STA314-Lec6 29 /44

What about SVMs?

@ Not trivial to generalize the notion of a margin to multiclass setting.

@ Many different proposals for multi-class SVMs, but outside of the
scope of this course.

Intro ML (UofT) STA314-Lec6 30/ 44

Batch Gradient Descent

@ Let's imagine we have a prediction function y(x, @) with parameters
0, e.g. 0 = w in logisitic regression.

@ So far, the cost function R has been the average loss over the
training examples:

N

ﬁ(e):%ZL(i) ZL (x).g), t),
i=1
o By linearity,
OR _ 1m0l
96~ N 06

o Computing the gradient requires summing over all of the training
examples. This is known as batch training.

) STA314-Lect 31/44

Stochastic Gradient Descent

Batch training is impractical if you have a large dataset (e.g. millions of
training examples)!

Stochastic gradient descent (SGD): update the parameters based on the
gradient for a single training example,

1- Choose i uniformly at random,
oL
2— 6« 06—
— [0} 20

Cost of each SGD update is independent of N!

SGD can make significant progress before even seeing all the data!

Mathematical justification: if you sample a training example uniformly at
random, the stochastic gradient is an unbiased estimate of the batch
gradient:
L) 1 Moo 5
5% | = v 5o = a0
00 N — 00 00

) STA314-Lect 32/44

Stochastic Gradient Descent

@ Problems with using single training example to estimate gradient:
» Variance in the estimate may be high
» We can't exploit efficient vectorized operations
@ Compromise approach:
» compute the gradients on a randomly chosen medium-sized set of
training examples M C {1,..., N}, called a mini-batch.

@ Stochastic gradients computed on larger mini-batches have smaller
variance.
@ The mini-batch size | M| is a hyperparameter that needs to be set.

» Too large: requires more compute; e.g., it takes more memory to store
the activations, and longer to compute each gradient update

» Too small: can’t exploit vectorization, has high variance

» A reasonable value might be | M| = 100.

) STA314-Lect 33 /44

Stochastic Gradient Descent

@ Batch gradient descent moves directly downhill. SGD takes steps in a
noisy direction, but moves downbhill on average.

S

batch gradient descent stochastic gradient descent

Intro ML (UofT) STA314-Lec6 34 /44

@ In gradient descent, the learning rate « is a hyperparameter we need
to tune. Here are some things that can go wrong:

o too small: « too large:
slow progress oscillations

« much too large:
instability

@ Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try 0.1,0.03,0.01,...).

Intro ML (UofT) STA314-Lec6 35 /44

SGD Learning Rate

@ In stochastic training, the learning rate also influences the
fluctuations due to the stochasticity of the gradients.

small learning rate large learning rate

o Typical strategy:

> Use a large learning rate early in training so you can get close to the
optimum
» Gradually decay the learning rate to reduce the fluctuations

Intro ML (UofT) STA314-Lec6 36 /44

SGD Learning Rate

@ Warning: by reducing the learning rate, you reduce the fluctuations,
which can appear to make the loss drop suddenly. But this can come
at the expense of long-run performance.

reduce
learning rate

error

epoch

Intro ML (UofT) STA314-Lec6 37 /44

Training Curves

@ To diagnose optimization problems, it's useful to look at training
curves: plot the training cost as a function of iteration.

instability
(try a smaller
learning rate)

convergence
(try a larger
learning rate)

training
cost

convergence

iteration #

@ Warning: it's very hard to tell from the training curves whether an
optimizer has converged. They can reveal major problems, but they
can't guarantee convergence.

Intro ML (UofT) STA314-Lec6 38 /44

The End of Supervised Learning

@ This is the end of supervised learning in this course (sort of), next
week we will move on to unsupervised learning.

Intro ML (UofT) STA314-Lec6 39 /44

The following slides are optional and will not be tested.

Intro ML (UofT) STA314-Lec6

Gradient Checking

@ We've derived a lot of gradients so far. How do we know if they're
correct?
@ Recall the definition of the partial derivative:

f(Xl,.,.,X,'-l-h,...,XN)—f(Xl,...,X,',...,XN)

0 .
a—xff(xl,...,xm) = /llno

@ Check your derivatives numerically by plugging in a small value of h,
e.g. 10710 This is known as finite differences.

Intro ML (UofT) STA314-Lec6 41 /44

Gradient Checking

@ Even better: the two-sided definition

T f(Xl,...,X;th,...,XN)*f(Xl,...,X,'fh,...,XN)
B O xw) = Jim, 2h

— exact
— one-sided
— two-sided

Intro ML (UofT) STA314-Lec6 42 /44

Gradient Checking

Run gradient checks on small, randomly chosen inputs

@ Use double precision floats (not the default for TensorFlow, PyTorch,
etc.!)

@ Compute the relative error:
|a— b
|a| + |b]

The relative error should be very small, e.g. 107°

Intro ML (UofT) STA314-Lec6 43 /44

Gradient Checking

Gradient checking is really important!

Learning algorithms often appear to work even if the math is wrong.
o But:

» They might work much better if the derivatives are correct.
» Wrong derivatives might lead you on a wild goose chase.

@ If you implement derivatives by hand, gradient checking is the single
most important thing you need to do to get your algorithm to work
well.

) STA314-Lect 44/44

